| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkNx_neon_DEFINED |
| #define SkNx_neon_DEFINED |
| |
| #include <arm_neon.h> |
| |
| #define SKNX_IS_FAST |
| |
| // ARMv8 has vrndmq_f32 to floor 4 floats. Here we emulate it: |
| // - roundtrip through integers via truncation |
| // - subtract 1 if that's too big (possible for negative values). |
| // This restricts the domain of our inputs to a maximum somehwere around 2^31. Seems plenty big. |
| static inline float32x4_t armv7_vrndmq_f32(float32x4_t v) { |
| auto roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v)); |
| auto too_big = vcgtq_f32(roundtrip, v); |
| return vsubq_f32(roundtrip, (float32x4_t)vandq_u32(too_big, (uint32x4_t)vdupq_n_f32(1))); |
| } |
| |
| // Well, this is absurd. The shifts require compile-time constant arguments. |
| |
| #define SHIFT8(op, v, bits) switch(bits) { \ |
| case 1: return op(v, 1); case 2: return op(v, 2); case 3: return op(v, 3); \ |
| case 4: return op(v, 4); case 5: return op(v, 5); case 6: return op(v, 6); \ |
| case 7: return op(v, 7); \ |
| } return fVec |
| |
| #define SHIFT16(op, v, bits) if (bits < 8) { SHIFT8(op, v, bits); } switch(bits) { \ |
| case 8: return op(v, 8); case 9: return op(v, 9); \ |
| case 10: return op(v, 10); case 11: return op(v, 11); case 12: return op(v, 12); \ |
| case 13: return op(v, 13); case 14: return op(v, 14); case 15: return op(v, 15); \ |
| } return fVec |
| |
| #define SHIFT32(op, v, bits) if (bits < 16) { SHIFT16(op, v, bits); } switch(bits) { \ |
| case 16: return op(v, 16); case 17: return op(v, 17); case 18: return op(v, 18); \ |
| case 19: return op(v, 19); case 20: return op(v, 20); case 21: return op(v, 21); \ |
| case 22: return op(v, 22); case 23: return op(v, 23); case 24: return op(v, 24); \ |
| case 25: return op(v, 25); case 26: return op(v, 26); case 27: return op(v, 27); \ |
| case 28: return op(v, 28); case 29: return op(v, 29); case 30: return op(v, 30); \ |
| case 31: return op(v, 31); } return fVec |
| |
| template <> |
| class SkNx<2, float> { |
| public: |
| SkNx(float32x2_t vec) : fVec(vec) {} |
| |
| SkNx() {} |
| SkNx(float val) : fVec(vdup_n_f32(val)) {} |
| static SkNx Load(const void* ptr) { return vld1_f32((const float*)ptr); } |
| SkNx(float a, float b) { fVec = (float32x2_t) { a, b }; } |
| |
| void store(void* ptr) const { vst1_f32((float*)ptr, fVec); } |
| |
| SkNx invert() const { |
| float32x2_t est0 = vrecpe_f32(fVec), |
| est1 = vmul_f32(vrecps_f32(est0, fVec), est0); |
| return est1; |
| } |
| |
| SkNx operator + (const SkNx& o) const { return vadd_f32(fVec, o.fVec); } |
| SkNx operator - (const SkNx& o) const { return vsub_f32(fVec, o.fVec); } |
| SkNx operator * (const SkNx& o) const { return vmul_f32(fVec, o.fVec); } |
| SkNx operator / (const SkNx& o) const { |
| #if defined(SK_CPU_ARM64) |
| return vdiv_f32(fVec, o.fVec); |
| #else |
| float32x2_t est0 = vrecpe_f32(o.fVec), |
| est1 = vmul_f32(vrecps_f32(est0, o.fVec), est0), |
| est2 = vmul_f32(vrecps_f32(est1, o.fVec), est1); |
| return vmul_f32(fVec, est2); |
| #endif |
| } |
| |
| SkNx operator == (const SkNx& o) const { return vreinterpret_f32_u32(vceq_f32(fVec, o.fVec)); } |
| SkNx operator < (const SkNx& o) const { return vreinterpret_f32_u32(vclt_f32(fVec, o.fVec)); } |
| SkNx operator > (const SkNx& o) const { return vreinterpret_f32_u32(vcgt_f32(fVec, o.fVec)); } |
| SkNx operator <= (const SkNx& o) const { return vreinterpret_f32_u32(vcle_f32(fVec, o.fVec)); } |
| SkNx operator >= (const SkNx& o) const { return vreinterpret_f32_u32(vcge_f32(fVec, o.fVec)); } |
| SkNx operator != (const SkNx& o) const { |
| return vreinterpret_f32_u32(vmvn_u32(vceq_f32(fVec, o.fVec))); |
| } |
| |
| static SkNx Min(const SkNx& l, const SkNx& r) { return vmin_f32(l.fVec, r.fVec); } |
| static SkNx Max(const SkNx& l, const SkNx& r) { return vmax_f32(l.fVec, r.fVec); } |
| |
| SkNx rsqrt() const { |
| float32x2_t est0 = vrsqrte_f32(fVec); |
| return vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0); |
| } |
| |
| SkNx sqrt() const { |
| #if defined(SK_CPU_ARM64) |
| return vsqrt_f32(fVec); |
| #else |
| float32x2_t est0 = vrsqrte_f32(fVec), |
| est1 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0), |
| est2 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est1, est1)), est1); |
| return vmul_f32(fVec, est2); |
| #endif |
| } |
| |
| float operator[](int k) const { |
| SkASSERT(0 <= k && k < 2); |
| union { float32x2_t v; float fs[2]; } pun = {fVec}; |
| return pun.fs[k&1]; |
| } |
| |
| bool allTrue() const { |
| auto v = vreinterpret_u32_f32(fVec); |
| return vget_lane_u32(v,0) && vget_lane_u32(v,1); |
| } |
| bool anyTrue() const { |
| auto v = vreinterpret_u32_f32(fVec); |
| return vget_lane_u32(v,0) || vget_lane_u32(v,1); |
| } |
| |
| float32x2_t fVec; |
| }; |
| |
| template <> |
| class SkNx<4, float> { |
| public: |
| SkNx(float32x4_t vec) : fVec(vec) {} |
| |
| SkNx() {} |
| SkNx(float val) : fVec(vdupq_n_f32(val)) {} |
| static SkNx Load(const void* ptr) { return vld1q_f32((const float*)ptr); } |
| SkNx(float a, float b, float c, float d) { fVec = (float32x4_t) { a, b, c, d }; } |
| |
| void store(void* ptr) const { vst1q_f32((float*)ptr, fVec); } |
| SkNx invert() const { |
| float32x4_t est0 = vrecpeq_f32(fVec), |
| est1 = vmulq_f32(vrecpsq_f32(est0, fVec), est0); |
| return est1; |
| } |
| |
| SkNx operator + (const SkNx& o) const { return vaddq_f32(fVec, o.fVec); } |
| SkNx operator - (const SkNx& o) const { return vsubq_f32(fVec, o.fVec); } |
| SkNx operator * (const SkNx& o) const { return vmulq_f32(fVec, o.fVec); } |
| SkNx operator / (const SkNx& o) const { |
| #if defined(SK_CPU_ARM64) |
| return vdivq_f32(fVec, o.fVec); |
| #else |
| float32x4_t est0 = vrecpeq_f32(o.fVec), |
| est1 = vmulq_f32(vrecpsq_f32(est0, o.fVec), est0), |
| est2 = vmulq_f32(vrecpsq_f32(est1, o.fVec), est1); |
| return vmulq_f32(fVec, est2); |
| #endif |
| } |
| |
| SkNx operator==(const SkNx& o) const { return vreinterpretq_f32_u32(vceqq_f32(fVec, o.fVec)); } |
| SkNx operator <(const SkNx& o) const { return vreinterpretq_f32_u32(vcltq_f32(fVec, o.fVec)); } |
| SkNx operator >(const SkNx& o) const { return vreinterpretq_f32_u32(vcgtq_f32(fVec, o.fVec)); } |
| SkNx operator<=(const SkNx& o) const { return vreinterpretq_f32_u32(vcleq_f32(fVec, o.fVec)); } |
| SkNx operator>=(const SkNx& o) const { return vreinterpretq_f32_u32(vcgeq_f32(fVec, o.fVec)); } |
| SkNx operator!=(const SkNx& o) const { |
| return vreinterpretq_f32_u32(vmvnq_u32(vceqq_f32(fVec, o.fVec))); |
| } |
| |
| static SkNx Min(const SkNx& l, const SkNx& r) { return vminq_f32(l.fVec, r.fVec); } |
| static SkNx Max(const SkNx& l, const SkNx& r) { return vmaxq_f32(l.fVec, r.fVec); } |
| |
| SkNx abs() const { return vabsq_f32(fVec); } |
| SkNx floor() const { |
| #if defined(SK_CPU_ARM64) |
| return vrndmq_f32(fVec); |
| #else |
| return armv7_vrndmq_f32(fVec); |
| #endif |
| } |
| |
| |
| SkNx rsqrt() const { |
| float32x4_t est0 = vrsqrteq_f32(fVec); |
| return vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est0, est0)), est0); |
| } |
| |
| SkNx sqrt() const { |
| #if defined(SK_CPU_ARM64) |
| return vsqrtq_f32(fVec); |
| #else |
| float32x4_t est0 = vrsqrteq_f32(fVec), |
| est1 = vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est0, est0)), est0), |
| est2 = vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est1, est1)), est1); |
| return vmulq_f32(fVec, est2); |
| #endif |
| } |
| |
| float operator[](int k) const { |
| SkASSERT(0 <= k && k < 4); |
| union { float32x4_t v; float fs[4]; } pun = {fVec}; |
| return pun.fs[k&3]; |
| } |
| |
| bool allTrue() const { |
| auto v = vreinterpretq_u32_f32(fVec); |
| return vgetq_lane_u32(v,0) && vgetq_lane_u32(v,1) |
| && vgetq_lane_u32(v,2) && vgetq_lane_u32(v,3); |
| } |
| bool anyTrue() const { |
| auto v = vreinterpretq_u32_f32(fVec); |
| return vgetq_lane_u32(v,0) || vgetq_lane_u32(v,1) |
| || vgetq_lane_u32(v,2) || vgetq_lane_u32(v,3); |
| } |
| |
| SkNx thenElse(const SkNx& t, const SkNx& e) const { |
| return vbslq_f32(vreinterpretq_u32_f32(fVec), t.fVec, e.fVec); |
| } |
| |
| float32x4_t fVec; |
| }; |
| |
| // It's possible that for our current use cases, representing this as |
| // half a uint16x8_t might be better than representing it as a uint16x4_t. |
| // It'd make conversion to Sk4b one step simpler. |
| template <> |
| class SkNx<4, uint16_t> { |
| public: |
| SkNx(const uint16x4_t& vec) : fVec(vec) {} |
| |
| SkNx() {} |
| SkNx(uint16_t val) : fVec(vdup_n_u16(val)) {} |
| static SkNx Load(const void* ptr) { return vld1_u16((const uint16_t*)ptr); } |
| |
| SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d) { |
| fVec = (uint16x4_t) { a,b,c,d }; |
| } |
| |
| void store(void* ptr) const { vst1_u16((uint16_t*)ptr, fVec); } |
| |
| SkNx operator + (const SkNx& o) const { return vadd_u16(fVec, o.fVec); } |
| SkNx operator - (const SkNx& o) const { return vsub_u16(fVec, o.fVec); } |
| SkNx operator * (const SkNx& o) const { return vmul_u16(fVec, o.fVec); } |
| |
| SkNx operator << (int bits) const { SHIFT16(vshl_n_u16, fVec, bits); } |
| SkNx operator >> (int bits) const { SHIFT16(vshr_n_u16, fVec, bits); } |
| |
| static SkNx Min(const SkNx& a, const SkNx& b) { return vmin_u16(a.fVec, b.fVec); } |
| |
| uint16_t operator[](int k) const { |
| SkASSERT(0 <= k && k < 4); |
| union { uint16x4_t v; uint16_t us[4]; } pun = {fVec}; |
| return pun.us[k&3]; |
| } |
| |
| SkNx thenElse(const SkNx& t, const SkNx& e) const { |
| return vbsl_u16(fVec, t.fVec, e.fVec); |
| } |
| |
| uint16x4_t fVec; |
| }; |
| |
| template <> |
| class SkNx<8, uint16_t> { |
| public: |
| SkNx(const uint16x8_t& vec) : fVec(vec) {} |
| |
| SkNx() {} |
| SkNx(uint16_t val) : fVec(vdupq_n_u16(val)) {} |
| static SkNx Load(const void* ptr) { return vld1q_u16((const uint16_t*)ptr); } |
| |
| SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d, |
| uint16_t e, uint16_t f, uint16_t g, uint16_t h) { |
| fVec = (uint16x8_t) { a,b,c,d, e,f,g,h }; |
| } |
| |
| void store(void* ptr) const { vst1q_u16((uint16_t*)ptr, fVec); } |
| |
| SkNx operator + (const SkNx& o) const { return vaddq_u16(fVec, o.fVec); } |
| SkNx operator - (const SkNx& o) const { return vsubq_u16(fVec, o.fVec); } |
| SkNx operator * (const SkNx& o) const { return vmulq_u16(fVec, o.fVec); } |
| |
| SkNx operator << (int bits) const { SHIFT16(vshlq_n_u16, fVec, bits); } |
| SkNx operator >> (int bits) const { SHIFT16(vshrq_n_u16, fVec, bits); } |
| |
| static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_u16(a.fVec, b.fVec); } |
| |
| uint16_t operator[](int k) const { |
| SkASSERT(0 <= k && k < 8); |
| union { uint16x8_t v; uint16_t us[8]; } pun = {fVec}; |
| return pun.us[k&7]; |
| } |
| |
| SkNx thenElse(const SkNx& t, const SkNx& e) const { |
| return vbslq_u16(fVec, t.fVec, e.fVec); |
| } |
| |
| uint16x8_t fVec; |
| }; |
| |
| template <> |
| class SkNx<4, uint8_t> { |
| public: |
| SkNx(const uint8x8_t& vec) : fVec(vec) {} |
| |
| SkNx() {} |
| SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d) { |
| fVec = (uint8x8_t){a,b,c,d, 0,0,0,0}; |
| } |
| static SkNx Load(const void* ptr) { |
| return (uint8x8_t)vld1_dup_u32((const uint32_t*)ptr); |
| } |
| void store(void* ptr) const { |
| return vst1_lane_u32((uint32_t*)ptr, (uint32x2_t)fVec, 0); |
| } |
| uint8_t operator[](int k) const { |
| SkASSERT(0 <= k && k < 4); |
| union { uint8x8_t v; uint8_t us[8]; } pun = {fVec}; |
| return pun.us[k&3]; |
| } |
| |
| // TODO as needed |
| |
| uint8x8_t fVec; |
| }; |
| |
| template <> |
| class SkNx<16, uint8_t> { |
| public: |
| SkNx(const uint8x16_t& vec) : fVec(vec) {} |
| |
| SkNx() {} |
| SkNx(uint8_t val) : fVec(vdupq_n_u8(val)) {} |
| static SkNx Load(const void* ptr) { return vld1q_u8((const uint8_t*)ptr); } |
| |
| SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d, |
| uint8_t e, uint8_t f, uint8_t g, uint8_t h, |
| uint8_t i, uint8_t j, uint8_t k, uint8_t l, |
| uint8_t m, uint8_t n, uint8_t o, uint8_t p) { |
| fVec = (uint8x16_t) { a,b,c,d, e,f,g,h, i,j,k,l, m,n,o,p }; |
| } |
| |
| void store(void* ptr) const { vst1q_u8((uint8_t*)ptr, fVec); } |
| |
| SkNx saturatedAdd(const SkNx& o) const { return vqaddq_u8(fVec, o.fVec); } |
| |
| SkNx operator + (const SkNx& o) const { return vaddq_u8(fVec, o.fVec); } |
| SkNx operator - (const SkNx& o) const { return vsubq_u8(fVec, o.fVec); } |
| |
| static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_u8(a.fVec, b.fVec); } |
| SkNx operator < (const SkNx& o) const { return vcltq_u8(fVec, o.fVec); } |
| |
| uint8_t operator[](int k) const { |
| SkASSERT(0 <= k && k < 16); |
| union { uint8x16_t v; uint8_t us[16]; } pun = {fVec}; |
| return pun.us[k&15]; |
| } |
| |
| SkNx thenElse(const SkNx& t, const SkNx& e) const { |
| return vbslq_u8(fVec, t.fVec, e.fVec); |
| } |
| |
| uint8x16_t fVec; |
| }; |
| |
| template <> |
| class SkNx<4, int> { |
| public: |
| SkNx(const int32x4_t& vec) : fVec(vec) {} |
| |
| SkNx() {} |
| SkNx(int v) { |
| fVec = vdupq_n_s32(v); |
| } |
| SkNx(int a, int b, int c, int d) { |
| fVec = (int32x4_t){a,b,c,d}; |
| } |
| static SkNx Load(const void* ptr) { |
| return vld1q_s32((const int32_t*)ptr); |
| } |
| void store(void* ptr) const { |
| return vst1q_s32((int32_t*)ptr, fVec); |
| } |
| int operator[](int k) const { |
| SkASSERT(0 <= k && k < 4); |
| union { int32x4_t v; int is[4]; } pun = {fVec}; |
| return pun.is[k&3]; |
| } |
| |
| SkNx operator + (const SkNx& o) const { return vaddq_s32(fVec, o.fVec); } |
| SkNx operator - (const SkNx& o) const { return vsubq_s32(fVec, o.fVec); } |
| SkNx operator * (const SkNx& o) const { return vmulq_s32(fVec, o.fVec); } |
| |
| SkNx operator & (const SkNx& o) const { return vandq_s32(fVec, o.fVec); } |
| SkNx operator | (const SkNx& o) const { return vorrq_s32(fVec, o.fVec); } |
| SkNx operator ^ (const SkNx& o) const { return veorq_s32(fVec, o.fVec); } |
| |
| SkNx operator << (int bits) const { SHIFT32(vshlq_n_s32, fVec, bits); } |
| SkNx operator >> (int bits) const { SHIFT32(vshrq_n_s32, fVec, bits); } |
| |
| SkNx operator == (const SkNx& o) const { |
| return vreinterpretq_s32_u32(vceqq_s32(fVec, o.fVec)); |
| } |
| SkNx operator < (const SkNx& o) const { |
| return vreinterpretq_s32_u32(vcltq_s32(fVec, o.fVec)); |
| } |
| SkNx operator > (const SkNx& o) const { |
| return vreinterpretq_s32_u32(vcgtq_s32(fVec, o.fVec)); |
| } |
| |
| static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_s32(a.fVec, b.fVec); } |
| // TODO as needed |
| |
| SkNx thenElse(const SkNx& t, const SkNx& e) const { |
| return vbslq_s32(vreinterpretq_u32_s32(fVec), t.fVec, e.fVec); |
| } |
| |
| int32x4_t fVec; |
| }; |
| |
| #undef SHIFT32 |
| #undef SHIFT16 |
| #undef SHIFT8 |
| |
| template<> inline Sk4i SkNx_cast<int, float>(const Sk4f& src) { |
| return vcvtq_s32_f32(src.fVec); |
| |
| } |
| template<> inline Sk4f SkNx_cast<float, int>(const Sk4i& src) { |
| return vcvtq_f32_s32(src.fVec); |
| } |
| |
| template<> inline Sk4h SkNx_cast<uint16_t, float>(const Sk4f& src) { |
| return vqmovn_u32(vcvtq_u32_f32(src.fVec)); |
| } |
| |
| template<> inline Sk4f SkNx_cast<float, uint16_t>(const Sk4h& src) { |
| return vcvtq_f32_u32(vmovl_u16(src.fVec)); |
| } |
| |
| template<> inline Sk4b SkNx_cast<uint8_t, float>(const Sk4f& src) { |
| uint32x4_t _32 = vcvtq_u32_f32(src.fVec); |
| uint16x4_t _16 = vqmovn_u32(_32); |
| return vqmovn_u16(vcombine_u16(_16, _16)); |
| } |
| |
| template<> inline Sk4f SkNx_cast<float, uint8_t>(const Sk4b& src) { |
| uint16x8_t _16 = vmovl_u8 (src.fVec) ; |
| uint32x4_t _32 = vmovl_u16(vget_low_u16(_16)); |
| return vcvtq_f32_u32(_32); |
| } |
| |
| template<> inline Sk16b SkNx_cast<uint8_t, float>(const Sk16f& src) { |
| Sk8f ab, cd; |
| SkNx_split(src, &ab, &cd); |
| |
| Sk4f a,b,c,d; |
| SkNx_split(ab, &a, &b); |
| SkNx_split(cd, &c, &d); |
| return vuzpq_u8(vuzpq_u8((uint8x16_t)vcvtq_u32_f32(a.fVec), |
| (uint8x16_t)vcvtq_u32_f32(b.fVec)).val[0], |
| vuzpq_u8((uint8x16_t)vcvtq_u32_f32(c.fVec), |
| (uint8x16_t)vcvtq_u32_f32(d.fVec)).val[0]).val[0]; |
| } |
| |
| template<> inline Sk4h SkNx_cast<uint16_t, uint8_t>(const Sk4b& src) { |
| return vget_low_u16(vmovl_u8(src.fVec)); |
| } |
| |
| template<> inline Sk4b SkNx_cast<uint8_t, uint16_t>(const Sk4h& src) { |
| return vmovn_u16(vcombine_u16(src.fVec, src.fVec)); |
| } |
| |
| template<> inline Sk4b SkNx_cast<uint8_t, int>(const Sk4i& src) { |
| uint16x4_t _16 = vqmovun_s32(src.fVec); |
| return vqmovn_u16(vcombine_u16(_16, _16)); |
| } |
| |
| template<> inline Sk4i SkNx_cast<int, uint16_t>(const Sk4h& src) { |
| return vreinterpretq_s32_u32(vmovl_u16(src.fVec)); |
| } |
| |
| template<> inline Sk4h SkNx_cast<uint16_t, int>(const Sk4i& src) { |
| return vmovn_u32(vreinterpretq_u32_s32(src.fVec)); |
| } |
| |
| static inline Sk4i Sk4f_round(const Sk4f& x) { |
| return vcvtq_s32_f32((x + 0.5f).fVec); |
| } |
| |
| static inline void Sk4h_store4(void* dst, const Sk4h& r, const Sk4h& g, const Sk4h& b, |
| const Sk4h& a) { |
| uint16x4x4_t rgba = {{ |
| r.fVec, |
| g.fVec, |
| b.fVec, |
| a.fVec, |
| }}; |
| vst4_u16((uint16_t*) dst, rgba); |
| } |
| |
| #endif//SkNx_neon_DEFINED |