| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "GrVkGpu.h" |
| |
| #include "GrBackendSemaphore.h" |
| #include "GrBackendSurface.h" |
| #include "GrContextOptions.h" |
| #include "GrGeometryProcessor.h" |
| #include "GrGpuResourceCacheAccess.h" |
| #include "GrMesh.h" |
| #include "GrPipeline.h" |
| #include "GrRenderTargetPriv.h" |
| #include "GrSurfacePriv.h" |
| #include "GrTexturePriv.h" |
| |
| #include "GrVkCommandBuffer.h" |
| #include "GrVkGpuCommandBuffer.h" |
| #include "GrVkImage.h" |
| #include "GrVkIndexBuffer.h" |
| #include "GrVkMemory.h" |
| #include "GrVkPipeline.h" |
| #include "GrVkPipelineState.h" |
| #include "GrVkRenderPass.h" |
| #include "GrVkResourceProvider.h" |
| #include "GrVkSemaphore.h" |
| #include "GrVkTexelBuffer.h" |
| #include "GrVkTexture.h" |
| #include "GrVkTextureRenderTarget.h" |
| #include "GrVkTransferBuffer.h" |
| #include "GrVkVertexBuffer.h" |
| |
| #include "SkConvertPixels.h" |
| #include "SkMipMap.h" |
| |
| #include "vk/GrVkInterface.h" |
| #include "vk/GrVkTypes.h" |
| |
| #include "SkSLCompiler.h" |
| |
| #if !defined(SK_BUILD_FOR_WIN) |
| #include <unistd.h> |
| #endif // !defined(SK_BUILD_FOR_WIN) |
| |
| #define VK_CALL(X) GR_VK_CALL(this->vkInterface(), X) |
| #define VK_CALL_RET(RET, X) GR_VK_CALL_RET(this->vkInterface(), RET, X) |
| #define VK_CALL_ERRCHECK(X) GR_VK_CALL_ERRCHECK(this->vkInterface(), X) |
| |
| #ifdef SK_ENABLE_VK_LAYERS |
| VKAPI_ATTR VkBool32 VKAPI_CALL DebugReportCallback( |
| VkDebugReportFlagsEXT flags, |
| VkDebugReportObjectTypeEXT objectType, |
| uint64_t object, |
| size_t location, |
| int32_t messageCode, |
| const char* pLayerPrefix, |
| const char* pMessage, |
| void* pUserData) { |
| if (flags & VK_DEBUG_REPORT_ERROR_BIT_EXT) { |
| SkDebugf("Vulkan error [%s]: code: %d: %s\n", pLayerPrefix, messageCode, pMessage); |
| return VK_TRUE; // skip further layers |
| } else if (flags & VK_DEBUG_REPORT_WARNING_BIT_EXT) { |
| SkDebugf("Vulkan warning [%s]: code: %d: %s\n", pLayerPrefix, messageCode, pMessage); |
| } else if (flags & VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT) { |
| SkDebugf("Vulkan perf warning [%s]: code: %d: %s\n", pLayerPrefix, messageCode, pMessage); |
| } else { |
| SkDebugf("Vulkan info/debug [%s]: code: %d: %s\n", pLayerPrefix, messageCode, pMessage); |
| } |
| return VK_FALSE; |
| } |
| #endif |
| |
| GrGpu* GrVkGpu::Create(GrBackendContext backendContext, const GrContextOptions& options, |
| GrContext* context) { |
| const GrVkBackendContext* vkBackendContext = |
| reinterpret_cast<const GrVkBackendContext*>(backendContext); |
| if (!vkBackendContext) { |
| return nullptr; |
| } else { |
| vkBackendContext->ref(); |
| } |
| |
| if (!vkBackendContext->fInterface->validate(vkBackendContext->fExtensions)) { |
| return nullptr; |
| } |
| |
| return new GrVkGpu(context, options, vkBackendContext); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| GrVkGpu::GrVkGpu(GrContext* context, const GrContextOptions& options, |
| const GrVkBackendContext* backendCtx) |
| : INHERITED(context) |
| , fDevice(backendCtx->fDevice) |
| , fQueue(backendCtx->fQueue) |
| , fResourceProvider(this) |
| , fDisconnected(false) { |
| fBackendContext.reset(backendCtx); |
| |
| #ifdef SK_ENABLE_VK_LAYERS |
| fCallback = VK_NULL_HANDLE; |
| if (backendCtx->fExtensions & kEXT_debug_report_GrVkExtensionFlag) { |
| // Setup callback creation information |
| VkDebugReportCallbackCreateInfoEXT callbackCreateInfo; |
| callbackCreateInfo.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT; |
| callbackCreateInfo.pNext = nullptr; |
| callbackCreateInfo.flags = VK_DEBUG_REPORT_ERROR_BIT_EXT | |
| VK_DEBUG_REPORT_WARNING_BIT_EXT | |
| //VK_DEBUG_REPORT_INFORMATION_BIT_EXT | |
| //VK_DEBUG_REPORT_DEBUG_BIT_EXT | |
| VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT; |
| callbackCreateInfo.pfnCallback = &DebugReportCallback; |
| callbackCreateInfo.pUserData = nullptr; |
| |
| // Register the callback |
| GR_VK_CALL_ERRCHECK(this->vkInterface(), CreateDebugReportCallbackEXT( |
| backendCtx->fInstance, &callbackCreateInfo, nullptr, &fCallback)); |
| } |
| #endif |
| |
| fCompiler = new SkSL::Compiler(); |
| |
| fVkCaps.reset(new GrVkCaps(options, this->vkInterface(), backendCtx->fPhysicalDevice, |
| backendCtx->fFeatures, backendCtx->fExtensions)); |
| fCaps.reset(SkRef(fVkCaps.get())); |
| |
| VK_CALL(GetPhysicalDeviceMemoryProperties(backendCtx->fPhysicalDevice, &fPhysDevMemProps)); |
| |
| const VkCommandPoolCreateInfo cmdPoolInfo = { |
| VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, // sType |
| nullptr, // pNext |
| VK_COMMAND_POOL_CREATE_TRANSIENT_BIT | |
| VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT, // CmdPoolCreateFlags |
| backendCtx->fGraphicsQueueIndex, // queueFamilyIndex |
| }; |
| GR_VK_CALL_ERRCHECK(this->vkInterface(), CreateCommandPool(fDevice, &cmdPoolInfo, nullptr, |
| &fCmdPool)); |
| |
| // must call this after creating the CommandPool |
| fResourceProvider.init(); |
| fCurrentCmdBuffer = fResourceProvider.findOrCreatePrimaryCommandBuffer(); |
| SkASSERT(fCurrentCmdBuffer); |
| fCurrentCmdBuffer->begin(this); |
| |
| // set up our heaps |
| fHeaps[kLinearImage_Heap].reset(new GrVkHeap(this, GrVkHeap::kSubAlloc_Strategy, 16*1024*1024)); |
| fHeaps[kOptimalImage_Heap].reset(new GrVkHeap(this, GrVkHeap::kSubAlloc_Strategy, 64*1024*1024)); |
| fHeaps[kSmallOptimalImage_Heap].reset(new GrVkHeap(this, GrVkHeap::kSubAlloc_Strategy, 2*1024*1024)); |
| fHeaps[kVertexBuffer_Heap].reset(new GrVkHeap(this, GrVkHeap::kSingleAlloc_Strategy, 0)); |
| fHeaps[kIndexBuffer_Heap].reset(new GrVkHeap(this, GrVkHeap::kSingleAlloc_Strategy, 0)); |
| fHeaps[kUniformBuffer_Heap].reset(new GrVkHeap(this, GrVkHeap::kSubAlloc_Strategy, 256*1024)); |
| fHeaps[kTexelBuffer_Heap].reset(new GrVkHeap(this, GrVkHeap::kSingleAlloc_Strategy, 0)); |
| fHeaps[kCopyReadBuffer_Heap].reset(new GrVkHeap(this, GrVkHeap::kSingleAlloc_Strategy, 0)); |
| fHeaps[kCopyWriteBuffer_Heap].reset(new GrVkHeap(this, GrVkHeap::kSubAlloc_Strategy, 16*1024*1024)); |
| } |
| |
| void GrVkGpu::destroyResources() { |
| if (fCurrentCmdBuffer) { |
| fCurrentCmdBuffer->end(this); |
| fCurrentCmdBuffer->unref(this); |
| } |
| |
| // wait for all commands to finish |
| fResourceProvider.checkCommandBuffers(); |
| VkResult res = VK_CALL(QueueWaitIdle(fQueue)); |
| |
| // On windows, sometimes calls to QueueWaitIdle return before actually signalling the fences |
| // on the command buffers even though they have completed. This causes an assert to fire when |
| // destroying the command buffers. Currently this ony seems to happen on windows, so we add a |
| // sleep to make sure the fence signals. |
| #ifdef SK_DEBUG |
| if (this->vkCaps().mustSleepOnTearDown()) { |
| #if defined(SK_BUILD_FOR_WIN) |
| Sleep(10); // In milliseconds |
| #else |
| sleep(1); // In seconds |
| #endif |
| } |
| #endif |
| |
| #ifdef SK_DEBUG |
| SkASSERT(VK_SUCCESS == res || VK_ERROR_DEVICE_LOST == res); |
| #endif |
| |
| for (int i = 0; i < fSemaphoresToWaitOn.count(); ++i) { |
| fSemaphoresToWaitOn[i]->unref(this); |
| } |
| fSemaphoresToWaitOn.reset(); |
| |
| for (int i = 0; i < fSemaphoresToSignal.count(); ++i) { |
| fSemaphoresToSignal[i]->unref(this); |
| } |
| fSemaphoresToSignal.reset(); |
| |
| |
| fCopyManager.destroyResources(this); |
| |
| // must call this just before we destroy the command pool and VkDevice |
| fResourceProvider.destroyResources(VK_ERROR_DEVICE_LOST == res); |
| |
| if (fCmdPool != VK_NULL_HANDLE) { |
| VK_CALL(DestroyCommandPool(fDevice, fCmdPool, nullptr)); |
| } |
| |
| #ifdef SK_ENABLE_VK_LAYERS |
| if (fCallback) { |
| VK_CALL(DestroyDebugReportCallbackEXT(fBackendContext->fInstance, fCallback, nullptr)); |
| } |
| #endif |
| |
| } |
| |
| GrVkGpu::~GrVkGpu() { |
| if (!fDisconnected) { |
| this->destroyResources(); |
| } |
| delete fCompiler; |
| } |
| |
| |
| void GrVkGpu::disconnect(DisconnectType type) { |
| INHERITED::disconnect(type); |
| if (!fDisconnected) { |
| if (DisconnectType::kCleanup == type) { |
| this->destroyResources(); |
| } else { |
| fCurrentCmdBuffer->unrefAndAbandon(); |
| for (int i = 0; i < fSemaphoresToWaitOn.count(); ++i) { |
| fSemaphoresToWaitOn[i]->unrefAndAbandon(); |
| } |
| for (int i = 0; i < fSemaphoresToSignal.count(); ++i) { |
| fSemaphoresToSignal[i]->unrefAndAbandon(); |
| } |
| fCopyManager.abandonResources(); |
| |
| // must call this just before we destroy the command pool and VkDevice |
| fResourceProvider.abandonResources(); |
| } |
| fSemaphoresToWaitOn.reset(); |
| fSemaphoresToSignal.reset(); |
| #ifdef SK_ENABLE_VK_LAYERS |
| fCallback = VK_NULL_HANDLE; |
| #endif |
| fCurrentCmdBuffer = nullptr; |
| fCmdPool = VK_NULL_HANDLE; |
| fDisconnected = true; |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| GrGpuCommandBuffer* GrVkGpu::createCommandBuffer( |
| const GrGpuCommandBuffer::LoadAndStoreInfo& colorInfo, |
| const GrGpuCommandBuffer::LoadAndStoreInfo& stencilInfo) { |
| return new GrVkGpuCommandBuffer(this, colorInfo, stencilInfo); |
| } |
| |
| void GrVkGpu::submitCommandBuffer(SyncQueue sync) { |
| SkASSERT(fCurrentCmdBuffer); |
| fCurrentCmdBuffer->end(this); |
| |
| fCurrentCmdBuffer->submitToQueue(this, fQueue, sync, fSemaphoresToSignal, fSemaphoresToWaitOn); |
| |
| for (int i = 0; i < fSemaphoresToWaitOn.count(); ++i) { |
| fSemaphoresToWaitOn[i]->unref(this); |
| } |
| fSemaphoresToWaitOn.reset(); |
| for (int i = 0; i < fSemaphoresToSignal.count(); ++i) { |
| fSemaphoresToSignal[i]->unref(this); |
| } |
| fSemaphoresToSignal.reset(); |
| |
| fResourceProvider.checkCommandBuffers(); |
| |
| // Release old command buffer and create a new one |
| fCurrentCmdBuffer->unref(this); |
| fCurrentCmdBuffer = fResourceProvider.findOrCreatePrimaryCommandBuffer(); |
| SkASSERT(fCurrentCmdBuffer); |
| |
| fCurrentCmdBuffer->begin(this); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| GrBuffer* GrVkGpu::onCreateBuffer(size_t size, GrBufferType type, GrAccessPattern accessPattern, |
| const void* data) { |
| GrBuffer* buff; |
| switch (type) { |
| case kVertex_GrBufferType: |
| SkASSERT(kDynamic_GrAccessPattern == accessPattern || |
| kStatic_GrAccessPattern == accessPattern); |
| buff = GrVkVertexBuffer::Create(this, size, kDynamic_GrAccessPattern == accessPattern); |
| break; |
| case kIndex_GrBufferType: |
| SkASSERT(kDynamic_GrAccessPattern == accessPattern || |
| kStatic_GrAccessPattern == accessPattern); |
| buff = GrVkIndexBuffer::Create(this, size, kDynamic_GrAccessPattern == accessPattern); |
| break; |
| case kXferCpuToGpu_GrBufferType: |
| SkASSERT(kDynamic_GrAccessPattern == accessPattern || |
| kStream_GrAccessPattern == accessPattern); |
| buff = GrVkTransferBuffer::Create(this, size, GrVkBuffer::kCopyRead_Type); |
| break; |
| case kXferGpuToCpu_GrBufferType: |
| SkASSERT(kDynamic_GrAccessPattern == accessPattern || |
| kStream_GrAccessPattern == accessPattern); |
| buff = GrVkTransferBuffer::Create(this, size, GrVkBuffer::kCopyWrite_Type); |
| break; |
| case kTexel_GrBufferType: |
| SkASSERT(kDynamic_GrAccessPattern == accessPattern || |
| kStatic_GrAccessPattern == accessPattern); |
| buff = GrVkTexelBuffer::Create(this, size, kDynamic_GrAccessPattern == accessPattern); |
| break; |
| case kDrawIndirect_GrBufferType: |
| SkFAIL("DrawIndirect Buffers not supported in vulkan backend."); |
| return nullptr; |
| default: |
| SkFAIL("Unknown buffer type."); |
| return nullptr; |
| } |
| if (data && buff) { |
| buff->updateData(data, size); |
| } |
| return buff; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| bool GrVkGpu::onGetWritePixelsInfo(GrSurface* dstSurface, int width, int height, |
| GrPixelConfig srcConfig, DrawPreference* drawPreference, |
| WritePixelTempDrawInfo* tempDrawInfo) { |
| GrRenderTarget* renderTarget = dstSurface->asRenderTarget(); |
| |
| // Start off assuming no swizzling |
| tempDrawInfo->fSwizzle = GrSwizzle::RGBA(); |
| tempDrawInfo->fWriteConfig = srcConfig; |
| |
| // These settings we will always want if a temp draw is performed. Initially set the config |
| // to srcConfig, though that may be modified if we decide to do a R/B swap |
| tempDrawInfo->fTempSurfaceDesc.fFlags = kNone_GrSurfaceFlags; |
| tempDrawInfo->fTempSurfaceDesc.fConfig = srcConfig; |
| tempDrawInfo->fTempSurfaceDesc.fWidth = width; |
| tempDrawInfo->fTempSurfaceDesc.fHeight = height; |
| tempDrawInfo->fTempSurfaceDesc.fSampleCnt = 0; |
| tempDrawInfo->fTempSurfaceDesc.fOrigin = kTopLeft_GrSurfaceOrigin; |
| |
| if (dstSurface->config() == srcConfig) { |
| // We only support writing pixels to textures. Forcing a draw lets us write to pure RTs. |
| if (!dstSurface->asTexture()) { |
| ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); |
| } |
| // If the dst is MSAA, we have to draw, or we'll just be writing to the resolve target. |
| if (renderTarget && renderTarget->numColorSamples() > 1) { |
| ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); |
| } |
| return true; |
| } |
| |
| // Any config change requires a draw |
| ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); |
| |
| bool configsAreRBSwaps = GrPixelConfigSwapRAndB(srcConfig) == dstSurface->config(); |
| |
| if (!this->vkCaps().isConfigTexturable(srcConfig) && configsAreRBSwaps) { |
| tempDrawInfo->fTempSurfaceDesc.fConfig = dstSurface->config(); |
| tempDrawInfo->fSwizzle = GrSwizzle::BGRA(); |
| tempDrawInfo->fWriteConfig = dstSurface->config(); |
| } |
| return true; |
| } |
| |
| bool GrVkGpu::onWritePixels(GrSurface* surface, |
| int left, int top, int width, int height, |
| GrPixelConfig config, |
| const GrMipLevel texels[], int mipLevelCount) { |
| GrVkTexture* vkTex = static_cast<GrVkTexture*>(surface->asTexture()); |
| if (!vkTex) { |
| return false; |
| } |
| |
| // Make sure we have at least the base level |
| if (!mipLevelCount || !texels[0].fPixels) { |
| return false; |
| } |
| |
| // We assume Vulkan doesn't do sRGB <-> linear conversions when reading and writing pixels. |
| if (GrPixelConfigIsSRGB(surface->config()) != GrPixelConfigIsSRGB(config)) { |
| return false; |
| } |
| |
| bool success = false; |
| bool linearTiling = vkTex->isLinearTiled(); |
| if (linearTiling) { |
| if (mipLevelCount > 1) { |
| SkDebugf("Can't upload mipmap data to linear tiled texture"); |
| return false; |
| } |
| if (VK_IMAGE_LAYOUT_PREINITIALIZED != vkTex->currentLayout()) { |
| // Need to change the layout to general in order to perform a host write |
| vkTex->setImageLayout(this, |
| VK_IMAGE_LAYOUT_GENERAL, |
| VK_ACCESS_HOST_WRITE_BIT, |
| VK_PIPELINE_STAGE_HOST_BIT, |
| false); |
| this->submitCommandBuffer(kForce_SyncQueue); |
| } |
| success = this->uploadTexDataLinear(vkTex, left, top, width, height, config, |
| texels[0].fPixels, texels[0].fRowBytes); |
| } else { |
| int currentMipLevels = vkTex->texturePriv().maxMipMapLevel() + 1; |
| if (mipLevelCount > currentMipLevels) { |
| if (!vkTex->reallocForMipmap(this, mipLevelCount)) { |
| return false; |
| } |
| } |
| success = this->uploadTexDataOptimal(vkTex, left, top, width, height, config, |
| texels, mipLevelCount); |
| } |
| |
| return success; |
| } |
| |
| bool GrVkGpu::onTransferPixels(GrTexture* texture, |
| int left, int top, int width, int height, |
| GrPixelConfig config, GrBuffer* transferBuffer, |
| size_t bufferOffset, size_t rowBytes) { |
| // Vulkan only supports 4-byte aligned offsets |
| if (SkToBool(bufferOffset & 0x2)) { |
| return false; |
| } |
| GrVkTexture* vkTex = static_cast<GrVkTexture*>(texture); |
| if (!vkTex) { |
| return false; |
| } |
| GrVkTransferBuffer* vkBuffer = static_cast<GrVkTransferBuffer*>(transferBuffer); |
| if (!vkBuffer) { |
| return false; |
| } |
| |
| // We assume Vulkan doesn't do sRGB <-> linear conversions when reading and writing pixels. |
| if (GrPixelConfigIsSRGB(texture->config()) != GrPixelConfigIsSRGB(config)) { |
| return false; |
| } |
| |
| SkDEBUGCODE( |
| SkIRect subRect = SkIRect::MakeXYWH(left, top, width, height); |
| SkIRect bounds = SkIRect::MakeWH(texture->width(), texture->height()); |
| SkASSERT(bounds.contains(subRect)); |
| ) |
| size_t bpp = GrBytesPerPixel(config); |
| if (rowBytes == 0) { |
| rowBytes = bpp*width; |
| } |
| |
| // Set up copy region |
| VkBufferImageCopy region; |
| memset(®ion, 0, sizeof(VkBufferImageCopy)); |
| region.bufferOffset = bufferOffset; |
| region.bufferRowLength = (uint32_t)(rowBytes/bpp); |
| region.bufferImageHeight = 0; |
| region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; |
| region.imageOffset = { left, top, 0 }; |
| region.imageExtent = { (uint32_t)width, (uint32_t)height, 1 }; |
| |
| // Change layout of our target so it can be copied to |
| vkTex->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| // Copy the buffer to the image |
| fCurrentCmdBuffer->copyBufferToImage(this, |
| vkBuffer, |
| vkTex, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| 1, |
| ®ion); |
| |
| vkTex->texturePriv().dirtyMipMaps(true); |
| return true; |
| } |
| |
| void GrVkGpu::resolveImage(GrSurface* dst, GrVkRenderTarget* src, const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| SkASSERT(dst); |
| SkASSERT(src && src->numColorSamples() > 1 && src->msaaImage()); |
| |
| if (this->vkCaps().mustSubmitCommandsBeforeCopyOp()) { |
| this->submitCommandBuffer(GrVkGpu::kSkip_SyncQueue); |
| } |
| |
| // Flip rect if necessary |
| SkIRect srcVkRect = srcRect; |
| int32_t dstY = dstPoint.fY; |
| |
| if (kBottomLeft_GrSurfaceOrigin == src->origin()) { |
| SkASSERT(kBottomLeft_GrSurfaceOrigin == dst->origin()); |
| srcVkRect.fTop = src->height() - srcRect.fBottom; |
| srcVkRect.fBottom = src->height() - srcRect.fTop; |
| dstY = dst->height() - dstPoint.fY - srcVkRect.height(); |
| } |
| |
| VkImageResolve resolveInfo; |
| resolveInfo.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; |
| resolveInfo.srcOffset = { srcVkRect.fLeft, srcVkRect.fTop, 0 }; |
| resolveInfo.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; |
| resolveInfo.dstOffset = { dstPoint.fX, dstY, 0 }; |
| resolveInfo.extent = { (uint32_t)srcVkRect.width(), (uint32_t)srcVkRect.height(), 1 }; |
| |
| GrVkImage* dstImage; |
| GrRenderTarget* dstRT = dst->asRenderTarget(); |
| if (dstRT) { |
| GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(dstRT); |
| dstImage = vkRT; |
| } else { |
| SkASSERT(dst->asTexture()); |
| dstImage = static_cast<GrVkTexture*>(dst->asTexture()); |
| } |
| dstImage->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| src->msaaImage()->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| VK_ACCESS_TRANSFER_READ_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| fCurrentCmdBuffer->resolveImage(this, *src->msaaImage(), *dstImage, 1, &resolveInfo); |
| } |
| |
| void GrVkGpu::internalResolveRenderTarget(GrRenderTarget* target, bool requiresSubmit) { |
| if (target->needsResolve()) { |
| SkASSERT(target->numColorSamples() > 1); |
| GrVkRenderTarget* rt = static_cast<GrVkRenderTarget*>(target); |
| SkASSERT(rt->msaaImage()); |
| |
| const SkIRect& srcRect = rt->getResolveRect(); |
| |
| this->resolveImage(target, rt, srcRect, SkIPoint::Make(srcRect.fLeft, srcRect.fTop)); |
| |
| rt->flagAsResolved(); |
| |
| if (requiresSubmit) { |
| this->submitCommandBuffer(kSkip_SyncQueue); |
| } |
| } |
| } |
| |
| bool GrVkGpu::uploadTexDataLinear(GrVkTexture* tex, |
| int left, int top, int width, int height, |
| GrPixelConfig dataConfig, |
| const void* data, |
| size_t rowBytes) { |
| SkASSERT(data); |
| SkASSERT(tex->isLinearTiled()); |
| |
| SkDEBUGCODE( |
| SkIRect subRect = SkIRect::MakeXYWH(left, top, width, height); |
| SkIRect bounds = SkIRect::MakeWH(tex->width(), tex->height()); |
| SkASSERT(bounds.contains(subRect)); |
| ) |
| size_t bpp = GrBytesPerPixel(dataConfig); |
| size_t trimRowBytes = width * bpp; |
| if (!rowBytes) { |
| rowBytes = trimRowBytes; |
| } |
| |
| SkASSERT(VK_IMAGE_LAYOUT_PREINITIALIZED == tex->currentLayout() || |
| VK_IMAGE_LAYOUT_GENERAL == tex->currentLayout()); |
| const VkImageSubresource subres = { |
| VK_IMAGE_ASPECT_COLOR_BIT, |
| 0, // mipLevel |
| 0, // arraySlice |
| }; |
| VkSubresourceLayout layout; |
| VkResult err; |
| |
| const GrVkInterface* interface = this->vkInterface(); |
| |
| GR_VK_CALL(interface, GetImageSubresourceLayout(fDevice, |
| tex->image(), |
| &subres, |
| &layout)); |
| |
| int texTop = kBottomLeft_GrSurfaceOrigin == tex->origin() ? tex->height() - top - height : top; |
| const GrVkAlloc& alloc = tex->alloc(); |
| VkDeviceSize offset = alloc.fOffset + texTop*layout.rowPitch + left*bpp; |
| VkDeviceSize size = height*layout.rowPitch; |
| void* mapPtr; |
| err = GR_VK_CALL(interface, MapMemory(fDevice, alloc.fMemory, offset, size, 0, &mapPtr)); |
| if (err) { |
| return false; |
| } |
| |
| if (kBottomLeft_GrSurfaceOrigin == tex->origin()) { |
| // copy into buffer by rows |
| const char* srcRow = reinterpret_cast<const char*>(data); |
| char* dstRow = reinterpret_cast<char*>(mapPtr)+(height - 1)*layout.rowPitch; |
| for (int y = 0; y < height; y++) { |
| memcpy(dstRow, srcRow, trimRowBytes); |
| srcRow += rowBytes; |
| dstRow -= layout.rowPitch; |
| } |
| } else { |
| SkRectMemcpy(mapPtr, static_cast<size_t>(layout.rowPitch), data, rowBytes, trimRowBytes, |
| height); |
| } |
| |
| GrVkMemory::FlushMappedAlloc(this, alloc); |
| GR_VK_CALL(interface, UnmapMemory(fDevice, alloc.fMemory)); |
| |
| return true; |
| } |
| |
| bool GrVkGpu::uploadTexDataOptimal(GrVkTexture* tex, |
| int left, int top, int width, int height, |
| GrPixelConfig dataConfig, |
| const GrMipLevel texels[], int mipLevelCount) { |
| SkASSERT(!tex->isLinearTiled()); |
| // The assumption is either that we have no mipmaps, or that our rect is the entire texture |
| SkASSERT(1 == mipLevelCount || |
| (0 == left && 0 == top && width == tex->width() && height == tex->height())); |
| |
| // We assume that if the texture has mip levels, we either upload to all the levels or just the |
| // first. |
| SkASSERT(1 == mipLevelCount || mipLevelCount == (tex->texturePriv().maxMipMapLevel() + 1)); |
| |
| if (width == 0 || height == 0) { |
| return false; |
| } |
| |
| SkASSERT(this->caps()->isConfigTexturable(tex->config())); |
| size_t bpp = GrBytesPerPixel(dataConfig); |
| |
| // texels is const. |
| // But we may need to adjust the fPixels ptr based on the copyRect, or fRowBytes. |
| // Because of this we need to make a non-const shallow copy of texels. |
| SkAutoTMalloc<GrMipLevel> texelsShallowCopy; |
| |
| if (mipLevelCount) { |
| texelsShallowCopy.reset(mipLevelCount); |
| memcpy(texelsShallowCopy.get(), texels, mipLevelCount*sizeof(GrMipLevel)); |
| } |
| |
| for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; ++currentMipLevel) { |
| SkASSERT(texelsShallowCopy[currentMipLevel].fPixels); |
| } |
| |
| // Determine whether we need to flip when we copy into the buffer |
| bool flipY = (kBottomLeft_GrSurfaceOrigin == tex->origin() && mipLevelCount); |
| |
| SkTArray<size_t> individualMipOffsets(mipLevelCount); |
| individualMipOffsets.push_back(0); |
| size_t combinedBufferSize = width * bpp * height; |
| int currentWidth = width; |
| int currentHeight = height; |
| // The alignment must be at least 4 bytes and a multiple of the bytes per pixel of the image |
| // config. This works with the assumption that the bytes in pixel config is always a power of 2. |
| SkASSERT((bpp & (bpp - 1)) == 0); |
| const size_t alignmentMask = 0x3 | (bpp - 1); |
| for (int currentMipLevel = 1; currentMipLevel < mipLevelCount; currentMipLevel++) { |
| currentWidth = SkTMax(1, currentWidth/2); |
| currentHeight = SkTMax(1, currentHeight/2); |
| |
| const size_t trimmedSize = currentWidth * bpp * currentHeight; |
| const size_t alignmentDiff = combinedBufferSize & alignmentMask; |
| if (alignmentDiff != 0) { |
| combinedBufferSize += alignmentMask - alignmentDiff + 1; |
| } |
| individualMipOffsets.push_back(combinedBufferSize); |
| combinedBufferSize += trimmedSize; |
| } |
| |
| // allocate buffer to hold our mip data |
| GrVkTransferBuffer* transferBuffer = |
| GrVkTransferBuffer::Create(this, combinedBufferSize, GrVkBuffer::kCopyRead_Type); |
| if(!transferBuffer) |
| return false; |
| |
| char* buffer = (char*) transferBuffer->map(); |
| SkTArray<VkBufferImageCopy> regions(mipLevelCount); |
| |
| currentWidth = width; |
| currentHeight = height; |
| int layerHeight = tex->height(); |
| for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) { |
| SkASSERT(1 == mipLevelCount || currentHeight == layerHeight); |
| const size_t trimRowBytes = currentWidth * bpp; |
| const size_t rowBytes = texelsShallowCopy[currentMipLevel].fRowBytes ? |
| texelsShallowCopy[currentMipLevel].fRowBytes : |
| trimRowBytes; |
| |
| // copy data into the buffer, skipping the trailing bytes |
| char* dst = buffer + individualMipOffsets[currentMipLevel]; |
| const char* src = (const char*)texelsShallowCopy[currentMipLevel].fPixels; |
| if (flipY) { |
| src += (currentHeight - 1) * rowBytes; |
| for (int y = 0; y < currentHeight; y++) { |
| memcpy(dst, src, trimRowBytes); |
| src -= rowBytes; |
| dst += trimRowBytes; |
| } |
| } else { |
| SkRectMemcpy(dst, trimRowBytes, src, rowBytes, trimRowBytes, currentHeight); |
| } |
| |
| VkBufferImageCopy& region = regions.push_back(); |
| memset(®ion, 0, sizeof(VkBufferImageCopy)); |
| region.bufferOffset = transferBuffer->offset() + individualMipOffsets[currentMipLevel]; |
| region.bufferRowLength = currentWidth; |
| region.bufferImageHeight = currentHeight; |
| region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, SkToU32(currentMipLevel), 0, 1 }; |
| region.imageOffset = { left, flipY ? layerHeight - top - currentHeight : top, 0 }; |
| region.imageExtent = { (uint32_t)currentWidth, (uint32_t)currentHeight, 1 }; |
| |
| currentWidth = SkTMax(1, currentWidth/2); |
| currentHeight = SkTMax(1, currentHeight/2); |
| layerHeight = currentHeight; |
| } |
| |
| // no need to flush non-coherent memory, unmap will do that for us |
| transferBuffer->unmap(); |
| |
| // Change layout of our target so it can be copied to |
| tex->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| // Copy the buffer to the image |
| fCurrentCmdBuffer->copyBufferToImage(this, |
| transferBuffer, |
| tex, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| regions.count(), |
| regions.begin()); |
| transferBuffer->unref(); |
| if (1 == mipLevelCount) { |
| tex->texturePriv().dirtyMipMaps(true); |
| } |
| |
| return true; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| sk_sp<GrTexture> GrVkGpu::onCreateTexture(const GrSurfaceDesc& desc, SkBudgeted budgeted, |
| const GrMipLevel texels[], int mipLevelCount) { |
| bool renderTarget = SkToBool(desc.fFlags & kRenderTarget_GrSurfaceFlag); |
| |
| VkFormat pixelFormat; |
| if (!GrPixelConfigToVkFormat(desc.fConfig, &pixelFormat)) { |
| return nullptr; |
| } |
| |
| if (!fVkCaps->isConfigTexturable(desc.fConfig)) { |
| return nullptr; |
| } |
| |
| if (renderTarget && !fVkCaps->isConfigRenderable(desc.fConfig, false)) { |
| return nullptr; |
| } |
| |
| VkImageUsageFlags usageFlags = VK_IMAGE_USAGE_SAMPLED_BIT; |
| if (renderTarget) { |
| usageFlags |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; |
| } |
| |
| // For now we will set the VK_IMAGE_USAGE_TRANSFER_DESTINATION_BIT and |
| // VK_IMAGE_USAGE_TRANSFER_SOURCE_BIT on every texture since we do not know whether or not we |
| // will be using this texture in some copy or not. Also this assumes, as is the current case, |
| // that all render targets in vulkan are also textures. If we change this practice of setting |
| // both bits, we must make sure to set the destination bit if we are uploading srcData to the |
| // texture. |
| usageFlags |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; |
| |
| // This ImageDesc refers to the texture that will be read by the client. Thus even if msaa is |
| // requested, this ImageDesc describes the resolved texture. Therefore we always have samples set |
| // to 1. |
| int mipLevels = !mipLevelCount ? 1 : mipLevelCount; |
| GrVkImage::ImageDesc imageDesc; |
| imageDesc.fImageType = VK_IMAGE_TYPE_2D; |
| imageDesc.fFormat = pixelFormat; |
| imageDesc.fWidth = desc.fWidth; |
| imageDesc.fHeight = desc.fHeight; |
| imageDesc.fLevels = mipLevels; |
| imageDesc.fSamples = 1; |
| imageDesc.fImageTiling = VK_IMAGE_TILING_OPTIMAL; |
| imageDesc.fUsageFlags = usageFlags; |
| imageDesc.fMemProps = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; |
| |
| sk_sp<GrVkTexture> tex; |
| if (renderTarget) { |
| tex = GrVkTextureRenderTarget::CreateNewTextureRenderTarget(this, budgeted, desc, |
| imageDesc); |
| } else { |
| tex = GrVkTexture::CreateNewTexture(this, budgeted, desc, imageDesc); |
| } |
| |
| if (!tex) { |
| return nullptr; |
| } |
| |
| if (mipLevelCount) { |
| SkASSERT(texels[0].fPixels); |
| if (!this->uploadTexDataOptimal(tex.get(), 0, 0, desc.fWidth, desc.fHeight, desc.fConfig, |
| texels, mipLevelCount)) { |
| tex->unref(); |
| return nullptr; |
| } |
| } |
| |
| if (desc.fFlags & kPerformInitialClear_GrSurfaceFlag) { |
| VkClearColorValue zeroClearColor; |
| memset(&zeroClearColor, 0, sizeof(zeroClearColor)); |
| VkImageSubresourceRange range; |
| range.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
| range.baseArrayLayer = 0; |
| range.baseMipLevel = 0; |
| range.layerCount = 1; |
| range.levelCount = 1; |
| tex->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); |
| this->currentCommandBuffer()->clearColorImage(this, tex.get(), &zeroClearColor, 1, &range); |
| } |
| return tex; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| bool GrVkGpu::updateBuffer(GrVkBuffer* buffer, const void* src, |
| VkDeviceSize offset, VkDeviceSize size) { |
| |
| // Update the buffer |
| fCurrentCmdBuffer->updateBuffer(this, buffer, offset, size, src); |
| |
| return true; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| static GrSurfaceOrigin resolve_origin(GrSurfaceOrigin origin) { |
| // By default, all textures in Vk use TopLeft |
| if (kDefault_GrSurfaceOrigin == origin) { |
| return kTopLeft_GrSurfaceOrigin; |
| } else { |
| return origin; |
| } |
| } |
| |
| static bool check_backend_texture(const GrBackendTexture& backendTex) { |
| const GrVkImageInfo* info = backendTex.getVkImageInfo(); |
| if (!info) { |
| return false; |
| } |
| |
| if (VK_NULL_HANDLE == info->fImage || VK_NULL_HANDLE == info->fAlloc.fMemory) { |
| return false; |
| } |
| |
| SkASSERT(backendTex.config() == GrVkFormatToPixelConfig(info->fFormat)); |
| return true; |
| } |
| |
| sk_sp<GrTexture> GrVkGpu::onWrapBackendTexture(const GrBackendTexture& backendTex, |
| GrSurfaceOrigin origin, |
| GrWrapOwnership ownership) { |
| if (!check_backend_texture(backendTex)) { |
| return nullptr; |
| } |
| |
| GrSurfaceDesc surfDesc; |
| surfDesc.fFlags = kNone_GrSurfaceFlags; |
| surfDesc.fWidth = backendTex.width(); |
| surfDesc.fHeight = backendTex.height(); |
| surfDesc.fConfig = backendTex.config(); |
| surfDesc.fSampleCnt = 0; |
| // In GL, Chrome assumes all textures are BottomLeft |
| // In VK, we don't have this restriction |
| surfDesc.fOrigin = resolve_origin(origin); |
| |
| return GrVkTexture::MakeWrappedTexture(this, surfDesc, ownership, backendTex.getVkImageInfo()); |
| } |
| |
| sk_sp<GrTexture> GrVkGpu::onWrapRenderableBackendTexture(const GrBackendTexture& backendTex, |
| GrSurfaceOrigin origin, |
| int sampleCnt, |
| GrWrapOwnership ownership) { |
| if (!check_backend_texture(backendTex)) { |
| return nullptr; |
| } |
| |
| GrSurfaceDesc surfDesc; |
| surfDesc.fFlags = kRenderTarget_GrSurfaceFlag; |
| surfDesc.fWidth = backendTex.width(); |
| surfDesc.fHeight = backendTex.height(); |
| surfDesc.fConfig = backendTex.config(); |
| surfDesc.fSampleCnt = this->caps()->getSampleCount(sampleCnt, backendTex.config()); |
| // In GL, Chrome assumes all textures are BottomLeft |
| // In VK, we don't have this restriction |
| surfDesc.fOrigin = resolve_origin(origin); |
| |
| return GrVkTextureRenderTarget::MakeWrappedTextureRenderTarget(this, surfDesc, ownership, |
| backendTex.getVkImageInfo()); |
| } |
| |
| sk_sp<GrRenderTarget> GrVkGpu::onWrapBackendRenderTarget(const GrBackendRenderTarget& backendRT, |
| GrSurfaceOrigin origin){ |
| // Currently the Vulkan backend does not support wrapping of msaa render targets directly. In |
| // general this is not an issue since swapchain images in vulkan are never multisampled. Thus if |
| // you want a multisampled RT it is best to wrap the swapchain images and then let Skia handle |
| // creating and owning the MSAA images. |
| if (backendRT.sampleCnt()) { |
| return nullptr; |
| } |
| |
| const GrVkImageInfo* info = backendRT.getVkImageInfo(); |
| if (!info) { |
| return nullptr; |
| } |
| if (VK_NULL_HANDLE == info->fImage) { |
| return nullptr; |
| } |
| |
| GrSurfaceDesc desc; |
| desc.fConfig = backendRT.config(); |
| desc.fFlags = kRenderTarget_GrSurfaceFlag; |
| desc.fWidth = backendRT.width(); |
| desc.fHeight = backendRT.height(); |
| desc.fSampleCnt = 0; |
| |
| SkASSERT(kDefault_GrSurfaceOrigin != origin); |
| desc.fOrigin = origin; |
| |
| sk_sp<GrVkRenderTarget> tgt = GrVkRenderTarget::MakeWrappedRenderTarget(this, desc, info); |
| if (tgt && backendRT.stencilBits()) { |
| if (!createStencilAttachmentForRenderTarget(tgt.get(), desc.fWidth, desc.fHeight)) { |
| return nullptr; |
| } |
| } |
| return tgt; |
| } |
| |
| sk_sp<GrRenderTarget> GrVkGpu::onWrapBackendTextureAsRenderTarget(const GrBackendTexture& tex, |
| GrSurfaceOrigin origin, |
| int sampleCnt) { |
| |
| const GrVkImageInfo* info = tex.getVkImageInfo(); |
| if (!info) { |
| return nullptr; |
| } |
| if (VK_NULL_HANDLE == info->fImage) { |
| return nullptr; |
| } |
| |
| GrSurfaceDesc desc; |
| desc.fFlags = kRenderTarget_GrSurfaceFlag; |
| desc.fConfig = tex.config(); |
| desc.fWidth = tex.width(); |
| desc.fHeight = tex.height(); |
| desc.fSampleCnt = this->caps()->getSampleCount(sampleCnt, tex.config()); |
| |
| desc.fOrigin = resolve_origin(origin); |
| |
| sk_sp<GrVkRenderTarget> tgt = GrVkRenderTarget::MakeWrappedRenderTarget(this, desc, info); |
| return tgt; |
| } |
| |
| void GrVkGpu::generateMipmap(GrVkTexture* tex) { |
| // don't do anything for linearly tiled textures (can't have mipmaps) |
| if (tex->isLinearTiled()) { |
| SkDebugf("Trying to create mipmap for linear tiled texture"); |
| return; |
| } |
| |
| // determine if we can blit to and from this format |
| const GrVkCaps& caps = this->vkCaps(); |
| if (!caps.configCanBeDstofBlit(tex->config(), false) || |
| !caps.configCanBeSrcofBlit(tex->config(), false) || |
| !caps.mipMapSupport()) { |
| return; |
| } |
| |
| if (this->vkCaps().mustSubmitCommandsBeforeCopyOp()) { |
| this->submitCommandBuffer(kSkip_SyncQueue); |
| } |
| |
| // We may need to resolve the texture first if it is also a render target |
| GrVkRenderTarget* texRT = static_cast<GrVkRenderTarget*>(tex->asRenderTarget()); |
| if (texRT) { |
| this->internalResolveRenderTarget(texRT, false); |
| } |
| |
| int width = tex->width(); |
| int height = tex->height(); |
| VkImageBlit blitRegion; |
| memset(&blitRegion, 0, sizeof(VkImageBlit)); |
| |
| // SkMipMap doesn't include the base level in the level count so we have to add 1 |
| uint32_t levelCount = SkMipMap::ComputeLevelCount(tex->width(), tex->height()) + 1; |
| if (levelCount != tex->mipLevels()) { |
| const GrVkResource* oldResource = tex->resource(); |
| oldResource->ref(); |
| // grab handle to the original image resource |
| VkImage oldImage = tex->image(); |
| |
| // change the original image's layout so we can copy from it |
| tex->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| VK_ACCESS_TRANSFER_READ_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); |
| |
| if (!tex->reallocForMipmap(this, levelCount)) { |
| oldResource->unref(this); |
| return; |
| } |
| // change the new image's layout so we can blit to it |
| tex->setImageLayout(this, VK_IMAGE_LAYOUT_GENERAL, |
| VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); |
| |
| // Blit original image to top level of new image |
| blitRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; |
| blitRegion.srcOffsets[0] = { 0, 0, 0 }; |
| blitRegion.srcOffsets[1] = { width, height, 1 }; |
| blitRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; |
| blitRegion.dstOffsets[0] = { 0, 0, 0 }; |
| blitRegion.dstOffsets[1] = { width, height, 1 }; |
| |
| fCurrentCmdBuffer->blitImage(this, |
| oldResource, |
| oldImage, |
| VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| tex->resource(), |
| tex->image(), |
| VK_IMAGE_LAYOUT_GENERAL, |
| 1, |
| &blitRegion, |
| VK_FILTER_LINEAR); |
| |
| oldResource->unref(this); |
| } else { |
| // change layout of the layers so we can write to them. |
| tex->setImageLayout(this, VK_IMAGE_LAYOUT_GENERAL, |
| VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); |
| } |
| |
| // setup memory barrier |
| SkASSERT(kUnknown_GrPixelConfig != GrVkFormatToPixelConfig(tex->imageFormat())); |
| VkImageAspectFlags aspectFlags = VK_IMAGE_ASPECT_COLOR_BIT; |
| VkImageMemoryBarrier imageMemoryBarrier = { |
| VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // sType |
| NULL, // pNext |
| VK_ACCESS_TRANSFER_WRITE_BIT, // srcAccessMask |
| VK_ACCESS_TRANSFER_READ_BIT, // dstAccessMask |
| VK_IMAGE_LAYOUT_GENERAL, // oldLayout |
| VK_IMAGE_LAYOUT_GENERAL, // newLayout |
| VK_QUEUE_FAMILY_IGNORED, // srcQueueFamilyIndex |
| VK_QUEUE_FAMILY_IGNORED, // dstQueueFamilyIndex |
| tex->image(), // image |
| { aspectFlags, 0, 1, 0, 1 } // subresourceRange |
| }; |
| |
| // Blit the miplevels |
| uint32_t mipLevel = 1; |
| while (mipLevel < levelCount) { |
| int prevWidth = width; |
| int prevHeight = height; |
| width = SkTMax(1, width / 2); |
| height = SkTMax(1, height / 2); |
| |
| imageMemoryBarrier.subresourceRange.baseMipLevel = mipLevel - 1; |
| this->addImageMemoryBarrier(VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false, &imageMemoryBarrier); |
| |
| blitRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, mipLevel - 1, 0, 1 }; |
| blitRegion.srcOffsets[0] = { 0, 0, 0 }; |
| blitRegion.srcOffsets[1] = { prevWidth, prevHeight, 1 }; |
| blitRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, mipLevel, 0, 1 }; |
| blitRegion.dstOffsets[0] = { 0, 0, 0 }; |
| blitRegion.dstOffsets[1] = { width, height, 1 }; |
| fCurrentCmdBuffer->blitImage(this, |
| *tex, |
| *tex, |
| 1, |
| &blitRegion, |
| VK_FILTER_LINEAR); |
| ++mipLevel; |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| GrStencilAttachment* GrVkGpu::createStencilAttachmentForRenderTarget(const GrRenderTarget* rt, |
| int width, |
| int height) { |
| SkASSERT(width >= rt->width()); |
| SkASSERT(height >= rt->height()); |
| |
| int samples = rt->numStencilSamples(); |
| |
| const GrVkCaps::StencilFormat& sFmt = this->vkCaps().preferedStencilFormat(); |
| |
| GrVkStencilAttachment* stencil(GrVkStencilAttachment::Create(this, |
| width, |
| height, |
| samples, |
| sFmt)); |
| fStats.incStencilAttachmentCreates(); |
| return stencil; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| bool copy_testing_data(GrVkGpu* gpu, void* srcData, const GrVkAlloc& alloc, |
| size_t srcRowBytes, size_t dstRowBytes, int h) { |
| void* mapPtr; |
| VkResult err = GR_VK_CALL(gpu->vkInterface(), MapMemory(gpu->device(), |
| alloc.fMemory, |
| alloc.fOffset, |
| dstRowBytes * h, |
| 0, |
| &mapPtr)); |
| if (err) { |
| return false; |
| } |
| |
| if (srcData) { |
| // If there is no padding on dst we can do a single memcopy. |
| // This assumes the srcData comes in with no padding. |
| SkRectMemcpy(mapPtr, static_cast<size_t>(dstRowBytes), |
| srcData, srcRowBytes, srcRowBytes, h); |
| } else { |
| // If there is no srcdata we always copy 0's into the textures so that it is initialized |
| // with some data. |
| if (srcRowBytes == static_cast<size_t>(dstRowBytes)) { |
| memset(mapPtr, 0, srcRowBytes * h); |
| } else { |
| for (int i = 0; i < h; ++i) { |
| memset(mapPtr, 0, srcRowBytes); |
| mapPtr = SkTAddOffset<void>(mapPtr, static_cast<size_t>(dstRowBytes)); |
| } |
| } |
| } |
| GrVkMemory::FlushMappedAlloc(gpu, alloc); |
| GR_VK_CALL(gpu->vkInterface(), UnmapMemory(gpu->device(), alloc.fMemory)); |
| return true; |
| } |
| |
| GrBackendObject GrVkGpu::createTestingOnlyBackendTexture(void* srcData, int w, int h, |
| GrPixelConfig config, |
| bool isRenderTarget) { |
| |
| VkFormat pixelFormat; |
| if (!GrPixelConfigToVkFormat(config, &pixelFormat)) { |
| return 0; |
| } |
| |
| bool linearTiling = false; |
| if (!fVkCaps->isConfigTexturable(config)) { |
| return 0; |
| } |
| |
| if (isRenderTarget && !fVkCaps->isConfigRenderable(config, false)) { |
| return 0; |
| } |
| |
| if (fVkCaps->isConfigTexturableLinearly(config) && |
| (!isRenderTarget || fVkCaps->isConfigRenderableLinearly(config, false))) { |
| linearTiling = true; |
| } |
| |
| VkImageUsageFlags usageFlags = VK_IMAGE_USAGE_SAMPLED_BIT; |
| usageFlags |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT; |
| usageFlags |= VK_IMAGE_USAGE_TRANSFER_DST_BIT; |
| if (isRenderTarget) { |
| usageFlags |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; |
| } |
| |
| VkImage image = VK_NULL_HANDLE; |
| GrVkAlloc alloc = { VK_NULL_HANDLE, 0, 0, 0 }; |
| |
| VkImageTiling imageTiling = linearTiling ? VK_IMAGE_TILING_LINEAR : VK_IMAGE_TILING_OPTIMAL; |
| VkImageLayout initialLayout = (VK_IMAGE_TILING_LINEAR == imageTiling) |
| ? VK_IMAGE_LAYOUT_PREINITIALIZED |
| : VK_IMAGE_LAYOUT_UNDEFINED; |
| |
| // Create Image |
| VkSampleCountFlagBits vkSamples; |
| if (!GrSampleCountToVkSampleCount(1, &vkSamples)) { |
| return 0; |
| } |
| |
| const VkImageCreateInfo imageCreateInfo = { |
| VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, // sType |
| NULL, // pNext |
| 0, // VkImageCreateFlags |
| VK_IMAGE_TYPE_2D, // VkImageType |
| pixelFormat, // VkFormat |
| { (uint32_t) w, (uint32_t) h, 1 }, // VkExtent3D |
| 1, // mipLevels |
| 1, // arrayLayers |
| vkSamples, // samples |
| imageTiling, // VkImageTiling |
| usageFlags, // VkImageUsageFlags |
| VK_SHARING_MODE_EXCLUSIVE, // VkSharingMode |
| 0, // queueFamilyCount |
| 0, // pQueueFamilyIndices |
| initialLayout // initialLayout |
| }; |
| |
| GR_VK_CALL_ERRCHECK(this->vkInterface(), CreateImage(this->device(), &imageCreateInfo, nullptr, &image)); |
| |
| if (!GrVkMemory::AllocAndBindImageMemory(this, image, linearTiling, &alloc)) { |
| VK_CALL(DestroyImage(this->device(), image, nullptr)); |
| return 0; |
| } |
| |
| size_t bpp = GrBytesPerPixel(config); |
| size_t rowCopyBytes = bpp * w; |
| if (linearTiling) { |
| const VkImageSubresource subres = { |
| VK_IMAGE_ASPECT_COLOR_BIT, |
| 0, // mipLevel |
| 0, // arraySlice |
| }; |
| VkSubresourceLayout layout; |
| |
| VK_CALL(GetImageSubresourceLayout(fDevice, image, &subres, &layout)); |
| |
| if (!copy_testing_data(this, srcData, alloc, rowCopyBytes, |
| static_cast<size_t>(layout.rowPitch), h)) { |
| GrVkMemory::FreeImageMemory(this, linearTiling, alloc); |
| VK_CALL(DestroyImage(fDevice, image, nullptr)); |
| return 0; |
| } |
| } else { |
| SkASSERT(w && h); |
| |
| VkBuffer buffer; |
| VkBufferCreateInfo bufInfo; |
| memset(&bufInfo, 0, sizeof(VkBufferCreateInfo)); |
| bufInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; |
| bufInfo.flags = 0; |
| bufInfo.size = rowCopyBytes * h; |
| bufInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; |
| bufInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; |
| bufInfo.queueFamilyIndexCount = 0; |
| bufInfo.pQueueFamilyIndices = nullptr; |
| VkResult err; |
| err = VK_CALL(CreateBuffer(fDevice, &bufInfo, nullptr, &buffer)); |
| |
| if (err) { |
| GrVkMemory::FreeImageMemory(this, linearTiling, alloc); |
| VK_CALL(DestroyImage(fDevice, image, nullptr)); |
| return 0; |
| } |
| |
| GrVkAlloc bufferAlloc = { VK_NULL_HANDLE, 0, 0, 0 }; |
| if (!GrVkMemory::AllocAndBindBufferMemory(this, buffer, GrVkBuffer::kCopyRead_Type, |
| true, &bufferAlloc)) { |
| GrVkMemory::FreeImageMemory(this, linearTiling, alloc); |
| VK_CALL(DestroyImage(fDevice, image, nullptr)); |
| VK_CALL(DestroyBuffer(fDevice, buffer, nullptr)); |
| return 0; |
| } |
| |
| if (!copy_testing_data(this, srcData, bufferAlloc, rowCopyBytes, rowCopyBytes, h)) { |
| GrVkMemory::FreeImageMemory(this, linearTiling, alloc); |
| VK_CALL(DestroyImage(fDevice, image, nullptr)); |
| GrVkMemory::FreeBufferMemory(this, GrVkBuffer::kCopyRead_Type, bufferAlloc); |
| VK_CALL(DestroyBuffer(fDevice, buffer, nullptr)); |
| return 0; |
| } |
| |
| const VkCommandBufferAllocateInfo cmdInfo = { |
| VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, // sType |
| NULL, // pNext |
| fCmdPool, // commandPool |
| VK_COMMAND_BUFFER_LEVEL_PRIMARY, // level |
| 1 // bufferCount |
| }; |
| |
| VkCommandBuffer cmdBuffer; |
| err = VK_CALL(AllocateCommandBuffers(fDevice, &cmdInfo, &cmdBuffer)); |
| if (err) { |
| GrVkMemory::FreeImageMemory(this, linearTiling, alloc); |
| VK_CALL(DestroyImage(fDevice, image, nullptr)); |
| GrVkMemory::FreeBufferMemory(this, GrVkBuffer::kCopyRead_Type, bufferAlloc); |
| VK_CALL(DestroyBuffer(fDevice, buffer, nullptr)); |
| return 0; |
| } |
| |
| VkCommandBufferBeginInfo cmdBufferBeginInfo; |
| memset(&cmdBufferBeginInfo, 0, sizeof(VkCommandBufferBeginInfo)); |
| cmdBufferBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; |
| cmdBufferBeginInfo.pNext = nullptr; |
| cmdBufferBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; |
| cmdBufferBeginInfo.pInheritanceInfo = nullptr; |
| |
| err = VK_CALL(BeginCommandBuffer(cmdBuffer, &cmdBufferBeginInfo)); |
| SkASSERT(!err); |
| |
| // Set image layout and add barrier |
| VkImageMemoryBarrier barrier; |
| memset(&barrier, 0, sizeof(VkImageMemoryBarrier)); |
| barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; |
| barrier.pNext = nullptr; |
| barrier.srcAccessMask = GrVkMemory::LayoutToSrcAccessMask(initialLayout); |
| barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; |
| barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; |
| barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; |
| barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; |
| barrier.image = image; |
| barrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0 , 1}; |
| |
| VK_CALL(CmdPipelineBarrier(cmdBuffer, |
| GrVkMemory::LayoutToPipelineStageFlags(initialLayout), |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| 0, |
| 0, nullptr, |
| 0, nullptr, |
| 1, &barrier)); |
| initialLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; |
| |
| // Submit copy command |
| VkBufferImageCopy region; |
| memset(®ion, 0, sizeof(VkBufferImageCopy)); |
| region.bufferOffset = 0; |
| region.bufferRowLength = w; |
| region.bufferImageHeight = h; |
| region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; |
| region.imageOffset = { 0, 0, 0 }; |
| region.imageExtent = { (uint32_t)w, (uint32_t)h, 1 }; |
| |
| VK_CALL(CmdCopyBufferToImage(cmdBuffer, buffer, image, initialLayout, 1, ®ion)); |
| |
| // End CommandBuffer |
| err = VK_CALL(EndCommandBuffer(cmdBuffer)); |
| SkASSERT(!err); |
| |
| // Create Fence for queue |
| VkFence fence; |
| VkFenceCreateInfo fenceInfo; |
| memset(&fenceInfo, 0, sizeof(VkFenceCreateInfo)); |
| fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; |
| |
| err = VK_CALL(CreateFence(fDevice, &fenceInfo, nullptr, &fence)); |
| SkASSERT(!err); |
| |
| VkSubmitInfo submitInfo; |
| memset(&submitInfo, 0, sizeof(VkSubmitInfo)); |
| submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; |
| submitInfo.pNext = nullptr; |
| submitInfo.waitSemaphoreCount = 0; |
| submitInfo.pWaitSemaphores = nullptr; |
| submitInfo.pWaitDstStageMask = 0; |
| submitInfo.commandBufferCount = 1; |
| submitInfo.pCommandBuffers = &cmdBuffer; |
| submitInfo.signalSemaphoreCount = 0; |
| submitInfo.pSignalSemaphores = nullptr; |
| err = VK_CALL(QueueSubmit(this->queue(), 1, &submitInfo, fence)); |
| SkASSERT(!err); |
| |
| err = VK_CALL(WaitForFences(fDevice, 1, &fence, true, UINT64_MAX)); |
| if (VK_TIMEOUT == err) { |
| GrVkMemory::FreeImageMemory(this, linearTiling, alloc); |
| VK_CALL(DestroyImage(fDevice, image, nullptr)); |
| GrVkMemory::FreeBufferMemory(this, GrVkBuffer::kCopyRead_Type, bufferAlloc); |
| VK_CALL(DestroyBuffer(fDevice, buffer, nullptr)); |
| VK_CALL(FreeCommandBuffers(fDevice, fCmdPool, 1, &cmdBuffer)); |
| VK_CALL(DestroyFence(fDevice, fence, nullptr)); |
| SkDebugf("Fence failed to signal: %d\n", err); |
| SkFAIL("failing"); |
| } |
| SkASSERT(!err); |
| |
| // Clean up transfer resources |
| GrVkMemory::FreeBufferMemory(this, GrVkBuffer::kCopyRead_Type, bufferAlloc); |
| VK_CALL(DestroyBuffer(fDevice, buffer, nullptr)); |
| VK_CALL(FreeCommandBuffers(fDevice, fCmdPool, 1, &cmdBuffer)); |
| VK_CALL(DestroyFence(fDevice, fence, nullptr)); |
| } |
| |
| GrVkImageInfo* info = new GrVkImageInfo; |
| info->fImage = image; |
| info->fAlloc = alloc; |
| info->fImageTiling = imageTiling; |
| info->fImageLayout = initialLayout; |
| info->fFormat = pixelFormat; |
| info->fLevelCount = 1; |
| |
| return (GrBackendObject)info; |
| } |
| |
| bool GrVkGpu::isTestingOnlyBackendTexture(GrBackendObject id) const { |
| const GrVkImageInfo* backend = reinterpret_cast<const GrVkImageInfo*>(id); |
| |
| if (backend && backend->fImage && backend->fAlloc.fMemory) { |
| VkMemoryRequirements req; |
| memset(&req, 0, sizeof(req)); |
| GR_VK_CALL(this->vkInterface(), GetImageMemoryRequirements(fDevice, |
| backend->fImage, |
| &req)); |
| // TODO: find a better check |
| // This will probably fail with a different driver |
| return (req.size > 0) && (req.size <= 8192 * 8192); |
| } |
| |
| return false; |
| } |
| |
| void GrVkGpu::deleteTestingOnlyBackendTexture(GrBackendObject id, bool abandon) { |
| GrVkImageInfo* backend = reinterpret_cast<GrVkImageInfo*>(id); |
| if (backend) { |
| if (!abandon) { |
| // something in the command buffer may still be using this, so force submit |
| this->submitCommandBuffer(kForce_SyncQueue); |
| GrVkImage::DestroyImageInfo(this, backend); |
| } |
| delete backend; |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| void GrVkGpu::addMemoryBarrier(VkPipelineStageFlags srcStageMask, |
| VkPipelineStageFlags dstStageMask, |
| bool byRegion, |
| VkMemoryBarrier* barrier) const { |
| SkASSERT(fCurrentCmdBuffer); |
| fCurrentCmdBuffer->pipelineBarrier(this, |
| srcStageMask, |
| dstStageMask, |
| byRegion, |
| GrVkCommandBuffer::kMemory_BarrierType, |
| barrier); |
| } |
| |
| void GrVkGpu::addBufferMemoryBarrier(VkPipelineStageFlags srcStageMask, |
| VkPipelineStageFlags dstStageMask, |
| bool byRegion, |
| VkBufferMemoryBarrier* barrier) const { |
| SkASSERT(fCurrentCmdBuffer); |
| fCurrentCmdBuffer->pipelineBarrier(this, |
| srcStageMask, |
| dstStageMask, |
| byRegion, |
| GrVkCommandBuffer::kBufferMemory_BarrierType, |
| barrier); |
| } |
| |
| void GrVkGpu::addImageMemoryBarrier(VkPipelineStageFlags srcStageMask, |
| VkPipelineStageFlags dstStageMask, |
| bool byRegion, |
| VkImageMemoryBarrier* barrier) const { |
| SkASSERT(fCurrentCmdBuffer); |
| fCurrentCmdBuffer->pipelineBarrier(this, |
| srcStageMask, |
| dstStageMask, |
| byRegion, |
| GrVkCommandBuffer::kImageMemory_BarrierType, |
| barrier); |
| } |
| |
| void GrVkGpu::finishFlush() { |
| // Submit the current command buffer to the Queue |
| this->submitCommandBuffer(kSkip_SyncQueue); |
| } |
| |
| void GrVkGpu::clearStencil(GrRenderTarget* target) { |
| if (nullptr == target) { |
| return; |
| } |
| GrStencilAttachment* stencil = target->renderTargetPriv().getStencilAttachment(); |
| GrVkStencilAttachment* vkStencil = (GrVkStencilAttachment*)stencil; |
| |
| |
| VkClearDepthStencilValue vkStencilColor; |
| memset(&vkStencilColor, 0, sizeof(VkClearDepthStencilValue)); |
| |
| vkStencil->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| VkImageSubresourceRange subRange; |
| memset(&subRange, 0, sizeof(VkImageSubresourceRange)); |
| subRange.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT; |
| subRange.baseMipLevel = 0; |
| subRange.levelCount = 1; |
| subRange.baseArrayLayer = 0; |
| subRange.layerCount = 1; |
| |
| // TODO: I imagine that most times we want to clear a stencil it will be at the beginning of a |
| // draw. Thus we should look into using the load op functions on the render pass to clear out |
| // the stencil there. |
| fCurrentCmdBuffer->clearDepthStencilImage(this, vkStencil, &vkStencilColor, 1, &subRange); |
| } |
| |
| inline bool can_copy_image(const GrSurface* dst, |
| const GrSurface* src, |
| const GrVkGpu* gpu) { |
| const GrRenderTarget* dstRT = dst->asRenderTarget(); |
| const GrRenderTarget* srcRT = src->asRenderTarget(); |
| if (dstRT && srcRT) { |
| if (srcRT->numColorSamples() != dstRT->numColorSamples()) { |
| return false; |
| } |
| } else if (dstRT) { |
| if (dstRT->numColorSamples() > 1) { |
| return false; |
| } |
| } else if (srcRT) { |
| if (srcRT->numColorSamples() > 1) { |
| return false; |
| } |
| } |
| |
| // We require that all vulkan GrSurfaces have been created with transfer_dst and transfer_src |
| // as image usage flags. |
| if (src->origin() == dst->origin() && |
| GrBytesPerPixel(src->config()) == GrBytesPerPixel(dst->config())) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void GrVkGpu::copySurfaceAsCopyImage(GrSurface* dst, |
| GrSurface* src, |
| GrVkImage* dstImage, |
| GrVkImage* srcImage, |
| const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| SkASSERT(can_copy_image(dst, src, this)); |
| |
| // These flags are for flushing/invalidating caches and for the dst image it doesn't matter if |
| // the cache is flushed since it is only being written to. |
| dstImage->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| srcImage->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| VK_ACCESS_TRANSFER_READ_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| // Flip rect if necessary |
| SkIRect srcVkRect = srcRect; |
| int32_t dstY = dstPoint.fY; |
| |
| if (kBottomLeft_GrSurfaceOrigin == src->origin()) { |
| SkASSERT(kBottomLeft_GrSurfaceOrigin == dst->origin()); |
| srcVkRect.fTop = src->height() - srcRect.fBottom; |
| srcVkRect.fBottom = src->height() - srcRect.fTop; |
| dstY = dst->height() - dstPoint.fY - srcVkRect.height(); |
| } |
| |
| VkImageCopy copyRegion; |
| memset(©Region, 0, sizeof(VkImageCopy)); |
| copyRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; |
| copyRegion.srcOffset = { srcVkRect.fLeft, srcVkRect.fTop, 0 }; |
| copyRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; |
| copyRegion.dstOffset = { dstPoint.fX, dstY, 0 }; |
| copyRegion.extent = { (uint32_t)srcVkRect.width(), (uint32_t)srcVkRect.height(), 1 }; |
| |
| fCurrentCmdBuffer->copyImage(this, |
| srcImage, |
| VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| dstImage, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| 1, |
| ©Region); |
| |
| SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, |
| srcRect.width(), srcRect.height()); |
| this->didWriteToSurface(dst, &dstRect); |
| } |
| |
| inline bool can_copy_as_blit(const GrSurface* dst, |
| const GrSurface* src, |
| const GrVkImage* dstImage, |
| const GrVkImage* srcImage, |
| const GrVkGpu* gpu) { |
| // We require that all vulkan GrSurfaces have been created with transfer_dst and transfer_src |
| // as image usage flags. |
| const GrVkCaps& caps = gpu->vkCaps(); |
| if (!caps.configCanBeDstofBlit(dst->config(), dstImage->isLinearTiled()) || |
| !caps.configCanBeSrcofBlit(src->config(), srcImage->isLinearTiled())) { |
| return false; |
| } |
| |
| // We cannot blit images that are multisampled. Will need to figure out if we can blit the |
| // resolved msaa though. |
| if ((dst->asRenderTarget() && dst->asRenderTarget()->numColorSamples() > 1) || |
| (src->asRenderTarget() && src->asRenderTarget()->numColorSamples() > 1)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void GrVkGpu::copySurfaceAsBlit(GrSurface* dst, |
| GrSurface* src, |
| GrVkImage* dstImage, |
| GrVkImage* srcImage, |
| const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| SkASSERT(can_copy_as_blit(dst, src, dstImage, srcImage, this)); |
| |
| dstImage->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| srcImage->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| VK_ACCESS_TRANSFER_READ_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| // Flip rect if necessary |
| SkIRect srcVkRect; |
| srcVkRect.fLeft = srcRect.fLeft; |
| srcVkRect.fRight = srcRect.fRight; |
| SkIRect dstRect; |
| dstRect.fLeft = dstPoint.fX; |
| dstRect.fRight = dstPoint.fX + srcRect.width(); |
| |
| if (kBottomLeft_GrSurfaceOrigin == src->origin()) { |
| srcVkRect.fTop = src->height() - srcRect.fBottom; |
| srcVkRect.fBottom = src->height() - srcRect.fTop; |
| } else { |
| srcVkRect.fTop = srcRect.fTop; |
| srcVkRect.fBottom = srcRect.fBottom; |
| } |
| |
| if (kBottomLeft_GrSurfaceOrigin == dst->origin()) { |
| dstRect.fTop = dst->height() - dstPoint.fY - srcVkRect.height(); |
| } else { |
| dstRect.fTop = dstPoint.fY; |
| } |
| dstRect.fBottom = dstRect.fTop + srcVkRect.height(); |
| |
| // If we have different origins, we need to flip the top and bottom of the dst rect so that we |
| // get the correct origintation of the copied data. |
| if (src->origin() != dst->origin()) { |
| SkTSwap(dstRect.fTop, dstRect.fBottom); |
| } |
| |
| VkImageBlit blitRegion; |
| memset(&blitRegion, 0, sizeof(VkImageBlit)); |
| blitRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; |
| blitRegion.srcOffsets[0] = { srcVkRect.fLeft, srcVkRect.fTop, 0 }; |
| blitRegion.srcOffsets[1] = { srcVkRect.fRight, srcVkRect.fBottom, 1 }; |
| blitRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; |
| blitRegion.dstOffsets[0] = { dstRect.fLeft, dstRect.fTop, 0 }; |
| blitRegion.dstOffsets[1] = { dstRect.fRight, dstRect.fBottom, 1 }; |
| |
| fCurrentCmdBuffer->blitImage(this, |
| *srcImage, |
| *dstImage, |
| 1, |
| &blitRegion, |
| VK_FILTER_NEAREST); // We never scale so any filter works here |
| |
| this->didWriteToSurface(dst, &dstRect); |
| } |
| |
| inline bool can_copy_as_resolve(const GrSurface* dst, |
| const GrSurface* src, |
| const GrVkGpu* gpu) { |
| // Our src must be a multisampled render target |
| if (!src->asRenderTarget() || src->asRenderTarget()->numColorSamples() <= 1) { |
| return false; |
| } |
| |
| // The dst must not be a multisampled render target, expect in the case where the dst is the |
| // resolve texture connected to the msaa src. We check for this in case we are copying a part of |
| // a surface to a different region in the same surface. |
| if (dst->asRenderTarget() && dst->asRenderTarget()->numColorSamples() > 1 && dst != src) { |
| return false; |
| } |
| |
| // Surfaces must have the same origin. |
| if (src->origin() != dst->origin()) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void GrVkGpu::copySurfaceAsResolve(GrSurface* dst, |
| GrSurface* src, |
| const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| GrVkRenderTarget* srcRT = static_cast<GrVkRenderTarget*>(src->asRenderTarget()); |
| this->resolveImage(dst, srcRT, srcRect, dstPoint); |
| } |
| |
| bool GrVkGpu::onCopySurface(GrSurface* dst, |
| GrSurface* src, |
| const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| if (can_copy_as_resolve(dst, src, this)) { |
| this->copySurfaceAsResolve(dst, src, srcRect, dstPoint); |
| return true; |
| } |
| |
| if (this->vkCaps().mustSubmitCommandsBeforeCopyOp()) { |
| this->submitCommandBuffer(GrVkGpu::kSkip_SyncQueue); |
| } |
| |
| if (fCopyManager.copySurfaceAsDraw(this, dst, src, srcRect, dstPoint)) { |
| return true; |
| } |
| |
| GrVkImage* dstImage; |
| GrVkImage* srcImage; |
| GrRenderTarget* dstRT = dst->asRenderTarget(); |
| if (dstRT) { |
| GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(dstRT); |
| dstImage = vkRT->numColorSamples() > 1 ? vkRT->msaaImage() : vkRT; |
| } else { |
| SkASSERT(dst->asTexture()); |
| dstImage = static_cast<GrVkTexture*>(dst->asTexture()); |
| } |
| GrRenderTarget* srcRT = src->asRenderTarget(); |
| if (srcRT) { |
| GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(srcRT); |
| srcImage = vkRT->numColorSamples() > 1 ? vkRT->msaaImage() : vkRT; |
| } else { |
| SkASSERT(src->asTexture()); |
| srcImage = static_cast<GrVkTexture*>(src->asTexture()); |
| } |
| |
| // For borrowed textures, we *only* want to copy using draws (to avoid layout changes) |
| if (srcImage->isBorrowed()) { |
| return false; |
| } |
| |
| if (can_copy_image(dst, src, this)) { |
| this->copySurfaceAsCopyImage(dst, src, dstImage, srcImage, srcRect, dstPoint); |
| return true; |
| } |
| |
| if (can_copy_as_blit(dst, src, dstImage, srcImage, this)) { |
| this->copySurfaceAsBlit(dst, src, dstImage, srcImage, srcRect, dstPoint); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void GrVkGpu::onQueryMultisampleSpecs(GrRenderTarget* rt, const GrStencilSettings&, |
| int* effectiveSampleCnt, SamplePattern*) { |
| // TODO: stub. |
| SkASSERT(!this->caps()->sampleLocationsSupport()); |
| *effectiveSampleCnt = rt->numStencilSamples(); |
| } |
| |
| bool GrVkGpu::onGetReadPixelsInfo(GrSurface* srcSurface, int width, int height, size_t rowBytes, |
| GrPixelConfig readConfig, DrawPreference* drawPreference, |
| ReadPixelTempDrawInfo* tempDrawInfo) { |
| // These settings we will always want if a temp draw is performed. |
| tempDrawInfo->fTempSurfaceDesc.fFlags = kRenderTarget_GrSurfaceFlag; |
| tempDrawInfo->fTempSurfaceDesc.fWidth = width; |
| tempDrawInfo->fTempSurfaceDesc.fHeight = height; |
| tempDrawInfo->fTempSurfaceDesc.fSampleCnt = 0; |
| tempDrawInfo->fTempSurfaceDesc.fOrigin = kTopLeft_GrSurfaceOrigin; // no CPU y-flip for TL. |
| tempDrawInfo->fTempSurfaceFit = SkBackingFit::kApprox; |
| |
| // For now assume no swizzling, we may change that below. |
| tempDrawInfo->fSwizzle = GrSwizzle::RGBA(); |
| |
| // Depends on why we need/want a temp draw. Start off assuming no change, the surface we read |
| // from will be srcConfig and we will read readConfig pixels from it. |
| // Note that if we require a draw and return a non-renderable format for the temp surface the |
| // base class will fail for us. |
| tempDrawInfo->fTempSurfaceDesc.fConfig = srcSurface->config(); |
| tempDrawInfo->fReadConfig = readConfig; |
| |
| if (srcSurface->config() == readConfig) { |
| return true; |
| } |
| |
| // Any config change requires a draw |
| ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); |
| tempDrawInfo->fTempSurfaceDesc.fConfig = readConfig; |
| tempDrawInfo->fReadConfig = readConfig; |
| |
| return true; |
| } |
| |
| bool GrVkGpu::onReadPixels(GrSurface* surface, |
| int left, int top, int width, int height, |
| GrPixelConfig config, |
| void* buffer, |
| size_t rowBytes) { |
| VkFormat pixelFormat; |
| if (!GrPixelConfigToVkFormat(config, &pixelFormat)) { |
| return false; |
| } |
| |
| GrVkImage* image = nullptr; |
| GrVkRenderTarget* rt = static_cast<GrVkRenderTarget*>(surface->asRenderTarget()); |
| if (rt) { |
| // resolve the render target if necessary |
| switch (rt->getResolveType()) { |
| case GrVkRenderTarget::kCantResolve_ResolveType: |
| return false; |
| case GrVkRenderTarget::kAutoResolves_ResolveType: |
| break; |
| case GrVkRenderTarget::kCanResolve_ResolveType: |
| this->internalResolveRenderTarget(rt, false); |
| break; |
| default: |
| SkFAIL("Unknown resolve type"); |
| } |
| image = rt; |
| } else { |
| image = static_cast<GrVkTexture*>(surface->asTexture()); |
| } |
| |
| if (!image) { |
| return false; |
| } |
| |
| // Change layout of our target so it can be used as copy |
| image->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| VK_ACCESS_TRANSFER_READ_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| size_t bpp = GrBytesPerPixel(config); |
| size_t tightRowBytes = bpp * width; |
| bool flipY = kBottomLeft_GrSurfaceOrigin == surface->origin(); |
| |
| VkBufferImageCopy region; |
| memset(®ion, 0, sizeof(VkBufferImageCopy)); |
| |
| bool copyFromOrigin = this->vkCaps().mustDoCopiesFromOrigin(); |
| if (copyFromOrigin) { |
| region.imageOffset = { 0, 0, 0 }; |
| region.imageExtent = { (uint32_t)(left + width), |
| (uint32_t)(flipY ? surface->height() - top : top + height), |
| 1 |
| }; |
| } else { |
| VkOffset3D offset = { |
| left, |
| flipY ? surface->height() - top - height : top, |
| 0 |
| }; |
| region.imageOffset = offset; |
| region.imageExtent = { (uint32_t)width, (uint32_t)height, 1 }; |
| } |
| |
| size_t transBufferRowBytes = bpp * region.imageExtent.width; |
| GrVkTransferBuffer* transferBuffer = |
| static_cast<GrVkTransferBuffer*>(this->createBuffer(transBufferRowBytes * height, |
| kXferGpuToCpu_GrBufferType, |
| kStream_GrAccessPattern)); |
| |
| // Copy the image to a buffer so we can map it to cpu memory |
| region.bufferOffset = transferBuffer->offset(); |
| region.bufferRowLength = 0; // Forces RowLength to be width. We handle the rowBytes below. |
| region.bufferImageHeight = 0; // Forces height to be tightly packed. Only useful for 3d images. |
| region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; |
| |
| fCurrentCmdBuffer->copyImageToBuffer(this, |
| image, |
| VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| transferBuffer, |
| 1, |
| ®ion); |
| |
| // make sure the copy to buffer has finished |
| transferBuffer->addMemoryBarrier(this, |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_ACCESS_HOST_READ_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| VK_PIPELINE_STAGE_HOST_BIT, |
| false); |
| |
| // We need to submit the current command buffer to the Queue and make sure it finishes before |
| // we can copy the data out of the buffer. |
| this->submitCommandBuffer(kForce_SyncQueue); |
| GrVkMemory::InvalidateMappedAlloc(this, transferBuffer->alloc()); |
| void* mappedMemory = transferBuffer->map(); |
| |
| if (copyFromOrigin) { |
| uint32_t skipRows = region.imageExtent.height - height; |
| mappedMemory = (char*)mappedMemory + transBufferRowBytes * skipRows + bpp * left; |
| } |
| |
| if (flipY) { |
| const char* srcRow = reinterpret_cast<const char*>(mappedMemory); |
| char* dstRow = reinterpret_cast<char*>(buffer)+(height - 1) * rowBytes; |
| for (int y = 0; y < height; y++) { |
| memcpy(dstRow, srcRow, tightRowBytes); |
| srcRow += transBufferRowBytes; |
| dstRow -= rowBytes; |
| } |
| } else { |
| SkRectMemcpy(buffer, rowBytes, mappedMemory, transBufferRowBytes, tightRowBytes, height); |
| } |
| |
| transferBuffer->unmap(); |
| transferBuffer->unref(); |
| return true; |
| } |
| |
| // The RenderArea bounds we pass into BeginRenderPass must have a start x value that is a multiple |
| // of the granularity. The width must also be a multiple of the granularity or eaqual to the width |
| // the the entire attachment. Similar requirements for the y and height components. |
| void adjust_bounds_to_granularity(SkIRect* dstBounds, const SkIRect& srcBounds, |
| const VkExtent2D& granularity, int maxWidth, int maxHeight) { |
| // Adjust Width |
| if ((0 != granularity.width && 1 != granularity.width)) { |
| // Start with the right side of rect so we know if we end up going pass the maxWidth. |
| int rightAdj = srcBounds.fRight % granularity.width; |
| if (rightAdj != 0) { |
| rightAdj = granularity.width - rightAdj; |
| } |
| dstBounds->fRight = srcBounds.fRight + rightAdj; |
| if (dstBounds->fRight > maxWidth) { |
| dstBounds->fRight = maxWidth; |
| dstBounds->fLeft = 0; |
| } else { |
| dstBounds->fLeft = srcBounds.fLeft - srcBounds.fLeft % granularity.width; |
| } |
| } else { |
| dstBounds->fLeft = srcBounds.fLeft; |
| dstBounds->fRight = srcBounds.fRight; |
| } |
| |
| // Adjust height |
| if ((0 != granularity.height && 1 != granularity.height)) { |
| // Start with the bottom side of rect so we know if we end up going pass the maxHeight. |
| int bottomAdj = srcBounds.fBottom % granularity.height; |
| if (bottomAdj != 0) { |
| bottomAdj = granularity.height - bottomAdj; |
| } |
| dstBounds->fBottom = srcBounds.fBottom + bottomAdj; |
| if (dstBounds->fBottom > maxHeight) { |
| dstBounds->fBottom = maxHeight; |
| dstBounds->fTop = 0; |
| } else { |
| dstBounds->fTop = srcBounds.fTop - srcBounds.fTop % granularity.height; |
| } |
| } else { |
| dstBounds->fTop = srcBounds.fTop; |
| dstBounds->fBottom = srcBounds.fBottom; |
| } |
| } |
| |
| void GrVkGpu::submitSecondaryCommandBuffer(const SkTArray<GrVkSecondaryCommandBuffer*>& buffers, |
| const GrVkRenderPass* renderPass, |
| const VkClearValue* colorClear, |
| GrVkRenderTarget* target, |
| const SkIRect& bounds) { |
| const SkIRect* pBounds = &bounds; |
| SkIRect flippedBounds; |
| if (kBottomLeft_GrSurfaceOrigin == target->origin()) { |
| flippedBounds = bounds; |
| flippedBounds.fTop = target->height() - bounds.fBottom; |
| flippedBounds.fBottom = target->height() - bounds.fTop; |
| pBounds = &flippedBounds; |
| } |
| |
| // The bounds we use for the render pass should be of the granularity supported |
| // by the device. |
| const VkExtent2D& granularity = renderPass->granularity(); |
| SkIRect adjustedBounds; |
| if ((0 != granularity.width && 1 != granularity.width) || |
| (0 != granularity.height && 1 != granularity.height)) { |
| adjust_bounds_to_granularity(&adjustedBounds, *pBounds, granularity, |
| target->width(), target->height()); |
| pBounds = &adjustedBounds; |
| } |
| |
| fCurrentCmdBuffer->beginRenderPass(this, renderPass, colorClear, *target, *pBounds, true); |
| for (int i = 0; i < buffers.count(); ++i) { |
| fCurrentCmdBuffer->executeCommands(this, buffers[i]); |
| } |
| fCurrentCmdBuffer->endRenderPass(this); |
| |
| this->didWriteToSurface(target, &bounds); |
| } |
| |
| GrFence SK_WARN_UNUSED_RESULT GrVkGpu::insertFence() { |
| VkFenceCreateInfo createInfo; |
| memset(&createInfo, 0, sizeof(VkFenceCreateInfo)); |
| createInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; |
| createInfo.pNext = nullptr; |
| createInfo.flags = 0; |
| VkFence fence = VK_NULL_HANDLE; |
| |
| VK_CALL_ERRCHECK(CreateFence(this->device(), &createInfo, nullptr, &fence)); |
| VK_CALL(QueueSubmit(this->queue(), 0, nullptr, fence)); |
| |
| GR_STATIC_ASSERT(sizeof(GrFence) >= sizeof(VkFence)); |
| return (GrFence)fence; |
| } |
| |
| bool GrVkGpu::waitFence(GrFence fence, uint64_t timeout) { |
| SkASSERT(VK_NULL_HANDLE != (VkFence)fence); |
| |
| VkResult result = VK_CALL(WaitForFences(this->device(), 1, (VkFence*)&fence, VK_TRUE, timeout)); |
| return (VK_SUCCESS == result); |
| } |
| |
| void GrVkGpu::deleteFence(GrFence fence) const { |
| VK_CALL(DestroyFence(this->device(), (VkFence)fence, nullptr)); |
| } |
| |
| sk_sp<GrSemaphore> SK_WARN_UNUSED_RESULT GrVkGpu::makeSemaphore(bool isOwned) { |
| return GrVkSemaphore::Make(this, isOwned); |
| } |
| |
| sk_sp<GrSemaphore> GrVkGpu::wrapBackendSemaphore(const GrBackendSemaphore& semaphore, |
| GrWrapOwnership ownership) { |
| return GrVkSemaphore::MakeWrapped(this, semaphore.vkSemaphore(), ownership); |
| } |
| |
| void GrVkGpu::insertSemaphore(sk_sp<GrSemaphore> semaphore, bool flush) { |
| GrVkSemaphore* vkSem = static_cast<GrVkSemaphore*>(semaphore.get()); |
| |
| const GrVkSemaphore::Resource* resource = vkSem->getResource(); |
| resource->ref(); |
| fSemaphoresToSignal.push_back(resource); |
| |
| if (flush) { |
| this->submitCommandBuffer(kSkip_SyncQueue); |
| } |
| } |
| |
| void GrVkGpu::waitSemaphore(sk_sp<GrSemaphore> semaphore) { |
| GrVkSemaphore* vkSem = static_cast<GrVkSemaphore*>(semaphore.get()); |
| |
| const GrVkSemaphore::Resource* resource = vkSem->getResource(); |
| resource->ref(); |
| fSemaphoresToWaitOn.push_back(resource); |
| } |
| |
| sk_sp<GrSemaphore> GrVkGpu::prepareTextureForCrossContextUsage(GrTexture* texture) { |
| SkASSERT(texture); |
| GrVkTexture* vkTexture = static_cast<GrVkTexture*>(texture); |
| vkTexture->setImageLayout(this, |
| VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, |
| VK_ACCESS_SHADER_READ_BIT, |
| VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, |
| false); |
| this->submitCommandBuffer(kSkip_SyncQueue); |
| |
| // The image layout change serves as a barrier, so no semaphore is needed |
| return nullptr; |
| } |