| /* |
| * Copyright 2014 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkTextureCompressor_LATC.h" |
| #include "SkTextureCompressor_Blitter.h" |
| #include "SkTextureCompressor_Utils.h" |
| |
| #include "SkBlitter.h" |
| #include "SkEndian.h" |
| |
| // Compression options. In general, the slow version is much more accurate, but |
| // much slower. The fast option is much faster, but much less accurate. YMMV. |
| #define COMPRESS_LATC_SLOW 0 |
| #define COMPRESS_LATC_FAST 1 |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| // Generates an LATC palette. LATC constructs |
| // a palette of eight colors from LUM0 and LUM1 using the algorithm: |
| // |
| // LUM0, if lum0 > lum1 and code(x,y) == 0 |
| // LUM1, if lum0 > lum1 and code(x,y) == 1 |
| // (6*LUM0+ LUM1)/7, if lum0 > lum1 and code(x,y) == 2 |
| // (5*LUM0+2*LUM1)/7, if lum0 > lum1 and code(x,y) == 3 |
| // (4*LUM0+3*LUM1)/7, if lum0 > lum1 and code(x,y) == 4 |
| // (3*LUM0+4*LUM1)/7, if lum0 > lum1 and code(x,y) == 5 |
| // (2*LUM0+5*LUM1)/7, if lum0 > lum1 and code(x,y) == 6 |
| // ( LUM0+6*LUM1)/7, if lum0 > lum1 and code(x,y) == 7 |
| // |
| // LUM0, if lum0 <= lum1 and code(x,y) == 0 |
| // LUM1, if lum0 <= lum1 and code(x,y) == 1 |
| // (4*LUM0+ LUM1)/5, if lum0 <= lum1 and code(x,y) == 2 |
| // (3*LUM0+2*LUM1)/5, if lum0 <= lum1 and code(x,y) == 3 |
| // (2*LUM0+3*LUM1)/5, if lum0 <= lum1 and code(x,y) == 4 |
| // ( LUM0+4*LUM1)/5, if lum0 <= lum1 and code(x,y) == 5 |
| // 0, if lum0 <= lum1 and code(x,y) == 6 |
| // 255, if lum0 <= lum1 and code(x,y) == 7 |
| |
| static const int kLATCPaletteSize = 8; |
| static void generate_latc_palette(uint8_t palette[], uint8_t lum0, uint8_t lum1) { |
| palette[0] = lum0; |
| palette[1] = lum1; |
| if (lum0 > lum1) { |
| for (int i = 1; i < 7; i++) { |
| palette[i+1] = ((7-i)*lum0 + i*lum1) / 7; |
| } |
| } else { |
| for (int i = 1; i < 5; i++) { |
| palette[i+1] = ((5-i)*lum0 + i*lum1) / 5; |
| } |
| palette[6] = 0; |
| palette[7] = 255; |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| #if COMPRESS_LATC_SLOW |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // |
| // Utility Functions |
| // |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| // Absolute difference between two values. More correct than SkTAbs(a - b) |
| // because it works on unsigned values. |
| template <typename T> inline T abs_diff(const T &a, const T &b) { |
| return (a > b) ? (a - b) : (b - a); |
| } |
| |
| static bool is_extremal(uint8_t pixel) { |
| return 0 == pixel || 255 == pixel; |
| } |
| |
| typedef uint64_t (*A84x4To64BitProc)(const uint8_t block[]); |
| |
| // This function is used by both R11 EAC and LATC to compress 4x4 blocks |
| // of 8-bit alpha into 64-bit values that comprise the compressed data. |
| // For both formats, we need to make sure that the dimensions of the |
| // src pixels are divisible by 4, and copy 4x4 blocks one at a time |
| // for compression. |
| static bool compress_4x4_a8_to_64bit(uint8_t* dst, const uint8_t* src, |
| int width, int height, size_t rowBytes, |
| A84x4To64BitProc proc) { |
| // Make sure that our data is well-formed enough to be considered for compression |
| if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) { |
| return false; |
| } |
| |
| int blocksX = width >> 2; |
| int blocksY = height >> 2; |
| |
| uint8_t block[16]; |
| uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst); |
| for (int y = 0; y < blocksY; ++y) { |
| for (int x = 0; x < blocksX; ++x) { |
| // Load block |
| for (int k = 0; k < 4; ++k) { |
| memcpy(block + k*4, src + k*rowBytes + 4*x, 4); |
| } |
| |
| // Compress it |
| *encPtr = proc(block); |
| ++encPtr; |
| } |
| src += 4 * rowBytes; |
| } |
| |
| return true; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // |
| // LATC compressor |
| // |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| // LATC compressed texels down into square 4x4 blocks |
| static const int kLATCBlockSize = 4; |
| static const int kLATCPixelsPerBlock = kLATCBlockSize * kLATCBlockSize; |
| |
| // Compress a block by using the bounding box of the pixels. It is assumed that |
| // there are no extremal pixels in this block otherwise we would have used |
| // compressBlockBBIgnoreExtremal. |
| static uint64_t compress_latc_block_bb(const uint8_t pixels[]) { |
| uint8_t minVal = 255; |
| uint8_t maxVal = 0; |
| for (int i = 0; i < kLATCPixelsPerBlock; ++i) { |
| minVal = SkTMin(pixels[i], minVal); |
| maxVal = SkTMax(pixels[i], maxVal); |
| } |
| |
| SkASSERT(!is_extremal(minVal)); |
| SkASSERT(!is_extremal(maxVal)); |
| |
| uint8_t palette[kLATCPaletteSize]; |
| generate_latc_palette(palette, maxVal, minVal); |
| |
| uint64_t indices = 0; |
| for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) { |
| |
| // Find the best palette index |
| uint8_t bestError = abs_diff(pixels[i], palette[0]); |
| uint8_t idx = 0; |
| for (int j = 1; j < kLATCPaletteSize; ++j) { |
| uint8_t error = abs_diff(pixels[i], palette[j]); |
| if (error < bestError) { |
| bestError = error; |
| idx = j; |
| } |
| } |
| |
| indices <<= 3; |
| indices |= idx; |
| } |
| |
| return |
| SkEndian_SwapLE64( |
| static_cast<uint64_t>(maxVal) | |
| (static_cast<uint64_t>(minVal) << 8) | |
| (indices << 16)); |
| } |
| |
| // Compress a block by using the bounding box of the pixels without taking into |
| // account the extremal values. The generated palette will contain extremal values |
| // and fewer points along the line segment to interpolate. |
| static uint64_t compress_latc_block_bb_ignore_extremal(const uint8_t pixels[]) { |
| uint8_t minVal = 255; |
| uint8_t maxVal = 0; |
| for (int i = 0; i < kLATCPixelsPerBlock; ++i) { |
| if (is_extremal(pixels[i])) { |
| continue; |
| } |
| |
| minVal = SkTMin(pixels[i], minVal); |
| maxVal = SkTMax(pixels[i], maxVal); |
| } |
| |
| SkASSERT(!is_extremal(minVal)); |
| SkASSERT(!is_extremal(maxVal)); |
| |
| uint8_t palette[kLATCPaletteSize]; |
| generate_latc_palette(palette, minVal, maxVal); |
| |
| uint64_t indices = 0; |
| for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) { |
| |
| // Find the best palette index |
| uint8_t idx = 0; |
| if (is_extremal(pixels[i])) { |
| if (0xFF == pixels[i]) { |
| idx = 7; |
| } else if (0 == pixels[i]) { |
| idx = 6; |
| } else { |
| SkFAIL("Pixel is extremal but not really?!"); |
| } |
| } else { |
| uint8_t bestError = abs_diff(pixels[i], palette[0]); |
| for (int j = 1; j < kLATCPaletteSize - 2; ++j) { |
| uint8_t error = abs_diff(pixels[i], palette[j]); |
| if (error < bestError) { |
| bestError = error; |
| idx = j; |
| } |
| } |
| } |
| |
| indices <<= 3; |
| indices |= idx; |
| } |
| |
| return |
| SkEndian_SwapLE64( |
| static_cast<uint64_t>(minVal) | |
| (static_cast<uint64_t>(maxVal) << 8) | |
| (indices << 16)); |
| } |
| |
| |
| // Compress LATC block. Each 4x4 block of pixels is decompressed by LATC from two |
| // values LUM0 and LUM1, and an index into the generated palette. Details of how |
| // the palette is generated can be found in the comments of generatePalette above. |
| // |
| // We choose which palette type to use based on whether or not 'pixels' contains |
| // any extremal values (0 or 255). If there are extremal values, then we use the |
| // palette that has the extremal values built in. Otherwise, we use the full bounding |
| // box. |
| |
| static uint64_t compress_latc_block(const uint8_t pixels[]) { |
| // Collect unique pixels |
| int nUniquePixels = 0; |
| uint8_t uniquePixels[kLATCPixelsPerBlock]; |
| for (int i = 0; i < kLATCPixelsPerBlock; ++i) { |
| bool foundPixel = false; |
| for (int j = 0; j < nUniquePixels; ++j) { |
| foundPixel = foundPixel || uniquePixels[j] == pixels[i]; |
| } |
| |
| if (!foundPixel) { |
| uniquePixels[nUniquePixels] = pixels[i]; |
| ++nUniquePixels; |
| } |
| } |
| |
| // If there's only one unique pixel, then our compression is easy. |
| if (1 == nUniquePixels) { |
| return SkEndian_SwapLE64(pixels[0] | (pixels[0] << 8)); |
| |
| // Similarly, if there are only two unique pixels, then our compression is |
| // easy again: place the pixels in the block header, and assign the indices |
| // with one or zero depending on which pixel they belong to. |
| } else if (2 == nUniquePixels) { |
| uint64_t outBlock = 0; |
| for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) { |
| int idx = 0; |
| if (pixels[i] == uniquePixels[1]) { |
| idx = 1; |
| } |
| |
| outBlock <<= 3; |
| outBlock |= idx; |
| } |
| outBlock <<= 16; |
| outBlock |= (uniquePixels[0] | (uniquePixels[1] << 8)); |
| return SkEndian_SwapLE64(outBlock); |
| } |
| |
| // Count non-maximal pixel values |
| int nonExtremalPixels = 0; |
| for (int i = 0; i < nUniquePixels; ++i) { |
| if (!is_extremal(uniquePixels[i])) { |
| ++nonExtremalPixels; |
| } |
| } |
| |
| // If all the pixels are nonmaximal then compute the palette using |
| // the bounding box of all the pixels. |
| if (nonExtremalPixels == nUniquePixels) { |
| // This is really just for correctness, in all of my tests we |
| // never take this step. We don't lose too much perf here because |
| // most of the processing in this function is worth it for the |
| // 1 == nUniquePixels optimization. |
| return compress_latc_block_bb(pixels); |
| } else { |
| return compress_latc_block_bb_ignore_extremal(pixels); |
| } |
| } |
| |
| #endif // COMPRESS_LATC_SLOW |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| #if COMPRESS_LATC_FAST |
| |
| // Take the top three bits of each index and pack them into the low 12 |
| // bits of the integer. |
| static inline uint32_t pack_index(uint32_t x) { |
| // Pack it in... |
| #if defined (SK_CPU_BENDIAN) |
| return |
| (x >> 24) | |
| ((x >> 13) & 0x38) | |
| ((x >> 2) & 0x1C0) | |
| ((x << 9) & 0xE00); |
| #else |
| return |
| (x & 0x7) | |
| ((x >> 5) & 0x38) | |
| ((x >> 10) & 0x1C0) | |
| ((x >> 15) & 0xE00); |
| #endif |
| } |
| |
| // Converts each 8-bit byte in the integer into an LATC index, and then packs |
| // the indices into the low 12 bits of the integer. |
| static inline uint32_t convert_index(uint32_t x) { |
| // Since the palette is |
| // 255, 0, 219, 182, 146, 109, 73, 36 |
| // we need to map the high three bits of each byte in the integer |
| // from |
| // 0 1 2 3 4 5 6 7 |
| // to |
| // 1 7 6 5 4 3 2 0 |
| // |
| // This first operation takes the mapping from |
| // 0 1 2 3 4 5 6 7 --> 7 6 5 4 3 2 1 0 |
| x = 0x07070707 - SkTextureCompressor::ConvertToThreeBitIndex(x); |
| |
| // mask is 1 if index is non-zero |
| const uint32_t mask = (x | (x >> 1) | (x >> 2)) & 0x01010101; |
| |
| // add mask: |
| // 7 6 5 4 3 2 1 0 --> 8 7 6 5 4 3 2 0 |
| x = (x + mask); |
| |
| // Handle overflow: |
| // 8 7 6 5 4 3 2 0 --> 9 7 6 5 4 3 2 0 |
| x |= (x >> 3) & 0x01010101; |
| |
| // Mask out high bits: |
| // 9 7 6 5 4 3 2 0 --> 1 7 6 5 4 3 2 0 |
| x &= 0x07070707; |
| |
| return pack_index(x); |
| } |
| |
| typedef uint64_t (*PackIndicesProc)(const uint8_t* alpha, size_t rowBytes); |
| template<PackIndicesProc packIndicesProc> |
| static void compress_a8_latc_block(uint8_t** dstPtr, const uint8_t* src, size_t rowBytes) { |
| *(reinterpret_cast<uint64_t*>(*dstPtr)) = |
| SkEndian_SwapLE64(0xFF | (packIndicesProc(src, rowBytes) << 16)); |
| *dstPtr += 8; |
| } |
| |
| inline uint64_t PackRowMajor(const uint8_t *indices, size_t rowBytes) { |
| uint64_t result = 0; |
| for (int i = 0; i < 4; ++i) { |
| const uint32_t idx = *(reinterpret_cast<const uint32_t*>(indices + i*rowBytes)); |
| result |= static_cast<uint64_t>(convert_index(idx)) << 12*i; |
| } |
| return result; |
| } |
| |
| inline uint64_t PackColumnMajor(const uint8_t *indices, size_t rowBytes) { |
| // !SPEED! Blarg, this is kind of annoying. SSE4 can make this |
| // a LOT faster. |
| uint8_t transposed[16]; |
| for (int i = 0; i < 4; ++i) { |
| for (int j = 0; j < 4; ++j) { |
| transposed[j*4+i] = indices[i*rowBytes + j]; |
| } |
| } |
| |
| return PackRowMajor(transposed, 4); |
| } |
| |
| static bool compress_4x4_a8_latc(uint8_t* dst, const uint8_t* src, |
| int width, int height, size_t rowBytes) { |
| |
| if (width < 0 || ((width % 4) != 0) || height < 0 || ((height % 4) != 0)) { |
| return false; |
| } |
| |
| uint8_t** dstPtr = &dst; |
| for (int y = 0; y < height; y += 4) { |
| for (int x = 0; x < width; x += 4) { |
| compress_a8_latc_block<PackRowMajor>(dstPtr, src + y*rowBytes + x, rowBytes); |
| } |
| } |
| |
| return true; |
| } |
| |
| void CompressA8LATCBlockVertical(uint8_t* dst, const uint8_t block[]) { |
| compress_a8_latc_block<PackColumnMajor>(&dst, block, 4); |
| } |
| |
| #endif // COMPRESS_LATC_FAST |
| |
| void decompress_latc_block(uint8_t* dst, int dstRowBytes, const uint8_t* src) { |
| uint64_t block = SkEndian_SwapLE64(*(reinterpret_cast<const uint64_t *>(src))); |
| uint8_t lum0 = block & 0xFF; |
| uint8_t lum1 = (block >> 8) & 0xFF; |
| |
| uint8_t palette[kLATCPaletteSize]; |
| generate_latc_palette(palette, lum0, lum1); |
| |
| block >>= 16; |
| for (int j = 0; j < 4; ++j) { |
| for (int i = 0; i < 4; ++i) { |
| dst[i] = palette[block & 0x7]; |
| block >>= 3; |
| } |
| dst += dstRowBytes; |
| } |
| } |
| |
| // This is the type passed as the CompressorType argument of the compressed |
| // blitter for the LATC format. The static functions required to be in this |
| // struct are documented in SkTextureCompressor_Blitter.h |
| struct CompressorLATC { |
| static inline void CompressA8Vertical(uint8_t* dst, const uint8_t block[]) { |
| compress_a8_latc_block<PackColumnMajor>(&dst, block, 4); |
| } |
| |
| static inline void CompressA8Horizontal(uint8_t* dst, const uint8_t* src, |
| int srcRowBytes) { |
| compress_a8_latc_block<PackRowMajor>(&dst, src, srcRowBytes); |
| } |
| |
| #if PEDANTIC_BLIT_RECT |
| static inline void UpdateBlock(uint8_t* dst, const uint8_t* src, int srcRowBytes, |
| const uint8_t* mask) { |
| // Pack the mask |
| uint64_t cmpMask = 0; |
| for (int i = 0; i < 4; ++i) { |
| const uint32_t idx = *(reinterpret_cast<const uint32_t*>(src + i*srcRowBytes)); |
| cmpMask |= static_cast<uint64_t>(pack_index(idx)) << 12*i; |
| } |
| cmpMask = SkEndian_SwapLE64(cmpMask << 16); // avoid header |
| |
| uint64_t cmpSrc; |
| uint8_t *cmpSrcPtr = reinterpret_cast<uint8_t*>(&cmpSrc); |
| compress_a8_latc_block<PackRowMajor>(&cmpSrcPtr, src, srcRowBytes); |
| |
| // Mask out header |
| cmpSrc = cmpSrc & cmpMask; |
| |
| // Read destination encoding |
| uint64_t *cmpDst = reinterpret_cast<uint64_t*>(dst); |
| |
| // If the destination is the encoding for a blank block, then we need |
| // to properly set the header |
| if (0 == cmpDst) { |
| *cmpDst = SkTEndian_SwapLE64(0x24924924924900FFULL); |
| } |
| |
| // Set the new indices |
| *cmpDst &= ~cmpMask; |
| *cmpDst |= cmpSrc; |
| } |
| #endif // PEDANTIC_BLIT_RECT |
| }; |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| namespace SkTextureCompressor { |
| |
| bool CompressA8ToLATC(uint8_t* dst, const uint8_t* src, int width, int height, size_t rowBytes) { |
| #if COMPRESS_LATC_FAST |
| return compress_4x4_a8_latc(dst, src, width, height, rowBytes); |
| #elif COMPRESS_LATC_SLOW |
| return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_latc_block); |
| #else |
| #error "Must choose either fast or slow LATC compression" |
| #endif |
| } |
| |
| SkBlitter* CreateLATCBlitter(int width, int height, void* outputBuffer, |
| SkTBlitterAllocator* allocator) { |
| if ((width % 4) != 0 || (height % 4) != 0) { |
| return nullptr; |
| } |
| |
| #if COMPRESS_LATC_FAST |
| // Memset the output buffer to an encoding that decodes to zero. We must do this |
| // in order to avoid having uninitialized values in the buffer if the blitter |
| // decides not to write certain scanlines (and skip entire rows of blocks). |
| // In the case of LATC, if everything is zero, then LUM0 and LUM1 are also zero, |
| // and they will only be non-zero (0xFF) if the index is 7. So bzero will do just fine. |
| // (8 bytes per block) * (w * h / 16 blocks) = w * h / 2 |
| sk_bzero(outputBuffer, width * height / 2); |
| |
| return allocator->createT< |
| SkTCompressedAlphaBlitter<4, 8, CompressorLATC>>(width, height, outputBuffer); |
| #elif COMPRESS_LATC_SLOW |
| // TODO (krajcevski) |
| return nullptr; |
| #endif |
| } |
| |
| void DecompressLATC(uint8_t* dst, int dstRowBytes, const uint8_t* src, int width, int height) { |
| for (int j = 0; j < height; j += 4) { |
| for (int i = 0; i < width; i += 4) { |
| decompress_latc_block(dst + i, dstRowBytes, src); |
| src += 8; |
| } |
| dst += 4 * dstRowBytes; |
| } |
| } |
| |
| } // SkTextureCompressor |