| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| #include "GrAtlasTextContext.h" |
| |
| #include "GrBatchFontCache.h" |
| #include "GrBatchFlushState.h" |
| #include "GrBatchTest.h" |
| #include "GrBlurUtils.h" |
| #include "GrDefaultGeoProcFactory.h" |
| #include "GrDrawContext.h" |
| #include "GrDrawTarget.h" |
| #include "GrFontScaler.h" |
| #include "GrResourceProvider.h" |
| #include "GrStrokeInfo.h" |
| #include "GrTextBlobCache.h" |
| #include "GrTexturePriv.h" |
| #include "GrVertexBuffer.h" |
| |
| #include "SkAutoKern.h" |
| #include "SkColorPriv.h" |
| #include "SkColorFilter.h" |
| #include "SkDistanceFieldGen.h" |
| #include "SkDraw.h" |
| #include "SkDrawFilter.h" |
| #include "SkDrawProcs.h" |
| #include "SkGlyphCache.h" |
| #include "SkGpuDevice.h" |
| #include "SkGr.h" |
| #include "SkPath.h" |
| #include "SkRTConf.h" |
| #include "SkStrokeRec.h" |
| #include "SkTextBlob.h" |
| #include "SkTextMapStateProc.h" |
| |
| #include "batches/GrVertexBatch.h" |
| |
| #include "effects/GrBitmapTextGeoProc.h" |
| #include "effects/GrDistanceFieldGeoProc.h" |
| |
| namespace { |
| static const size_t kLCDTextVASize = sizeof(SkPoint) + sizeof(SkIPoint16); |
| |
| // position + local coord |
| static const size_t kColorTextVASize = sizeof(SkPoint) + sizeof(SkIPoint16); |
| |
| static const size_t kGrayTextVASize = sizeof(SkPoint) + sizeof(GrColor) + sizeof(SkIPoint16); |
| |
| static const int kMinDFFontSize = 18; |
| static const int kSmallDFFontSize = 32; |
| static const int kSmallDFFontLimit = 32; |
| static const int kMediumDFFontSize = 72; |
| static const int kMediumDFFontLimit = 72; |
| static const int kLargeDFFontSize = 162; |
| #ifdef SK_BUILD_FOR_ANDROID |
| static const int kLargeDFFontLimit = 384; |
| #else |
| static const int kLargeDFFontLimit = 2 * kLargeDFFontSize; |
| #endif |
| |
| SkDEBUGCODE(static const int kExpectedDistanceAdjustTableSize = 8;) |
| static const int kDistanceAdjustLumShift = 5; |
| |
| static const int kVerticesPerGlyph = 4; |
| static const int kIndicesPerGlyph = 6; |
| |
| static size_t get_vertex_stride(GrMaskFormat maskFormat) { |
| switch (maskFormat) { |
| case kA8_GrMaskFormat: |
| return kGrayTextVASize; |
| case kARGB_GrMaskFormat: |
| return kColorTextVASize; |
| default: |
| return kLCDTextVASize; |
| } |
| } |
| |
| static size_t get_vertex_stride_df(GrMaskFormat maskFormat, bool useLCDText) { |
| SkASSERT(maskFormat == kA8_GrMaskFormat); |
| if (useLCDText) { |
| return kLCDTextVASize; |
| } else { |
| return kGrayTextVASize; |
| } |
| } |
| |
| static inline GrColor skcolor_to_grcolor_nopremultiply(SkColor c) { |
| unsigned r = SkColorGetR(c); |
| unsigned g = SkColorGetG(c); |
| unsigned b = SkColorGetB(c); |
| return GrColorPackRGBA(r, g, b, 0xff); |
| } |
| |
| }; |
| |
| GrAtlasTextContext::GrAtlasTextContext(GrContext* context, |
| GrDrawContext* drawContext, |
| const SkSurfaceProps& surfaceProps) |
| : INHERITED(context, drawContext, surfaceProps), fDistanceAdjustTable(new DistanceAdjustTable) { |
| // We overallocate vertices in our textblobs based on the assumption that A8 has the greatest |
| // vertexStride |
| static_assert(kGrayTextVASize >= kColorTextVASize && kGrayTextVASize >= kLCDTextVASize, |
| "vertex_attribute_changed"); |
| fCurrStrike = nullptr; |
| fCache = context->getTextBlobCache(); |
| } |
| |
| void GrAtlasTextContext::DistanceAdjustTable::buildDistanceAdjustTable() { |
| |
| // This is used for an approximation of the mask gamma hack, used by raster and bitmap |
| // text. The mask gamma hack is based off of guessing what the blend color is going to |
| // be, and adjusting the mask so that when run through the linear blend will |
| // produce the value closest to the desired result. However, in practice this means |
| // that the 'adjusted' mask is just increasing or decreasing the coverage of |
| // the mask depending on what it is thought it will blit against. For black (on |
| // assumed white) this means that coverages are decreased (on a curve). For white (on |
| // assumed black) this means that coverages are increased (on a a curve). At |
| // middle (perceptual) gray (which could be blit against anything) the coverages |
| // remain the same. |
| // |
| // The idea here is that instead of determining the initial (real) coverage and |
| // then adjusting that coverage, we determine an adjusted coverage directly by |
| // essentially manipulating the geometry (in this case, the distance to the glyph |
| // edge). So for black (on assumed white) this thins a bit; for white (on |
| // assumed black) this fake bolds the geometry a bit. |
| // |
| // The distance adjustment is calculated by determining the actual coverage value which |
| // when fed into in the mask gamma table gives us an 'adjusted coverage' value of 0.5. This |
| // actual coverage value (assuming it's between 0 and 1) corresponds to a distance from the |
| // actual edge. So by subtracting this distance adjustment and computing without the |
| // the coverage adjustment we should get 0.5 coverage at the same point. |
| // |
| // This has several implications: |
| // For non-gray lcd smoothed text, each subpixel essentially is using a |
| // slightly different geometry. |
| // |
| // For black (on assumed white) this may not cover some pixels which were |
| // previously covered; however those pixels would have been only slightly |
| // covered and that slight coverage would have been decreased anyway. Also, some pixels |
| // which were previously fully covered may no longer be fully covered. |
| // |
| // For white (on assumed black) this may cover some pixels which weren't |
| // previously covered at all. |
| |
| int width, height; |
| size_t size; |
| |
| #ifdef SK_GAMMA_CONTRAST |
| SkScalar contrast = SK_GAMMA_CONTRAST; |
| #else |
| SkScalar contrast = 0.5f; |
| #endif |
| SkScalar paintGamma = SK_GAMMA_EXPONENT; |
| SkScalar deviceGamma = SK_GAMMA_EXPONENT; |
| |
| size = SkScalerContext::GetGammaLUTSize(contrast, paintGamma, deviceGamma, |
| &width, &height); |
| |
| SkASSERT(kExpectedDistanceAdjustTableSize == height); |
| fTable = new SkScalar[height]; |
| |
| SkAutoTArray<uint8_t> data((int)size); |
| SkScalerContext::GetGammaLUTData(contrast, paintGamma, deviceGamma, data.get()); |
| |
| // find the inverse points where we cross 0.5 |
| // binsearch might be better, but we only need to do this once on creation |
| for (int row = 0; row < height; ++row) { |
| uint8_t* rowPtr = data.get() + row*width; |
| for (int col = 0; col < width - 1; ++col) { |
| if (rowPtr[col] <= 127 && rowPtr[col + 1] >= 128) { |
| // compute point where a mask value will give us a result of 0.5 |
| float interp = (127.5f - rowPtr[col]) / (rowPtr[col + 1] - rowPtr[col]); |
| float borderAlpha = (col + interp) / 255.f; |
| |
| // compute t value for that alpha |
| // this is an approximate inverse for smoothstep() |
| float t = borderAlpha*(borderAlpha*(4.0f*borderAlpha - 6.0f) + 5.0f) / 3.0f; |
| |
| // compute distance which gives us that t value |
| const float kDistanceFieldAAFactor = 0.65f; // should match SK_DistanceFieldAAFactor |
| float d = 2.0f*kDistanceFieldAAFactor*t - kDistanceFieldAAFactor; |
| |
| fTable[row] = d; |
| break; |
| } |
| } |
| } |
| } |
| |
| GrAtlasTextContext* GrAtlasTextContext::Create(GrContext* context, |
| GrDrawContext* drawContext, |
| const SkSurfaceProps& surfaceProps) { |
| return new GrAtlasTextContext(context, drawContext, surfaceProps); |
| } |
| |
| bool GrAtlasTextContext::canDraw(const GrRenderTarget*, |
| const GrClip&, |
| const GrPaint&, |
| const SkPaint& skPaint, |
| const SkMatrix& viewMatrix) { |
| return this->canDrawAsDistanceFields(skPaint, viewMatrix) || |
| !SkDraw::ShouldDrawTextAsPaths(skPaint, viewMatrix); |
| } |
| |
| GrColor GrAtlasTextContext::ComputeCanonicalColor(const SkPaint& paint, bool lcd) { |
| GrColor canonicalColor = paint.computeLuminanceColor(); |
| if (lcd) { |
| // This is the correct computation, but there are tons of cases where LCD can be overridden. |
| // For now we just regenerate if any run in a textblob has LCD. |
| // TODO figure out where all of these overrides are and see if we can incorporate that logic |
| // at a higher level *OR* use sRGB |
| SkASSERT(false); |
| //canonicalColor = SkMaskGamma::CanonicalColor(canonicalColor); |
| } else { |
| // A8, though can have mixed BMP text but it shouldn't matter because BMP text won't have |
| // gamma corrected masks anyways, nor color |
| U8CPU lum = SkComputeLuminance(SkColorGetR(canonicalColor), |
| SkColorGetG(canonicalColor), |
| SkColorGetB(canonicalColor)); |
| // reduce to our finite number of bits |
| canonicalColor = SkMaskGamma::CanonicalColor(SkColorSetRGB(lum, lum, lum)); |
| } |
| return canonicalColor; |
| } |
| |
| // TODO if this function ever shows up in profiling, then we can compute this value when the |
| // textblob is being built and cache it. However, for the time being textblobs mostly only have 1 |
| // run so this is not a big deal to compute here. |
| bool GrAtlasTextContext::HasLCD(const SkTextBlob* blob) { |
| SkTextBlob::RunIterator it(blob); |
| for (; !it.done(); it.next()) { |
| if (it.isLCD()) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool GrAtlasTextContext::MustRegenerateBlob(SkScalar* outTransX, SkScalar* outTransY, |
| const GrAtlasTextBlob& blob, const SkPaint& paint, |
| GrColor color, const SkMaskFilter::BlurRec& blurRec, |
| const SkMatrix& viewMatrix, SkScalar x, SkScalar y) { |
| // If we have LCD text then our canonical color will be set to transparent, in this case we have |
| // to regenerate the blob on any color change |
| // We use the grPaint to get any color filter effects |
| if (blob.fKey.fCanonicalColor == SK_ColorTRANSPARENT && |
| blob.fPaintColor != color) { |
| return true; |
| } |
| |
| if (blob.fViewMatrix.hasPerspective() != viewMatrix.hasPerspective()) { |
| return true; |
| } |
| |
| if (blob.fViewMatrix.hasPerspective() && !blob.fViewMatrix.cheapEqualTo(viewMatrix)) { |
| return true; |
| } |
| |
| // We only cache one masked version |
| if (blob.fKey.fHasBlur && |
| (blob.fBlurRec.fSigma != blurRec.fSigma || |
| blob.fBlurRec.fStyle != blurRec.fStyle || |
| blob.fBlurRec.fQuality != blurRec.fQuality)) { |
| return true; |
| } |
| |
| // Similarly, we only cache one version for each style |
| if (blob.fKey.fStyle != SkPaint::kFill_Style && |
| (blob.fStrokeInfo.fFrameWidth != paint.getStrokeWidth() || |
| blob.fStrokeInfo.fMiterLimit != paint.getStrokeMiter() || |
| blob.fStrokeInfo.fJoin != paint.getStrokeJoin())) { |
| return true; |
| } |
| |
| // Mixed blobs must be regenerated. We could probably figure out a way to do integer scrolls |
| // for mixed blobs if this becomes an issue. |
| if (blob.hasBitmap() && blob.hasDistanceField()) { |
| // Identical viewmatrices and we can reuse in all cases |
| if (blob.fViewMatrix.cheapEqualTo(viewMatrix) && x == blob.fX && y == blob.fY) { |
| return false; |
| } |
| return true; |
| } |
| |
| if (blob.hasBitmap()) { |
| if (blob.fViewMatrix.getScaleX() != viewMatrix.getScaleX() || |
| blob.fViewMatrix.getScaleY() != viewMatrix.getScaleY() || |
| blob.fViewMatrix.getSkewX() != viewMatrix.getSkewX() || |
| blob.fViewMatrix.getSkewY() != viewMatrix.getSkewY()) { |
| return true; |
| } |
| |
| // We can update the positions in the cachedtextblobs without regenerating the whole blob, |
| // but only for integer translations. |
| // This cool bit of math will determine the necessary translation to apply to the already |
| // generated vertex coordinates to move them to the correct position |
| SkScalar transX = viewMatrix.getTranslateX() + |
| viewMatrix.getScaleX() * (x - blob.fX) + |
| viewMatrix.getSkewX() * (y - blob.fY) - |
| blob.fViewMatrix.getTranslateX(); |
| SkScalar transY = viewMatrix.getTranslateY() + |
| viewMatrix.getSkewY() * (x - blob.fX) + |
| viewMatrix.getScaleY() * (y - blob.fY) - |
| blob.fViewMatrix.getTranslateY(); |
| if (!SkScalarIsInt(transX) || !SkScalarIsInt(transY) ) { |
| return true; |
| } |
| |
| (*outTransX) = transX; |
| (*outTransY) = transY; |
| } else if (blob.hasDistanceField()) { |
| // A scale outside of [blob.fMaxMinScale, blob.fMinMaxScale] would result in a different |
| // distance field being generated, so we have to regenerate in those cases |
| SkScalar newMaxScale = viewMatrix.getMaxScale(); |
| SkScalar oldMaxScale = blob.fViewMatrix.getMaxScale(); |
| SkScalar scaleAdjust = newMaxScale / oldMaxScale; |
| if (scaleAdjust < blob.fMaxMinScale || scaleAdjust > blob.fMinMaxScale) { |
| return true; |
| } |
| |
| (*outTransX) = x - blob.fX; |
| (*outTransY) = y - blob.fY; |
| } |
| |
| // It is possible that a blob has neither distanceField nor bitmaptext. This is in the case |
| // when all of the runs inside the blob are drawn as paths. In this case, we always regenerate |
| // the blob anyways at flush time, so no need to regenerate explicitly |
| return false; |
| } |
| |
| |
| inline SkGlyphCache* GrAtlasTextContext::setupCache(GrAtlasTextBlob::Run* run, |
| const SkPaint& skPaint, |
| const SkMatrix* viewMatrix, |
| bool noGamma) { |
| skPaint.getScalerContextDescriptor(&run->fDescriptor, fSurfaceProps, viewMatrix, noGamma); |
| run->fTypeface.reset(SkSafeRef(skPaint.getTypeface())); |
| return SkGlyphCache::DetachCache(run->fTypeface, run->fDescriptor.getDesc()); |
| } |
| |
| void GrAtlasTextContext::drawTextBlob(GrRenderTarget* rt, |
| const GrClip& clip, const SkPaint& skPaint, |
| const SkMatrix& viewMatrix, const SkTextBlob* blob, |
| SkScalar x, SkScalar y, |
| SkDrawFilter* drawFilter, const SkIRect& clipBounds) { |
| // If we have been abandoned, then don't draw |
| if (fContext->abandoned()) { |
| return; |
| } |
| |
| SkAutoTUnref<GrAtlasTextBlob> cacheBlob; |
| SkMaskFilter::BlurRec blurRec; |
| GrAtlasTextBlob::Key key; |
| // It might be worth caching these things, but its not clear at this time |
| // TODO for animated mask filters, this will fill up our cache. We need a safeguard here |
| const SkMaskFilter* mf = skPaint.getMaskFilter(); |
| bool canCache = !(skPaint.getPathEffect() || |
| (mf && !mf->asABlur(&blurRec)) || |
| drawFilter); |
| |
| if (canCache) { |
| bool hasLCD = HasLCD(blob); |
| |
| // We canonicalize all non-lcd draws to use kUnknown_SkPixelGeometry |
| SkPixelGeometry pixelGeometry = hasLCD ? fSurfaceProps.pixelGeometry() : |
| kUnknown_SkPixelGeometry; |
| |
| // TODO we want to figure out a way to be able to use the canonical color on LCD text, |
| // see the note on ComputeCanonicalColor above. We pick a dummy value for LCD text to |
| // ensure we always match the same key |
| GrColor canonicalColor = hasLCD ? SK_ColorTRANSPARENT : |
| ComputeCanonicalColor(skPaint, hasLCD); |
| |
| key.fPixelGeometry = pixelGeometry; |
| key.fUniqueID = blob->uniqueID(); |
| key.fStyle = skPaint.getStyle(); |
| key.fHasBlur = SkToBool(mf); |
| key.fCanonicalColor = canonicalColor; |
| cacheBlob.reset(SkSafeRef(fCache->find(key))); |
| } |
| |
| SkIRect clipRect; |
| clip.getConservativeBounds(rt->width(), rt->height(), &clipRect); |
| |
| SkScalar transX = 0.f; |
| SkScalar transY = 0.f; |
| |
| // Though for the time being runs in the textblob can override the paint, they only touch font |
| // info. |
| GrPaint grPaint; |
| if (!SkPaint2GrPaint(fContext, rt, skPaint, viewMatrix, true, &grPaint)) { |
| return; |
| } |
| |
| if (cacheBlob) { |
| if (MustRegenerateBlob(&transX, &transY, *cacheBlob, skPaint, grPaint.getColor(), blurRec, |
| viewMatrix, x, y)) { |
| // We have to remake the blob because changes may invalidate our masks. |
| // TODO we could probably get away reuse most of the time if the pointer is unique, |
| // but we'd have to clear the subrun information |
| fCache->remove(cacheBlob); |
| cacheBlob.reset(SkRef(fCache->createCachedBlob(blob, key, blurRec, skPaint, |
| kGrayTextVASize))); |
| this->regenerateTextBlob(cacheBlob, skPaint, grPaint.getColor(), viewMatrix, |
| blob, x, y, drawFilter, clipRect, rt, clip); |
| } else { |
| // If we can reuse the blob, then make sure we update the blob's viewmatrix, and x/y |
| // offsets. Note, we offset the vertex bounds right before flushing |
| cacheBlob->fViewMatrix = viewMatrix; |
| cacheBlob->fX = x; |
| cacheBlob->fY = y; |
| fCache->makeMRU(cacheBlob); |
| #ifdef CACHE_SANITY_CHECK |
| { |
| int glyphCount = 0; |
| int runCount = 0; |
| GrTextBlobCache::BlobGlyphCount(&glyphCount, &runCount, blob); |
| SkAutoTUnref<GrAtlasTextBlob> sanityBlob(fCache->createBlob(glyphCount, runCount, |
| kGrayTextVASize)); |
| GrTextBlobCache::SetupCacheBlobKey(sanityBlob, key, blurRec, skPaint); |
| this->regenerateTextBlob(sanityBlob, skPaint, grPaint.getColor(), viewMatrix, |
| blob, x, y, drawFilter, clipRect, rt, clip); |
| GrAtlasTextBlob::AssertEqual(*sanityBlob, *cacheBlob); |
| } |
| |
| #endif |
| } |
| } else { |
| if (canCache) { |
| cacheBlob.reset(SkRef(fCache->createCachedBlob(blob, key, blurRec, skPaint, |
| kGrayTextVASize))); |
| } else { |
| cacheBlob.reset(fCache->createBlob(blob, kGrayTextVASize)); |
| } |
| this->regenerateTextBlob(cacheBlob, skPaint, grPaint.getColor(), viewMatrix, |
| blob, x, y, drawFilter, clipRect, rt, clip); |
| } |
| |
| this->flush(blob, cacheBlob, rt, skPaint, grPaint, drawFilter, |
| clip, viewMatrix, clipBounds, x, y, transX, transY); |
| } |
| |
| inline bool GrAtlasTextContext::canDrawAsDistanceFields(const SkPaint& skPaint, |
| const SkMatrix& viewMatrix) { |
| // TODO: support perspective (need getMaxScale replacement) |
| if (viewMatrix.hasPerspective()) { |
| return false; |
| } |
| |
| SkScalar maxScale = viewMatrix.getMaxScale(); |
| SkScalar scaledTextSize = maxScale*skPaint.getTextSize(); |
| // Hinted text looks far better at small resolutions |
| // Scaling up beyond 2x yields undesireable artifacts |
| if (scaledTextSize < kMinDFFontSize || scaledTextSize > kLargeDFFontLimit) { |
| return false; |
| } |
| |
| bool useDFT = fSurfaceProps.isUseDistanceFieldFonts(); |
| #if SK_FORCE_DISTANCE_FIELD_TEXT |
| useDFT = true; |
| #endif |
| |
| if (!useDFT && scaledTextSize < kLargeDFFontSize) { |
| return false; |
| } |
| |
| // rasterizers and mask filters modify alpha, which doesn't |
| // translate well to distance |
| if (skPaint.getRasterizer() || skPaint.getMaskFilter() || |
| !fContext->caps()->shaderCaps()->shaderDerivativeSupport()) { |
| return false; |
| } |
| |
| // TODO: add some stroking support |
| if (skPaint.getStyle() != SkPaint::kFill_Style) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void GrAtlasTextContext::regenerateTextBlob(GrAtlasTextBlob* cacheBlob, |
| const SkPaint& skPaint, GrColor color, |
| const SkMatrix& viewMatrix, |
| const SkTextBlob* blob, SkScalar x, SkScalar y, |
| SkDrawFilter* drawFilter, const SkIRect& clipRect, |
| GrRenderTarget* rt, const GrClip& clip) { |
| // The color here is the GrPaint color, and it is used to determine whether we |
| // have to regenerate LCD text blobs. |
| // We use this color vs the SkPaint color because it has the colorfilter applied. |
| cacheBlob->fPaintColor = color; |
| cacheBlob->fViewMatrix = viewMatrix; |
| cacheBlob->fX = x; |
| cacheBlob->fY = y; |
| |
| // Regenerate textblob |
| SkPaint runPaint = skPaint; |
| SkTextBlob::RunIterator it(blob); |
| for (int run = 0; !it.done(); it.next(), run++) { |
| int glyphCount = it.glyphCount(); |
| size_t textLen = glyphCount * sizeof(uint16_t); |
| const SkPoint& offset = it.offset(); |
| // applyFontToPaint() always overwrites the exact same attributes, |
| // so it is safe to not re-seed the paint for this reason. |
| it.applyFontToPaint(&runPaint); |
| |
| if (drawFilter && !drawFilter->filter(&runPaint, SkDrawFilter::kText_Type)) { |
| // A false return from filter() means we should abort the current draw. |
| runPaint = skPaint; |
| continue; |
| } |
| |
| runPaint.setFlags(FilterTextFlags(fSurfaceProps, runPaint)); |
| |
| // setup vertex / glyphIndex for the new run |
| if (run > 0) { |
| PerSubRunInfo& newRun = cacheBlob->fRuns[run].fSubRunInfo.back(); |
| PerSubRunInfo& lastRun = cacheBlob->fRuns[run - 1].fSubRunInfo.back(); |
| |
| newRun.fVertexStartIndex = lastRun.fVertexEndIndex; |
| newRun.fVertexEndIndex = lastRun.fVertexEndIndex; |
| |
| newRun.fGlyphStartIndex = lastRun.fGlyphEndIndex; |
| newRun.fGlyphEndIndex = lastRun.fGlyphEndIndex; |
| } |
| |
| if (this->canDrawAsDistanceFields(runPaint, viewMatrix)) { |
| cacheBlob->setHasDistanceField(); |
| SkPaint dfPaint = runPaint; |
| SkScalar textRatio; |
| this->initDistanceFieldPaint(cacheBlob, &dfPaint, &textRatio, viewMatrix); |
| Run& runIdx = cacheBlob->fRuns[run]; |
| PerSubRunInfo& subRun = runIdx.fSubRunInfo.back(); |
| subRun.fUseLCDText = runPaint.isLCDRenderText(); |
| subRun.fDrawAsDistanceFields = true; |
| |
| SkGlyphCache* cache = this->setupCache(&cacheBlob->fRuns[run], dfPaint, nullptr, true); |
| |
| SkTDArray<char> fallbackTxt; |
| SkTDArray<SkScalar> fallbackPos; |
| SkPoint dfOffset; |
| int scalarsPerPosition = 2; |
| switch (it.positioning()) { |
| case SkTextBlob::kDefault_Positioning: { |
| this->internalDrawDFText(cacheBlob, run, cache, dfPaint, color, viewMatrix, |
| (const char *)it.glyphs(), textLen, |
| x + offset.x(), y + offset.y(), clipRect, textRatio, |
| &fallbackTxt, &fallbackPos, &dfOffset, runPaint); |
| break; |
| } |
| case SkTextBlob::kHorizontal_Positioning: { |
| scalarsPerPosition = 1; |
| dfOffset = SkPoint::Make(x, y + offset.y()); |
| this->internalDrawDFPosText(cacheBlob, run, cache, dfPaint, color, viewMatrix, |
| (const char*)it.glyphs(), textLen, it.pos(), |
| scalarsPerPosition, dfOffset, clipRect, textRatio, |
| &fallbackTxt, &fallbackPos); |
| break; |
| } |
| case SkTextBlob::kFull_Positioning: { |
| dfOffset = SkPoint::Make(x, y); |
| this->internalDrawDFPosText(cacheBlob, run, cache, dfPaint, color, viewMatrix, |
| (const char*)it.glyphs(), textLen, it.pos(), |
| scalarsPerPosition, dfOffset, clipRect, textRatio, |
| &fallbackTxt, &fallbackPos); |
| break; |
| } |
| } |
| if (fallbackTxt.count()) { |
| this->fallbackDrawPosText(cacheBlob, run, rt, clip, color, runPaint, viewMatrix, |
| fallbackTxt, fallbackPos, scalarsPerPosition, dfOffset, |
| clipRect); |
| } |
| |
| SkGlyphCache::AttachCache(cache); |
| } else if (SkDraw::ShouldDrawTextAsPaths(runPaint, viewMatrix)) { |
| cacheBlob->fRuns[run].fDrawAsPaths = true; |
| } else { |
| cacheBlob->setHasBitmap(); |
| SkGlyphCache* cache = this->setupCache(&cacheBlob->fRuns[run], runPaint, &viewMatrix, |
| false); |
| switch (it.positioning()) { |
| case SkTextBlob::kDefault_Positioning: |
| this->internalDrawBMPText(cacheBlob, run, cache, runPaint, color, viewMatrix, |
| (const char *)it.glyphs(), textLen, |
| x + offset.x(), y + offset.y(), clipRect); |
| break; |
| case SkTextBlob::kHorizontal_Positioning: |
| this->internalDrawBMPPosText(cacheBlob, run, cache, runPaint, color, viewMatrix, |
| (const char*)it.glyphs(), textLen, it.pos(), 1, |
| SkPoint::Make(x, y + offset.y()), clipRect); |
| break; |
| case SkTextBlob::kFull_Positioning: |
| this->internalDrawBMPPosText(cacheBlob, run, cache, runPaint, color, viewMatrix, |
| (const char*)it.glyphs(), textLen, it.pos(), 2, |
| SkPoint::Make(x, y), clipRect); |
| break; |
| } |
| SkGlyphCache::AttachCache(cache); |
| } |
| |
| if (drawFilter) { |
| // A draw filter may change the paint arbitrarily, so we must re-seed in this case. |
| runPaint = skPaint; |
| } |
| } |
| } |
| |
| inline void GrAtlasTextContext::initDistanceFieldPaint(GrAtlasTextBlob* blob, |
| SkPaint* skPaint, |
| SkScalar* textRatio, |
| const SkMatrix& viewMatrix) { |
| // getMaxScale doesn't support perspective, so neither do we at the moment |
| SkASSERT(!viewMatrix.hasPerspective()); |
| SkScalar maxScale = viewMatrix.getMaxScale(); |
| SkScalar textSize = skPaint->getTextSize(); |
| SkScalar scaledTextSize = textSize; |
| // if we have non-unity scale, we need to choose our base text size |
| // based on the SkPaint's text size multiplied by the max scale factor |
| // TODO: do we need to do this if we're scaling down (i.e. maxScale < 1)? |
| if (maxScale > 0 && !SkScalarNearlyEqual(maxScale, SK_Scalar1)) { |
| scaledTextSize *= maxScale; |
| } |
| |
| // We have three sizes of distance field text, and within each size 'bucket' there is a floor |
| // and ceiling. A scale outside of this range would require regenerating the distance fields |
| SkScalar dfMaskScaleFloor; |
| SkScalar dfMaskScaleCeil; |
| if (scaledTextSize <= kSmallDFFontLimit) { |
| dfMaskScaleFloor = kMinDFFontSize; |
| dfMaskScaleCeil = kSmallDFFontLimit; |
| *textRatio = textSize / kSmallDFFontSize; |
| skPaint->setTextSize(SkIntToScalar(kSmallDFFontSize)); |
| } else if (scaledTextSize <= kMediumDFFontLimit) { |
| dfMaskScaleFloor = kSmallDFFontLimit; |
| dfMaskScaleCeil = kMediumDFFontLimit; |
| *textRatio = textSize / kMediumDFFontSize; |
| skPaint->setTextSize(SkIntToScalar(kMediumDFFontSize)); |
| } else { |
| dfMaskScaleFloor = kMediumDFFontLimit; |
| dfMaskScaleCeil = kLargeDFFontLimit; |
| *textRatio = textSize / kLargeDFFontSize; |
| skPaint->setTextSize(SkIntToScalar(kLargeDFFontSize)); |
| } |
| |
| // Because there can be multiple runs in the blob, we want the overall maxMinScale, and |
| // minMaxScale to make regeneration decisions. Specifically, we want the maximum minimum scale |
| // we can tolerate before we'd drop to a lower mip size, and the minimum maximum scale we can |
| // tolerate before we'd have to move to a large mip size. When we actually test these values |
| // we look at the delta in scale between the new viewmatrix and the old viewmatrix, and test |
| // against these values to decide if we can reuse or not(ie, will a given scale change our mip |
| // level) |
| SkASSERT(dfMaskScaleFloor <= scaledTextSize && scaledTextSize <= dfMaskScaleCeil); |
| blob->fMaxMinScale = SkMaxScalar(dfMaskScaleFloor / scaledTextSize, blob->fMaxMinScale); |
| blob->fMinMaxScale = SkMinScalar(dfMaskScaleCeil / scaledTextSize, blob->fMinMaxScale); |
| |
| skPaint->setLCDRenderText(false); |
| skPaint->setAutohinted(false); |
| skPaint->setHinting(SkPaint::kNormal_Hinting); |
| skPaint->setSubpixelText(true); |
| } |
| |
| inline void GrAtlasTextContext::fallbackDrawPosText(GrAtlasTextBlob* blob, |
| int runIndex, |
| GrRenderTarget* rt, const GrClip& clip, |
| GrColor color, |
| const SkPaint& skPaint, |
| const SkMatrix& viewMatrix, |
| const SkTDArray<char>& fallbackTxt, |
| const SkTDArray<SkScalar>& fallbackPos, |
| int scalarsPerPosition, |
| const SkPoint& offset, |
| const SkIRect& clipRect) { |
| SkASSERT(fallbackTxt.count()); |
| blob->setHasBitmap(); |
| Run& run = blob->fRuns[runIndex]; |
| // Push back a new subrun to fill and set the override descriptor |
| run.push_back(); |
| run.fOverrideDescriptor.reset(new SkAutoDescriptor); |
| skPaint.getScalerContextDescriptor(run.fOverrideDescriptor, |
| fSurfaceProps, &viewMatrix, false); |
| SkGlyphCache* cache = SkGlyphCache::DetachCache(run.fTypeface, |
| run.fOverrideDescriptor->getDesc()); |
| this->internalDrawBMPPosText(blob, runIndex, cache, skPaint, color, viewMatrix, |
| fallbackTxt.begin(), fallbackTxt.count(), |
| fallbackPos.begin(), scalarsPerPosition, offset, clipRect); |
| SkGlyphCache::AttachCache(cache); |
| } |
| |
| inline GrAtlasTextBlob* |
| GrAtlasTextContext::setupDFBlob(int glyphCount, const SkPaint& origPaint, |
| const SkMatrix& viewMatrix, SkGlyphCache** cache, |
| SkPaint* dfPaint, SkScalar* textRatio) { |
| GrAtlasTextBlob* blob = fCache->createBlob(glyphCount, 1, kGrayTextVASize); |
| |
| *dfPaint = origPaint; |
| this->initDistanceFieldPaint(blob, dfPaint, textRatio, viewMatrix); |
| blob->fViewMatrix = viewMatrix; |
| Run& run = blob->fRuns[0]; |
| PerSubRunInfo& subRun = run.fSubRunInfo.back(); |
| subRun.fUseLCDText = origPaint.isLCDRenderText(); |
| subRun.fDrawAsDistanceFields = true; |
| |
| *cache = this->setupCache(&blob->fRuns[0], *dfPaint, nullptr, true); |
| return blob; |
| } |
| |
| inline GrAtlasTextBlob* |
| GrAtlasTextContext::createDrawTextBlob(GrRenderTarget* rt, const GrClip& clip, |
| const GrPaint& paint, const SkPaint& skPaint, |
| const SkMatrix& viewMatrix, |
| const char text[], size_t byteLength, |
| SkScalar x, SkScalar y, const SkIRect& regionClipBounds) { |
| int glyphCount = skPaint.countText(text, byteLength); |
| SkIRect clipRect; |
| clip.getConservativeBounds(rt->width(), rt->height(), &clipRect); |
| |
| GrAtlasTextBlob* blob; |
| if (this->canDrawAsDistanceFields(skPaint, viewMatrix)) { |
| SkPaint dfPaint; |
| SkScalar textRatio; |
| SkGlyphCache* cache; |
| blob = this->setupDFBlob(glyphCount, skPaint, viewMatrix, &cache, &dfPaint, &textRatio); |
| |
| SkTDArray<char> fallbackTxt; |
| SkTDArray<SkScalar> fallbackPos; |
| SkPoint offset; |
| this->internalDrawDFText(blob, 0, cache, dfPaint, paint.getColor(), viewMatrix, text, |
| byteLength, x, y, clipRect, textRatio, &fallbackTxt, &fallbackPos, |
| &offset, skPaint); |
| SkGlyphCache::AttachCache(cache); |
| if (fallbackTxt.count()) { |
| this->fallbackDrawPosText(blob, 0, rt, clip, paint.getColor(), skPaint, viewMatrix, |
| fallbackTxt, fallbackPos, 2, offset, clipRect); |
| } |
| } else { |
| blob = fCache->createBlob(glyphCount, 1, kGrayTextVASize); |
| blob->fViewMatrix = viewMatrix; |
| |
| SkGlyphCache* cache = this->setupCache(&blob->fRuns[0], skPaint, &viewMatrix, false); |
| this->internalDrawBMPText(blob, 0, cache, skPaint, paint.getColor(), viewMatrix, text, |
| byteLength, x, y, clipRect); |
| SkGlyphCache::AttachCache(cache); |
| } |
| return blob; |
| } |
| |
| inline GrAtlasTextBlob* |
| GrAtlasTextContext::createDrawPosTextBlob(GrRenderTarget* rt, const GrClip& clip, |
| const GrPaint& paint, const SkPaint& skPaint, |
| const SkMatrix& viewMatrix, |
| const char text[], size_t byteLength, |
| const SkScalar pos[], int scalarsPerPosition, |
| const SkPoint& offset, const SkIRect& regionClipBounds) { |
| int glyphCount = skPaint.countText(text, byteLength); |
| |
| SkIRect clipRect; |
| clip.getConservativeBounds(rt->width(), rt->height(), &clipRect); |
| |
| GrAtlasTextBlob* blob; |
| if (this->canDrawAsDistanceFields(skPaint, viewMatrix)) { |
| SkPaint dfPaint; |
| SkScalar textRatio; |
| SkGlyphCache* cache; |
| blob = this->setupDFBlob(glyphCount, skPaint, viewMatrix, &cache, &dfPaint, &textRatio); |
| |
| SkTDArray<char> fallbackTxt; |
| SkTDArray<SkScalar> fallbackPos; |
| this->internalDrawDFPosText(blob, 0, cache, dfPaint, paint.getColor(), viewMatrix, text, |
| byteLength, pos, scalarsPerPosition, offset, clipRect, |
| textRatio, &fallbackTxt, &fallbackPos); |
| SkGlyphCache::AttachCache(cache); |
| if (fallbackTxt.count()) { |
| this->fallbackDrawPosText(blob, 0, rt, clip, paint.getColor(), skPaint, viewMatrix, |
| fallbackTxt, fallbackPos, scalarsPerPosition, offset, |
| clipRect); |
| } |
| } else { |
| blob = fCache->createBlob(glyphCount, 1, kGrayTextVASize); |
| blob->fViewMatrix = viewMatrix; |
| SkGlyphCache* cache = this->setupCache(&blob->fRuns[0], skPaint, &viewMatrix, false); |
| this->internalDrawBMPPosText(blob, 0, cache, skPaint, paint.getColor(), viewMatrix, text, |
| byteLength, pos, scalarsPerPosition, offset, clipRect); |
| SkGlyphCache::AttachCache(cache); |
| } |
| return blob; |
| } |
| |
| void GrAtlasTextContext::onDrawText(GrRenderTarget* rt, |
| const GrClip& clip, |
| const GrPaint& paint, const SkPaint& skPaint, |
| const SkMatrix& viewMatrix, |
| const char text[], size_t byteLength, |
| SkScalar x, SkScalar y, const SkIRect& regionClipBounds) { |
| SkAutoTUnref<GrAtlasTextBlob> blob( |
| this->createDrawTextBlob(rt, clip, paint, skPaint, viewMatrix, |
| text, byteLength, x, y, regionClipBounds)); |
| this->flush(blob, rt, skPaint, paint, clip, regionClipBounds); |
| } |
| |
| void GrAtlasTextContext::onDrawPosText(GrRenderTarget* rt, |
| const GrClip& clip, |
| const GrPaint& paint, const SkPaint& skPaint, |
| const SkMatrix& viewMatrix, |
| const char text[], size_t byteLength, |
| const SkScalar pos[], int scalarsPerPosition, |
| const SkPoint& offset, const SkIRect& regionClipBounds) { |
| SkAutoTUnref<GrAtlasTextBlob> blob( |
| this->createDrawPosTextBlob(rt, clip, paint, skPaint, viewMatrix, |
| text, byteLength, |
| pos, scalarsPerPosition, |
| offset, regionClipBounds)); |
| |
| this->flush(blob, rt, skPaint, paint, clip, regionClipBounds); |
| } |
| |
| void GrAtlasTextContext::internalDrawBMPText(GrAtlasTextBlob* blob, int runIndex, |
| SkGlyphCache* cache, const SkPaint& skPaint, |
| GrColor color, |
| const SkMatrix& viewMatrix, |
| const char text[], size_t byteLength, |
| SkScalar x, SkScalar y, const SkIRect& clipRect) { |
| SkASSERT(byteLength == 0 || text != nullptr); |
| |
| // nothing to draw |
| if (text == nullptr || byteLength == 0) { |
| return; |
| } |
| |
| fCurrStrike = nullptr; |
| SkDrawCacheProc glyphCacheProc = skPaint.getDrawCacheProc(); |
| |
| // Get GrFontScaler from cache |
| GrFontScaler* fontScaler = GetGrFontScaler(cache); |
| |
| // transform our starting point |
| { |
| SkPoint loc; |
| viewMatrix.mapXY(x, y, &loc); |
| x = loc.fX; |
| y = loc.fY; |
| } |
| |
| // need to measure first |
| if (skPaint.getTextAlign() != SkPaint::kLeft_Align) { |
| SkVector stopVector; |
| MeasureText(cache, glyphCacheProc, text, byteLength, &stopVector); |
| |
| SkScalar stopX = stopVector.fX; |
| SkScalar stopY = stopVector.fY; |
| |
| if (skPaint.getTextAlign() == SkPaint::kCenter_Align) { |
| stopX = SkScalarHalf(stopX); |
| stopY = SkScalarHalf(stopY); |
| } |
| x -= stopX; |
| y -= stopY; |
| } |
| |
| const char* stop = text + byteLength; |
| |
| SkAutoKern autokern; |
| |
| SkFixed fxMask = ~0; |
| SkFixed fyMask = ~0; |
| SkScalar halfSampleX, halfSampleY; |
| if (cache->isSubpixel()) { |
| halfSampleX = halfSampleY = SkFixedToScalar(SkGlyph::kSubpixelRound); |
| SkAxisAlignment baseline = SkComputeAxisAlignmentForHText(viewMatrix); |
| if (kX_SkAxisAlignment == baseline) { |
| fyMask = 0; |
| halfSampleY = SK_ScalarHalf; |
| } else if (kY_SkAxisAlignment == baseline) { |
| fxMask = 0; |
| halfSampleX = SK_ScalarHalf; |
| } |
| } else { |
| halfSampleX = halfSampleY = SK_ScalarHalf; |
| } |
| |
| Sk48Dot16 fx = SkScalarTo48Dot16(x + halfSampleX); |
| Sk48Dot16 fy = SkScalarTo48Dot16(y + halfSampleY); |
| |
| while (text < stop) { |
| const SkGlyph& glyph = glyphCacheProc(cache, &text, fx & fxMask, fy & fyMask); |
| |
| fx += autokern.adjust(glyph); |
| |
| if (glyph.fWidth) { |
| this->bmpAppendGlyph(blob, |
| runIndex, |
| glyph, |
| Sk48Dot16FloorToInt(fx), |
| Sk48Dot16FloorToInt(fy), |
| color, |
| fontScaler, |
| clipRect); |
| } |
| |
| fx += glyph.fAdvanceX; |
| fy += glyph.fAdvanceY; |
| } |
| } |
| |
| void GrAtlasTextContext::internalDrawBMPPosText(GrAtlasTextBlob* blob, int runIndex, |
| SkGlyphCache* cache, const SkPaint& skPaint, |
| GrColor color, |
| const SkMatrix& viewMatrix, |
| const char text[], size_t byteLength, |
| const SkScalar pos[], int scalarsPerPosition, |
| const SkPoint& offset, const SkIRect& clipRect) { |
| SkASSERT(byteLength == 0 || text != nullptr); |
| SkASSERT(1 == scalarsPerPosition || 2 == scalarsPerPosition); |
| |
| // nothing to draw |
| if (text == nullptr || byteLength == 0) { |
| return; |
| } |
| |
| fCurrStrike = nullptr; |
| SkDrawCacheProc glyphCacheProc = skPaint.getDrawCacheProc(); |
| |
| // Get GrFontScaler from cache |
| GrFontScaler* fontScaler = GetGrFontScaler(cache); |
| |
| const char* stop = text + byteLength; |
| SkTextAlignProc alignProc(skPaint.getTextAlign()); |
| SkTextMapStateProc tmsProc(viewMatrix, offset, scalarsPerPosition); |
| |
| if (cache->isSubpixel()) { |
| // maybe we should skip the rounding if linearText is set |
| SkAxisAlignment baseline = SkComputeAxisAlignmentForHText(viewMatrix); |
| |
| SkFixed fxMask = ~0; |
| SkFixed fyMask = ~0; |
| SkScalar halfSampleX = SkFixedToScalar(SkGlyph::kSubpixelRound); |
| SkScalar halfSampleY = SkFixedToScalar(SkGlyph::kSubpixelRound); |
| if (kX_SkAxisAlignment == baseline) { |
| fyMask = 0; |
| halfSampleY = SK_ScalarHalf; |
| } else if (kY_SkAxisAlignment == baseline) { |
| fxMask = 0; |
| halfSampleX = SK_ScalarHalf; |
| } |
| |
| if (SkPaint::kLeft_Align == skPaint.getTextAlign()) { |
| while (text < stop) { |
| SkPoint tmsLoc; |
| tmsProc(pos, &tmsLoc); |
| Sk48Dot16 fx = SkScalarTo48Dot16(tmsLoc.fX + halfSampleX); |
| Sk48Dot16 fy = SkScalarTo48Dot16(tmsLoc.fY + halfSampleY); |
| |
| const SkGlyph& glyph = glyphCacheProc(cache, &text, |
| fx & fxMask, fy & fyMask); |
| |
| if (glyph.fWidth) { |
| this->bmpAppendGlyph(blob, |
| runIndex, |
| glyph, |
| Sk48Dot16FloorToInt(fx), |
| Sk48Dot16FloorToInt(fy), |
| color, |
| fontScaler, |
| clipRect); |
| } |
| pos += scalarsPerPosition; |
| } |
| } else { |
| while (text < stop) { |
| const char* currentText = text; |
| const SkGlyph& metricGlyph = glyphCacheProc(cache, &text, 0, 0); |
| |
| if (metricGlyph.fWidth) { |
| SkDEBUGCODE(SkFixed prevAdvX = metricGlyph.fAdvanceX;) |
| SkDEBUGCODE(SkFixed prevAdvY = metricGlyph.fAdvanceY;) |
| SkPoint tmsLoc; |
| tmsProc(pos, &tmsLoc); |
| SkPoint alignLoc; |
| alignProc(tmsLoc, metricGlyph, &alignLoc); |
| |
| Sk48Dot16 fx = SkScalarTo48Dot16(alignLoc.fX + halfSampleX); |
| Sk48Dot16 fy = SkScalarTo48Dot16(alignLoc.fY + halfSampleY); |
| |
| // have to call again, now that we've been "aligned" |
| const SkGlyph& glyph = glyphCacheProc(cache, ¤tText, |
| fx & fxMask, fy & fyMask); |
| // the assumption is that the metrics haven't changed |
| SkASSERT(prevAdvX == glyph.fAdvanceX); |
| SkASSERT(prevAdvY == glyph.fAdvanceY); |
| SkASSERT(glyph.fWidth); |
| |
| this->bmpAppendGlyph(blob, |
| runIndex, |
| glyph, |
| Sk48Dot16FloorToInt(fx), |
| Sk48Dot16FloorToInt(fy), |
| color, |
| fontScaler, |
| clipRect); |
| } |
| pos += scalarsPerPosition; |
| } |
| } |
| } else { // not subpixel |
| |
| if (SkPaint::kLeft_Align == skPaint.getTextAlign()) { |
| while (text < stop) { |
| // the last 2 parameters are ignored |
| const SkGlyph& glyph = glyphCacheProc(cache, &text, 0, 0); |
| |
| if (glyph.fWidth) { |
| SkPoint tmsLoc; |
| tmsProc(pos, &tmsLoc); |
| |
| Sk48Dot16 fx = SkScalarTo48Dot16(tmsLoc.fX + SK_ScalarHalf); //halfSampleX; |
| Sk48Dot16 fy = SkScalarTo48Dot16(tmsLoc.fY + SK_ScalarHalf); //halfSampleY; |
| this->bmpAppendGlyph(blob, |
| runIndex, |
| glyph, |
| Sk48Dot16FloorToInt(fx), |
| Sk48Dot16FloorToInt(fy), |
| color, |
| fontScaler, |
| clipRect); |
| } |
| pos += scalarsPerPosition; |
| } |
| } else { |
| while (text < stop) { |
| // the last 2 parameters are ignored |
| const SkGlyph& glyph = glyphCacheProc(cache, &text, 0, 0); |
| |
| if (glyph.fWidth) { |
| SkPoint tmsLoc; |
| tmsProc(pos, &tmsLoc); |
| |
| SkPoint alignLoc; |
| alignProc(tmsLoc, glyph, &alignLoc); |
| |
| Sk48Dot16 fx = SkScalarTo48Dot16(alignLoc.fX + SK_ScalarHalf); //halfSampleX; |
| Sk48Dot16 fy = SkScalarTo48Dot16(alignLoc.fY + SK_ScalarHalf); //halfSampleY; |
| this->bmpAppendGlyph(blob, |
| runIndex, |
| glyph, |
| Sk48Dot16FloorToInt(fx), |
| Sk48Dot16FloorToInt(fy), |
| color, |
| fontScaler, |
| clipRect); |
| } |
| pos += scalarsPerPosition; |
| } |
| } |
| } |
| } |
| |
| |
| void GrAtlasTextContext::internalDrawDFText(GrAtlasTextBlob* blob, int runIndex, |
| SkGlyphCache* cache, const SkPaint& skPaint, |
| GrColor color, |
| const SkMatrix& viewMatrix, |
| const char text[], size_t byteLength, |
| SkScalar x, SkScalar y, const SkIRect& clipRect, |
| SkScalar textRatio, |
| SkTDArray<char>* fallbackTxt, |
| SkTDArray<SkScalar>* fallbackPos, |
| SkPoint* offset, |
| const SkPaint& origPaint) { |
| SkASSERT(byteLength == 0 || text != nullptr); |
| |
| // nothing to draw |
| if (text == nullptr || byteLength == 0) { |
| return; |
| } |
| |
| SkDrawCacheProc glyphCacheProc = origPaint.getDrawCacheProc(); |
| SkAutoDescriptor desc; |
| origPaint.getScalerContextDescriptor(&desc, fSurfaceProps, nullptr, true); |
| SkGlyphCache* origPaintCache = SkGlyphCache::DetachCache(origPaint.getTypeface(), |
| desc.getDesc()); |
| |
| SkTArray<SkScalar> positions; |
| |
| const char* textPtr = text; |
| SkFixed stopX = 0; |
| SkFixed stopY = 0; |
| SkFixed origin = 0; |
| switch (origPaint.getTextAlign()) { |
| case SkPaint::kRight_Align: origin = SK_Fixed1; break; |
| case SkPaint::kCenter_Align: origin = SK_FixedHalf; break; |
| case SkPaint::kLeft_Align: origin = 0; break; |
| } |
| |
| SkAutoKern autokern; |
| const char* stop = text + byteLength; |
| while (textPtr < stop) { |
| // don't need x, y here, since all subpixel variants will have the |
| // same advance |
| const SkGlyph& glyph = glyphCacheProc(origPaintCache, &textPtr, 0, 0); |
| |
| SkFixed width = glyph.fAdvanceX + autokern.adjust(glyph); |
| positions.push_back(SkFixedToScalar(stopX + SkFixedMul(origin, width))); |
| |
| SkFixed height = glyph.fAdvanceY; |
| positions.push_back(SkFixedToScalar(stopY + SkFixedMul(origin, height))); |
| |
| stopX += width; |
| stopY += height; |
| } |
| SkASSERT(textPtr == stop); |
| |
| // now adjust starting point depending on alignment |
| SkScalar alignX = SkFixedToScalar(stopX); |
| SkScalar alignY = SkFixedToScalar(stopY); |
| if (origPaint.getTextAlign() == SkPaint::kCenter_Align) { |
| alignX = SkScalarHalf(alignX); |
| alignY = SkScalarHalf(alignY); |
| } else if (origPaint.getTextAlign() == SkPaint::kLeft_Align) { |
| alignX = 0; |
| alignY = 0; |
| } |
| x -= alignX; |
| y -= alignY; |
| *offset = SkPoint::Make(x, y); |
| |
| this->internalDrawDFPosText(blob, runIndex, cache, skPaint, color, viewMatrix, text, byteLength, |
| positions.begin(), 2, *offset, clipRect, textRatio, fallbackTxt, |
| fallbackPos); |
| SkGlyphCache::AttachCache(origPaintCache); |
| } |
| |
| void GrAtlasTextContext::internalDrawDFPosText(GrAtlasTextBlob* blob, int runIndex, |
| SkGlyphCache* cache, const SkPaint& skPaint, |
| GrColor color, |
| const SkMatrix& viewMatrix, |
| const char text[], size_t byteLength, |
| const SkScalar pos[], int scalarsPerPosition, |
| const SkPoint& offset, const SkIRect& clipRect, |
| SkScalar textRatio, |
| SkTDArray<char>* fallbackTxt, |
| SkTDArray<SkScalar>* fallbackPos) { |
| |
| SkASSERT(byteLength == 0 || text != nullptr); |
| SkASSERT(1 == scalarsPerPosition || 2 == scalarsPerPosition); |
| |
| // nothing to draw |
| if (text == nullptr || byteLength == 0) { |
| return; |
| } |
| |
| fCurrStrike = nullptr; |
| |
| SkDrawCacheProc glyphCacheProc = skPaint.getDrawCacheProc(); |
| GrFontScaler* fontScaler = GetGrFontScaler(cache); |
| |
| const char* stop = text + byteLength; |
| |
| if (SkPaint::kLeft_Align == skPaint.getTextAlign()) { |
| while (text < stop) { |
| const char* lastText = text; |
| // the last 2 parameters are ignored |
| const SkGlyph& glyph = glyphCacheProc(cache, &text, 0, 0); |
| |
| if (glyph.fWidth) { |
| SkScalar x = offset.x() + pos[0]; |
| SkScalar y = offset.y() + (2 == scalarsPerPosition ? pos[1] : 0); |
| |
| if (!this->dfAppendGlyph(blob, |
| runIndex, |
| glyph, |
| x, y, color, fontScaler, clipRect, |
| textRatio, viewMatrix)) { |
| // couldn't append, send to fallback |
| fallbackTxt->append(SkToInt(text-lastText), lastText); |
| *fallbackPos->append() = pos[0]; |
| if (2 == scalarsPerPosition) { |
| *fallbackPos->append() = pos[1]; |
| } |
| } |
| } |
| pos += scalarsPerPosition; |
| } |
| } else { |
| SkScalar alignMul = SkPaint::kCenter_Align == skPaint.getTextAlign() ? SK_ScalarHalf |
| : SK_Scalar1; |
| while (text < stop) { |
| const char* lastText = text; |
| // the last 2 parameters are ignored |
| const SkGlyph& glyph = glyphCacheProc(cache, &text, 0, 0); |
| |
| if (glyph.fWidth) { |
| SkScalar x = offset.x() + pos[0]; |
| SkScalar y = offset.y() + (2 == scalarsPerPosition ? pos[1] : 0); |
| |
| SkScalar advanceX = SkFixedToScalar(glyph.fAdvanceX) * alignMul * textRatio; |
| SkScalar advanceY = SkFixedToScalar(glyph.fAdvanceY) * alignMul * textRatio; |
| |
| if (!this->dfAppendGlyph(blob, |
| runIndex, |
| glyph, |
| x - advanceX, y - advanceY, color, |
| fontScaler, |
| clipRect, |
| textRatio, |
| viewMatrix)) { |
| // couldn't append, send to fallback |
| fallbackTxt->append(SkToInt(text-lastText), lastText); |
| *fallbackPos->append() = pos[0]; |
| if (2 == scalarsPerPosition) { |
| *fallbackPos->append() = pos[1]; |
| } |
| } |
| } |
| pos += scalarsPerPosition; |
| } |
| } |
| } |
| |
| void GrAtlasTextContext::bmpAppendGlyph(GrAtlasTextBlob* blob, int runIndex, |
| const SkGlyph& skGlyph, |
| int vx, int vy, GrColor color, GrFontScaler* scaler, |
| const SkIRect& clipRect) { |
| Run& run = blob->fRuns[runIndex]; |
| if (!fCurrStrike) { |
| fCurrStrike = fContext->getBatchFontCache()->getStrike(scaler); |
| } |
| |
| GrGlyph::PackedID id = GrGlyph::Pack(skGlyph.getGlyphID(), |
| skGlyph.getSubXFixed(), |
| skGlyph.getSubYFixed(), |
| GrGlyph::kCoverage_MaskStyle); |
| GrGlyph* glyph = fCurrStrike->getGlyph(skGlyph, id, scaler); |
| if (!glyph) { |
| return; |
| } |
| |
| int x = vx + glyph->fBounds.fLeft; |
| int y = vy + glyph->fBounds.fTop; |
| |
| // keep them as ints until we've done the clip-test |
| int width = glyph->fBounds.width(); |
| int height = glyph->fBounds.height(); |
| |
| #if 0 |
| // Not checking the clip bounds might introduce a performance regression. However, its not |
| // clear if this is still true today with the larger tiles we use in Chrome. For repositionable |
| // blobs, we want to make sure we have all of the glyphs, so clipping them out is not ideal. |
| // We could store the cliprect in the key, but then we'd lose the ability to do integer scrolls |
| // TODO verify this |
| // check if we clipped out |
| if (clipRect.quickReject(x, y, x + width, y + height)) { |
| return; |
| } |
| #endif |
| |
| // If the glyph is too large we fall back to paths |
| if (glyph->fTooLargeForAtlas) { |
| this->appendGlyphPath(blob, glyph, scaler, skGlyph, SkIntToScalar(vx), SkIntToScalar(vy)); |
| return; |
| } |
| |
| GrMaskFormat format = glyph->fMaskFormat; |
| |
| PerSubRunInfo* subRun = &run.fSubRunInfo.back(); |
| if (run.fInitialized && subRun->fMaskFormat != format) { |
| subRun = &run.push_back(); |
| subRun->fStrike.reset(SkRef(fCurrStrike)); |
| } else if (!run.fInitialized) { |
| subRun->fStrike.reset(SkRef(fCurrStrike)); |
| } |
| |
| run.fInitialized = true; |
| |
| size_t vertexStride = get_vertex_stride(format); |
| |
| SkRect r; |
| r.fLeft = SkIntToScalar(x); |
| r.fTop = SkIntToScalar(y); |
| r.fRight = r.fLeft + SkIntToScalar(width); |
| r.fBottom = r.fTop + SkIntToScalar(height); |
| subRun->fMaskFormat = format; |
| this->appendGlyphCommon(blob, &run, subRun, r, color, vertexStride, kA8_GrMaskFormat == format, |
| glyph); |
| } |
| |
| bool GrAtlasTextContext::dfAppendGlyph(GrAtlasTextBlob* blob, int runIndex, |
| const SkGlyph& skGlyph, |
| SkScalar sx, SkScalar sy, GrColor color, |
| GrFontScaler* scaler, |
| const SkIRect& clipRect, |
| SkScalar textRatio, const SkMatrix& viewMatrix) { |
| Run& run = blob->fRuns[runIndex]; |
| if (!fCurrStrike) { |
| fCurrStrike = fContext->getBatchFontCache()->getStrike(scaler); |
| } |
| |
| GrGlyph::PackedID id = GrGlyph::Pack(skGlyph.getGlyphID(), |
| skGlyph.getSubXFixed(), |
| skGlyph.getSubYFixed(), |
| GrGlyph::kDistance_MaskStyle); |
| GrGlyph* glyph = fCurrStrike->getGlyph(skGlyph, id, scaler); |
| if (!glyph) { |
| return true; |
| } |
| |
| // fallback to color glyph support |
| if (kA8_GrMaskFormat != glyph->fMaskFormat) { |
| return false; |
| } |
| |
| SkScalar dx = SkIntToScalar(glyph->fBounds.fLeft + SK_DistanceFieldInset); |
| SkScalar dy = SkIntToScalar(glyph->fBounds.fTop + SK_DistanceFieldInset); |
| SkScalar width = SkIntToScalar(glyph->fBounds.width() - 2 * SK_DistanceFieldInset); |
| SkScalar height = SkIntToScalar(glyph->fBounds.height() - 2 * SK_DistanceFieldInset); |
| |
| SkScalar scale = textRatio; |
| dx *= scale; |
| dy *= scale; |
| width *= scale; |
| height *= scale; |
| sx += dx; |
| sy += dy; |
| SkRect glyphRect = SkRect::MakeXYWH(sx, sy, width, height); |
| |
| #if 0 |
| // check if we clipped out |
| SkRect dstRect; |
| viewMatrix.mapRect(&dstRect, glyphRect); |
| if (clipRect.quickReject(SkScalarTruncToInt(dstRect.left()), |
| SkScalarTruncToInt(dstRect.top()), |
| SkScalarTruncToInt(dstRect.right()), |
| SkScalarTruncToInt(dstRect.bottom()))) { |
| return true; |
| } |
| #endif |
| |
| // TODO combine with the above |
| // If the glyph is too large we fall back to paths |
| if (glyph->fTooLargeForAtlas) { |
| this->appendGlyphPath(blob, glyph, scaler, skGlyph, sx - dx, sy - dy, scale, true); |
| return true; |
| } |
| |
| PerSubRunInfo* subRun = &run.fSubRunInfo.back(); |
| if (!run.fInitialized) { |
| subRun->fStrike.reset(SkRef(fCurrStrike)); |
| } |
| run.fInitialized = true; |
| SkASSERT(glyph->fMaskFormat == kA8_GrMaskFormat); |
| subRun->fMaskFormat = kA8_GrMaskFormat; |
| |
| size_t vertexStride = get_vertex_stride_df(kA8_GrMaskFormat, subRun->fUseLCDText); |
| |
| bool useColorVerts = !subRun->fUseLCDText; |
| this->appendGlyphCommon(blob, &run, subRun, glyphRect, color, vertexStride, useColorVerts, |
| glyph); |
| return true; |
| } |
| |
| inline void GrAtlasTextContext::appendGlyphPath(GrAtlasTextBlob* blob, GrGlyph* glyph, |
| GrFontScaler* scaler, const SkGlyph& skGlyph, |
| SkScalar x, SkScalar y, SkScalar scale, |
| bool applyVM) { |
| if (nullptr == glyph->fPath) { |
| const SkPath* glyphPath = scaler->getGlyphPath(skGlyph); |
| if (!glyphPath) { |
| return; |
| } |
| |
| glyph->fPath = new SkPath(*glyphPath); |
| } |
| blob->fBigGlyphs.push_back(GrAtlasTextBlob::BigGlyph(*glyph->fPath, x, y, scale, applyVM)); |
| } |
| |
| inline void GrAtlasTextContext::appendGlyphCommon(GrAtlasTextBlob* blob, Run* run, |
| Run::SubRunInfo* subRun, |
| const SkRect& positions, GrColor color, |
| size_t vertexStride, bool useVertexColor, |
| GrGlyph* glyph) { |
| blob->fGlyphs[subRun->fGlyphEndIndex] = glyph; |
| run->fVertexBounds.joinNonEmptyArg(positions); |
| run->fColor = color; |
| |
| intptr_t vertex = reinterpret_cast<intptr_t>(blob->fVertices + subRun->fVertexEndIndex); |
| |
| if (useVertexColor) { |
| // V0 |
| SkPoint* position = reinterpret_cast<SkPoint*>(vertex); |
| position->set(positions.fLeft, positions.fTop); |
| SkColor* colorPtr = reinterpret_cast<SkColor*>(vertex + sizeof(SkPoint)); |
| *colorPtr = color; |
| vertex += vertexStride; |
| |
| // V1 |
| position = reinterpret_cast<SkPoint*>(vertex); |
| position->set(positions.fLeft, positions.fBottom); |
| colorPtr = reinterpret_cast<SkColor*>(vertex + sizeof(SkPoint)); |
| *colorPtr = color; |
| vertex += vertexStride; |
| |
| // V2 |
| position = reinterpret_cast<SkPoint*>(vertex); |
| position->set(positions.fRight, positions.fBottom); |
| colorPtr = reinterpret_cast<SkColor*>(vertex + sizeof(SkPoint)); |
| *colorPtr = color; |
| vertex += vertexStride; |
| |
| // V3 |
| position = reinterpret_cast<SkPoint*>(vertex); |
| position->set(positions.fRight, positions.fTop); |
| colorPtr = reinterpret_cast<SkColor*>(vertex + sizeof(SkPoint)); |
| *colorPtr = color; |
| } else { |
| // V0 |
| SkPoint* position = reinterpret_cast<SkPoint*>(vertex); |
| position->set(positions.fLeft, positions.fTop); |
| vertex += vertexStride; |
| |
| // V1 |
| position = reinterpret_cast<SkPoint*>(vertex); |
| position->set(positions.fLeft, positions.fBottom); |
| vertex += vertexStride; |
| |
| // V2 |
| position = reinterpret_cast<SkPoint*>(vertex); |
| position->set(positions.fRight, positions.fBottom); |
| vertex += vertexStride; |
| |
| // V3 |
| position = reinterpret_cast<SkPoint*>(vertex); |
| position->set(positions.fRight, positions.fTop); |
| } |
| |
| subRun->fGlyphEndIndex++; |
| subRun->fVertexEndIndex += vertexStride * kVerticesPerGlyph; |
| } |
| |
| class TextBatch : public GrVertexBatch { |
| public: |
| typedef GrAtlasTextContext::DistanceAdjustTable DistanceAdjustTable; |
| typedef GrAtlasTextBlob Blob; |
| typedef Blob::Run Run; |
| typedef Run::SubRunInfo TextInfo; |
| struct Geometry { |
| Blob* fBlob; |
| int fRun; |
| int fSubRun; |
| GrColor fColor; |
| SkScalar fTransX; |
| SkScalar fTransY; |
| }; |
| |
| static TextBatch* CreateBitmap(GrMaskFormat maskFormat, int glyphCount, |
| GrBatchFontCache* fontCache) { |
| TextBatch* batch = new TextBatch; |
| |
| batch->initClassID<TextBatch>(); |
| batch->fFontCache = fontCache; |
| switch (maskFormat) { |
| case kA8_GrMaskFormat: |
| batch->fMaskType = kGrayscaleCoverageMask_MaskType; |
| break; |
| case kA565_GrMaskFormat: |
| batch->fMaskType = kLCDCoverageMask_MaskType; |
| break; |
| case kARGB_GrMaskFormat: |
| batch->fMaskType = kColorBitmapMask_MaskType; |
| break; |
| } |
| batch->fBatch.fNumGlyphs = glyphCount; |
| batch->fGeoCount = 1; |
| batch->fFilteredColor = 0; |
| batch->fFontCache = fontCache; |
| batch->fUseBGR = false; |
| return batch; |
| } |
| |
| static TextBatch* CreateDistanceField(int glyphCount, GrBatchFontCache* fontCache, |
| DistanceAdjustTable* distanceAdjustTable, |
| SkColor filteredColor, bool isLCD, |
| bool useBGR) { |
| TextBatch* batch = new TextBatch; |
| batch->initClassID<TextBatch>(); |
| batch->fFontCache = fontCache; |
| batch->fMaskType = isLCD ? kLCDDistanceField_MaskType : kGrayscaleDistanceField_MaskType; |
| batch->fDistanceAdjustTable.reset(SkRef(distanceAdjustTable)); |
| batch->fFilteredColor = filteredColor; |
| batch->fUseBGR = useBGR; |
| batch->fBatch.fNumGlyphs = glyphCount; |
| batch->fGeoCount = 1; |
| return batch; |
| } |
| |
| // to avoid even the initial copy of the struct, we have a getter for the first item which |
| // is used to seed the batch with its initial geometry. After seeding, the client should call |
| // init() so the Batch can initialize itself |
| Geometry& geometry() { return fGeoData[0]; } |
| |
| void init() { |
| const Geometry& geo = fGeoData[0]; |
| fBatch.fColor = geo.fColor; |
| fBatch.fViewMatrix = geo.fBlob->fViewMatrix; |
| |
| // We don't yet position distance field text on the cpu, so we have to map the vertex bounds |
| // into device space |
| const Run& run = geo.fBlob->fRuns[geo.fRun]; |
| if (run.fSubRunInfo[geo.fSubRun].fDrawAsDistanceFields) { |
| SkRect bounds = run.fVertexBounds; |
| fBatch.fViewMatrix.mapRect(&bounds); |
| this->setBounds(bounds); |
| } else { |
| this->setBounds(run.fVertexBounds); |
| } |
| } |
| |
| const char* name() const override { return "TextBatch"; } |
| |
| void getInvariantOutputColor(GrInitInvariantOutput* out) const override { |
| if (kColorBitmapMask_MaskType == fMaskType) { |
| out->setUnknownFourComponents(); |
| } else { |
| out->setKnownFourComponents(fBatch.fColor); |
| } |
| } |
| |
| void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override { |
| switch (fMaskType) { |
| case kGrayscaleDistanceField_MaskType: |
| case kGrayscaleCoverageMask_MaskType: |
| out->setUnknownSingleComponent(); |
| break; |
| case kLCDCoverageMask_MaskType: |
| case kLCDDistanceField_MaskType: |
| out->setUnknownOpaqueFourComponents(); |
| out->setUsingLCDCoverage(); |
| break; |
| case kColorBitmapMask_MaskType: |
| out->setKnownSingleComponent(0xff); |
| } |
| } |
| |
| private: |
| void initBatchTracker(const GrPipelineOptimizations& opt) override { |
| // Handle any color overrides |
| if (!opt.readsColor()) { |
| fGeoData[0].fColor = GrColor_ILLEGAL; |
| } |
| opt.getOverrideColorIfSet(&fGeoData[0].fColor); |
| |
| // setup batch properties |
| fBatch.fColorIgnored = !opt.readsColor(); |
| fBatch.fColor = fGeoData[0].fColor; |
| fBatch.fUsesLocalCoords = opt.readsLocalCoords(); |
| fBatch.fCoverageIgnored = !opt.readsCoverage(); |
| } |
| |
| struct FlushInfo { |
| SkAutoTUnref<const GrVertexBuffer> fVertexBuffer; |
| SkAutoTUnref<const GrIndexBuffer> fIndexBuffer; |
| int fGlyphsToFlush; |
| int fVertexOffset; |
| }; |
| |
| void onPrepareDraws(Target* target) override { |
| // if we have RGB, then we won't have any SkShaders so no need to use a localmatrix. |
| // TODO actually only invert if we don't have RGBA |
| SkMatrix localMatrix; |
| if (this->usesLocalCoords() && !this->viewMatrix().invert(&localMatrix)) { |
| SkDebugf("Cannot invert viewmatrix\n"); |
| return; |
| } |
| |
| GrTexture* texture = fFontCache->getTexture(this->maskFormat()); |
| if (!texture) { |
| SkDebugf("Could not allocate backing texture for atlas\n"); |
| return; |
| } |
| |
| bool usesDistanceFields = this->usesDistanceFields(); |
| GrMaskFormat maskFormat = this->maskFormat(); |
| bool isLCD = this->isLCD(); |
| |
| SkAutoTUnref<const GrGeometryProcessor> gp; |
| if (usesDistanceFields) { |
| gp.reset(this->setupDfProcessor(this->viewMatrix(), fFilteredColor, this->color(), |
| texture)); |
| } else { |
| GrTextureParams params(SkShader::kClamp_TileMode, GrTextureParams::kNone_FilterMode); |
| gp.reset(GrBitmapTextGeoProc::Create(this->color(), |
| texture, |
| params, |
| maskFormat, |
| localMatrix, |
| this->usesLocalCoords())); |
| } |
| |
| FlushInfo flushInfo; |
| flushInfo.fGlyphsToFlush = 0; |
| size_t vertexStride = gp->getVertexStride(); |
| SkASSERT(vertexStride == (usesDistanceFields ? |
| get_vertex_stride_df(maskFormat, isLCD) : |
| get_vertex_stride(maskFormat))); |
| |
| target->initDraw(gp, this->pipeline()); |
| |
| int glyphCount = this->numGlyphs(); |
| const GrVertexBuffer* vertexBuffer; |
| |
| void* vertices = target->makeVertexSpace(vertexStride, |
| glyphCount * kVerticesPerGlyph, |
| &vertexBuffer, |
| &flushInfo.fVertexOffset); |
| flushInfo.fVertexBuffer.reset(SkRef(vertexBuffer)); |
| flushInfo.fIndexBuffer.reset(target->resourceProvider()->refQuadIndexBuffer()); |
| if (!vertices || !flushInfo.fVertexBuffer) { |
| SkDebugf("Could not allocate vertices\n"); |
| return; |
| } |
| |
| unsigned char* currVertex = reinterpret_cast<unsigned char*>(vertices); |
| |
| // We cache some values to avoid going to the glyphcache for the same fontScaler twice |
| // in a row |
| const SkDescriptor* desc = nullptr; |
| SkGlyphCache* cache = nullptr; |
| GrFontScaler* scaler = nullptr; |
| SkTypeface* typeface = nullptr; |
| |
| for (int i = 0; i < fGeoCount; i++) { |
| Geometry& args = fGeoData[i]; |
| Blob* blob = args.fBlob; |
| Run& run = blob->fRuns[args.fRun]; |
| TextInfo& info = run.fSubRunInfo[args.fSubRun]; |
| |
| uint64_t currentAtlasGen = fFontCache->atlasGeneration(maskFormat); |
| bool regenerateTextureCoords = info.fAtlasGeneration != currentAtlasGen || |
| info.fStrike->isAbandoned(); |
| bool regenerateColors; |
| if (usesDistanceFields) { |
| regenerateColors = !isLCD && run.fColor != args.fColor; |
| } else { |
| regenerateColors = kA8_GrMaskFormat == maskFormat && run.fColor != args.fColor; |
| } |
| bool regeneratePositions = args.fTransX != 0.f || args.fTransY != 0.f; |
| int glyphCount = info.fGlyphEndIndex - info.fGlyphStartIndex; |
| |
| // We regenerate both texture coords and colors in the blob itself, and update the |
| // atlas generation. If we don't end up purging any unused plots, we can avoid |
| // regenerating the coords. We could take a finer grained approach to updating texture |
| // coords but its not clear if the extra bookkeeping would offset any gains. |
| // To avoid looping over the glyphs twice, we do one loop and conditionally update color |
| // or coords as needed. One final note, if we have to break a run for an atlas eviction |
| // then we can't really trust the atlas has all of the correct data. Atlas evictions |
| // should be pretty rare, so we just always regenerate in those cases |
| if (regenerateTextureCoords || regenerateColors || regeneratePositions) { |
| // first regenerate texture coordinates / colors if need be |
| bool brokenRun = false; |
| |
| // Because the GrBatchFontCache may evict the strike a blob depends on using for |
| // generating its texture coords, we have to track whether or not the strike has |
| // been abandoned. If it hasn't been abandoned, then we can use the GrGlyph*s as is |
| // otherwise we have to get the new strike, and use that to get the correct glyphs. |
| // Because we do not have the packed ids, and thus can't look up our glyphs in the |
| // new strike, we instead keep our ref to the old strike and use the packed ids from |
| // it. These ids will still be valid as long as we hold the ref. When we are done |
| // updating our cache of the GrGlyph*s, we drop our ref on the old strike |
| bool regenerateGlyphs = false; |
| GrBatchTextStrike* strike = nullptr; |
| if (regenerateTextureCoords) { |
| info.fBulkUseToken.reset(); |
| |
| // We can reuse if we have a valid strike and our descriptors / typeface are the |
| // same |
| const SkDescriptor* newDesc = run.fOverrideDescriptor ? |
| run.fOverrideDescriptor->getDesc() : |
| run.fDescriptor.getDesc(); |
| if (!cache || !SkTypeface::Equal(typeface, run.fTypeface) || |
| !(desc->equals(*newDesc))) { |
| if (cache) { |
| SkGlyphCache::AttachCache(cache); |
| } |
| desc = newDesc; |
| cache = SkGlyphCache::DetachCache(run.fTypeface, desc); |
| scaler = GrTextContext::GetGrFontScaler(cache); |
| strike = info.fStrike; |
| typeface = run.fTypeface; |
| } |
| |
| if (info.fStrike->isAbandoned()) { |
| regenerateGlyphs = true; |
| strike = fFontCache->getStrike(scaler); |
| } else { |
| strike = info.fStrike; |
| } |
| } |
| |
| for (int glyphIdx = 0; glyphIdx < glyphCount; glyphIdx++) { |
| if (regenerateTextureCoords) { |
| size_t glyphOffset = glyphIdx + info.fGlyphStartIndex; |
| |
| GrGlyph* glyph = blob->fGlyphs[glyphOffset]; |
| GrGlyph::PackedID id = glyph->fPackedID; |
| const SkGlyph& skGlyph = scaler->grToSkGlyph(id); |
| if (regenerateGlyphs) { |
| // Get the id from the old glyph, and use the new strike to lookup |
| // the glyph. |
| blob->fGlyphs[glyphOffset] = strike->getGlyph(skGlyph, id, maskFormat, |
| scaler); |
| } |
| glyph = blob->fGlyphs[glyphOffset]; |
| SkASSERT(glyph); |
| SkASSERT(id == glyph->fPackedID); |
| // We want to be able to assert this but cannot for testing purposes. |
| // once skbug:4143 has landed we can revist this assert |
| //SkASSERT(glyph->fMaskFormat == this->maskFormat()); |
| |
| if (!fFontCache->hasGlyph(glyph) && |
| !strike->addGlyphToAtlas(target, glyph, scaler, skGlyph, maskFormat)) { |
| this->flush(target, &flushInfo); |
| target->initDraw(gp, this->pipeline()); |
| brokenRun = glyphIdx > 0; |
| |
| SkDEBUGCODE(bool success =) strike->addGlyphToAtlas(target, |
| glyph, |
| scaler, |
| skGlyph, |
| maskFormat); |
| SkASSERT(success); |
| } |
| fFontCache->addGlyphToBulkAndSetUseToken(&info.fBulkUseToken, glyph, |
| target->currentToken()); |
| |
| // Texture coords are the last vertex attribute so we get a pointer to the |
| // first one and then map with stride in regenerateTextureCoords |
| intptr_t vertex = reinterpret_cast<intptr_t>(blob->fVertices); |
| vertex += info.fVertexStartIndex; |
| vertex += vertexStride * glyphIdx * kVerticesPerGlyph; |
| vertex += vertexStride - sizeof(SkIPoint16); |
| |
| this->regenerateTextureCoords(glyph, vertex, vertexStride); |
| } |
| |
| if (regenerateColors) { |
| intptr_t vertex = reinterpret_cast<intptr_t>(blob->fVertices); |
| vertex += info.fVertexStartIndex; |
| vertex += vertexStride * glyphIdx * kVerticesPerGlyph + sizeof(SkPoint); |
| this->regenerateColors(vertex, vertexStride, args.fColor); |
| } |
| |
| if (regeneratePositions) { |
| intptr_t vertex = reinterpret_cast<intptr_t>(blob->fVertices); |
| vertex += info.fVertexStartIndex; |
| vertex += vertexStride * glyphIdx * kVerticesPerGlyph; |
| SkScalar transX = args.fTransX; |
| SkScalar transY = args.fTransY; |
| this->regeneratePositions(vertex, vertexStride, transX, transY); |
| } |
| flushInfo.fGlyphsToFlush++; |
| } |
| |
| // We my have changed the color so update it here |
| run.fColor = args.fColor; |
| if (regenerateTextureCoords) { |
| if (regenerateGlyphs) { |
| info.fStrike.reset(SkRef(strike)); |
| } |
| info.fAtlasGeneration = brokenRun ? GrBatchAtlas::kInvalidAtlasGeneration : |
| fFontCache->atlasGeneration(maskFormat); |
| } |
| } else { |
| flushInfo.fGlyphsToFlush += glyphCount; |
| |
| // set use tokens for all of the glyphs in our subrun. This is only valid if we |
| // have a valid atlas generation |
| fFontCache->setUseTokenBulk(info.fBulkUseToken, target->currentToken(), maskFormat); |
| } |
| |
| // now copy all vertices |
| size_t byteCount = info.fVertexEndIndex - info.fVertexStartIndex; |
| memcpy(currVertex, blob->fVertices + info.fVertexStartIndex, byteCount); |
| |
| currVertex += byteCount; |
| } |
| // Make sure to attach the last cache if applicable |
| if (cache) { |
| SkGlyphCache::AttachCache(cache); |
| } |
| this->flush(target, &flushInfo); |
| } |
| |
| TextBatch() {} // initialized in factory functions. |
| |
| ~TextBatch() { |
| for (int i = 0; i < fGeoCount; i++) { |
| fGeoData[i].fBlob->unref(); |
| } |
| } |
| |
| GrMaskFormat maskFormat() const { |
| switch (fMaskType) { |
| case kLCDCoverageMask_MaskType: |
| return kA565_GrMaskFormat; |
| case kColorBitmapMask_MaskType: |
| return kARGB_GrMaskFormat; |
| case kGrayscaleCoverageMask_MaskType: |
| case kGrayscaleDistanceField_MaskType: |
| case kLCDDistanceField_MaskType: |
| return kA8_GrMaskFormat; |
| } |
| return kA8_GrMaskFormat; // suppress warning |
| } |
| |
| bool usesDistanceFields() const { |
| return kGrayscaleDistanceField_MaskType == fMaskType || |
| kLCDDistanceField_MaskType == fMaskType; |
| } |
| |
| bool isLCD() const { |
| return kLCDCoverageMask_MaskType == fMaskType || |
| kLCDDistanceField_MaskType == fMaskType; |
| } |
| |
| void regenerateTextureCoords(GrGlyph* glyph, intptr_t vertex, size_t vertexStride) { |
| int width = glyph->fBounds.width(); |
| int height = glyph->fBounds.height(); |
| |
| int u0, v0, u1, v1; |
| if (this->usesDistanceFields()) { |
| u0 = glyph->fAtlasLocation.fX + SK_DistanceFieldInset; |
| v0 = glyph->fAtlasLocation.fY + SK_DistanceFieldInset; |
| u1 = u0 + width - 2 * SK_DistanceFieldInset; |
| v1 = v0 + height - 2 * SK_DistanceFieldInset; |
| } else { |
| u0 = glyph->fAtlasLocation.fX; |
| v0 = glyph->fAtlasLocation.fY; |
| u1 = u0 + width; |
| v1 = v0 + height; |
| } |
| |
| SkIPoint16* textureCoords; |
| // V0 |
| textureCoords = reinterpret_cast<SkIPoint16*>(vertex); |
| textureCoords->set(u0, v0); |
| vertex += vertexStride; |
| |
| // V1 |
| textureCoords = reinterpret_cast<SkIPoint16*>(vertex); |
| textureCoords->set(u0, v1); |
| vertex += vertexStride; |
| |
| // V2 |
| textureCoords = reinterpret_cast<SkIPoint16*>(vertex); |
| textureCoords->set(u1, v1); |
| vertex += vertexStride; |
| |
| // V3 |
| textureCoords = reinterpret_cast<SkIPoint16*>(vertex); |
| textureCoords->set(u1, v0); |
| } |
| |
| void regenerateColors(intptr_t vertex, size_t vertexStride, GrColor color) { |
| for (int i = 0; i < kVerticesPerGlyph; i++) { |
| SkColor* vcolor = reinterpret_cast<SkColor*>(vertex); |
| *vcolor = color; |
| vertex += vertexStride; |
| } |
| } |
| |
| void regeneratePositions(intptr_t vertex, size_t vertexStride, SkScalar transX, |
| SkScalar transY) { |
| for (int i = 0; i < kVerticesPerGlyph; i++) { |
| SkPoint* point = reinterpret_cast<SkPoint*>(vertex); |
| point->fX += transX; |
| point->fY += transY; |
| vertex += vertexStride; |
| } |
| } |
| |
| void flush(GrVertexBatch::Target* target, FlushInfo* flushInfo) { |
| GrVertices vertices; |
| int maxGlyphsPerDraw = flushInfo->fIndexBuffer->maxQuads(); |
| vertices.initInstanced(kTriangles_GrPrimitiveType, flushInfo->fVertexBuffer, |
| flushInfo->fIndexBuffer, flushInfo->fVertexOffset, |
| kVerticesPerGlyph, kIndicesPerGlyph, flushInfo->fGlyphsToFlush, |
| maxGlyphsPerDraw); |
| target->draw(vertices); |
| flushInfo->fVertexOffset += kVerticesPerGlyph * flushInfo->fGlyphsToFlush; |
| flushInfo->fGlyphsToFlush = 0; |
| } |
| |
| GrColor color() const { return fBatch.fColor; } |
| const SkMatrix& viewMatrix() const { return fBatch.fViewMatrix; } |
| bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; } |
| int numGlyphs() const { return fBatch.fNumGlyphs; } |
| |
| bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override { |
| TextBatch* that = t->cast<TextBatch>(); |
| if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(), |
| that->bounds(), caps)) { |
| return false; |
| } |
| |
| if (fMaskType != that->fMaskType) { |
| return false; |
| } |
| |
| if (!this->usesDistanceFields()) { |
| // TODO we can often batch across LCD text if we have dual source blending and don't |
| // have to use the blend constant |
| if (kGrayscaleCoverageMask_MaskType != fMaskType && this->color() != that->color()) { |
| return false; |
| } |
| if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) { |
| return false; |
| } |
| } else { |
| if (!this->viewMatrix().cheapEqualTo(that->viewMatrix())) { |
| return false; |
| } |
| |
| if (fFilteredColor != that->fFilteredColor) { |
| return false; |
| } |
| |
| if (fUseBGR != that->fUseBGR) { |
| return false; |
| } |
| |
| // TODO see note above |
| if (kLCDDistanceField_MaskType == fMaskType && this->color() != that->color()) { |
| return false; |
| } |
| } |
| |
| fBatch.fNumGlyphs += that->numGlyphs(); |
| |
| // Reallocate space for geo data if necessary and then import that's geo data. |
| int newGeoCount = that->fGeoCount + fGeoCount; |
| // We assume (and here enforce) that the allocation size is the smallest power of two that |
| // is greater than or equal to the number of geometries (and at least |
| // kMinGeometryAllocated). |
| int newAllocSize = GrNextPow2(newGeoCount); |
| int currAllocSize = SkTMax<int>(kMinGeometryAllocated, GrNextPow2(fGeoCount)); |
| |
| if (newGeoCount > currAllocSize) { |
| fGeoData.realloc(newAllocSize); |
| } |
| |
| memcpy(&fGeoData[fGeoCount], that->fGeoData.get(), that->fGeoCount * sizeof(Geometry)); |
| // We steal the ref on the blobs from the other TextBatch and set its count to 0 so that |
| // it doesn't try to unref them. |
| #ifdef SK_DEBUG |
| for (int i = 0; i < that->fGeoCount; ++i) { |
| that->fGeoData.get()[i].fBlob = (Blob*)0x1; |
| } |
| #endif |
| that->fGeoCount = 0; |
| fGeoCount = newGeoCount; |
| |
| this->joinBounds(that->bounds()); |
| return true; |
| } |
| |
| // TODO just use class params |
| // TODO trying to figure out why lcd is so whack |
| GrGeometryProcessor* setupDfProcessor(const SkMatrix& viewMatrix, SkColor filteredColor, |
| GrColor color, GrTexture* texture) { |
| GrTextureParams params(SkShader::kClamp_TileMode, GrTextureParams::kBilerp_FilterMode); |
| bool isLCD = this->isLCD(); |
| // set up any flags |
| uint32_t flags = viewMatrix.isSimilarity() ? kSimilarity_DistanceFieldEffectFlag : 0; |
| |
| // see if we need to create a new effect |
| if (isLCD) { |
| flags |= kUseLCD_DistanceFieldEffectFlag; |
| flags |= viewMatrix.rectStaysRect() ? kRectToRect_DistanceFieldEffectFlag : 0; |
| flags |= fUseBGR ? kBGR_DistanceFieldEffectFlag : 0; |
| |
| GrColor colorNoPreMul = skcolor_to_grcolor_nopremultiply(filteredColor); |
| |
| float redCorrection = |
| (*fDistanceAdjustTable)[GrColorUnpackR(colorNoPreMul) >> kDistanceAdjustLumShift]; |
| float greenCorrection = |
| (*fDistanceAdjustTable)[GrColorUnpackG(colorNoPreMul) >> kDistanceAdjustLumShift]; |
| float blueCorrection = |
| (*fDistanceAdjustTable)[GrColorUnpackB(colorNoPreMul) >> kDistanceAdjustLumShift]; |
| GrDistanceFieldLCDTextGeoProc::DistanceAdjust widthAdjust = |
| GrDistanceFieldLCDTextGeoProc::DistanceAdjust::Make(redCorrection, |
| greenCorrection, |
| blueCorrection); |
| |
| return GrDistanceFieldLCDTextGeoProc::Create(color, |
| viewMatrix, |
| texture, |
| params, |
| widthAdjust, |
| flags, |
| this->usesLocalCoords()); |
| } else { |
| flags |= kColorAttr_DistanceFieldEffectFlag; |
| #ifdef SK_GAMMA_APPLY_TO_A8 |
| U8CPU lum = SkColorSpaceLuminance::computeLuminance(SK_GAMMA_EXPONENT, filteredColor); |
| float correction = (*fDistanceAdjustTable)[lum >> kDistanceAdjustLumShift]; |
| return GrDistanceFieldA8TextGeoProc::Create(color, |
| viewMatrix, |
| texture, |
| params, |
| correction, |
| flags, |
| this->usesLocalCoords()); |
| #else |
| return GrDistanceFieldA8TextGeoProc::Create(color, |
| viewMatrix, |
| texture, |
| params, |
| flags, |
| this->usesLocalCoords()); |
| #endif |
| } |
| |
| } |
| |
| struct BatchTracker { |
| GrColor fColor; |
| SkMatrix fViewMatrix; |
| bool fUsesLocalCoords; |
| bool fColorIgnored; |
| bool fCoverageIgnored; |
| int fNumGlyphs; |
| }; |
| |
| BatchTracker fBatch; |
| // The minimum number of Geometry we will try to allocate. |
| enum { kMinGeometryAllocated = 4 }; |
| SkAutoSTMalloc<kMinGeometryAllocated, Geometry> fGeoData; |
| int fGeoCount; |
| |
| enum MaskType { |
| kGrayscaleCoverageMask_MaskType, |
| kLCDCoverageMask_MaskType, |
| kColorBitmapMask_MaskType, |
| kGrayscaleDistanceField_MaskType, |
| kLCDDistanceField_MaskType, |
| } fMaskType; |
| bool fUseBGR; // fold this into the enum? |
| |
| GrBatchFontCache* fFontCache; |
| |
| // Distance field properties |
| SkAutoTUnref<const DistanceAdjustTable> fDistanceAdjustTable; |
| SkColor fFilteredColor; |
| }; |
| |
| void GrAtlasTextContext::flushRunAsPaths(GrRenderTarget* rt, const SkTextBlob::RunIterator& it, |
| const GrClip& clip, const SkPaint& skPaint, |
| SkDrawFilter* drawFilter, const SkMatrix& viewMatrix, |
| const SkIRect& clipBounds, SkScalar x, SkScalar y) { |
| SkPaint runPaint = skPaint; |
| |
| size_t textLen = it.glyphCount() * sizeof(uint16_t); |
| const SkPoint& offset = it.offset(); |
| |
| it.applyFontToPaint(&runPaint); |
| |
| if (drawFilter && !drawFilter->filter(&runPaint, SkDrawFilter::kText_Type)) { |
| return; |
| } |
| |
| runPaint.setFlags(FilterTextFlags(fSurfaceProps, runPaint)); |
| |
| switch (it.positioning()) { |
| case SkTextBlob::kDefault_Positioning: |
| this->drawTextAsPath(rt, clip, runPaint, viewMatrix, |
| (const char *)it.glyphs(), |
| textLen, x + offset.x(), y + offset.y(), clipBounds); |
| break; |
| case SkTextBlob::kHorizontal_Positioning: |
| this->drawPosTextAsPath(rt, clip, runPaint, viewMatrix, |
| (const char*)it.glyphs(), |
| textLen, it.pos(), 1, SkPoint::Make(x, y + offset.y()), |
| clipBounds); |
| break; |
| case SkTextBlob::kFull_Positioning: |
| this->drawPosTextAsPath(rt, clip, runPaint, viewMatrix, |
| (const char*)it.glyphs(), |
| textLen, it.pos(), 2, SkPoint::Make(x, y), clipBounds); |
| break; |
| } |
| } |
| |
| inline GrDrawBatch* |
| GrAtlasTextContext::createBatch(GrAtlasTextBlob* cacheBlob, const PerSubRunInfo& info, |
| int glyphCount, int run, int subRun, |
| GrColor color, SkScalar transX, SkScalar transY, |
| const SkPaint& skPaint) { |
| GrMaskFormat format = info.fMaskFormat; |
| GrColor subRunColor; |
| if (kARGB_GrMaskFormat == format) { |
| uint8_t paintAlpha = skPaint.getAlpha(); |
| subRunColor = SkColorSetARGB(paintAlpha, paintAlpha, paintAlpha, paintAlpha); |
| } else { |
| subRunColor = color; |
| } |
| |
| TextBatch* batch; |
| if (info.fDrawAsDistanceFields) { |
| SkColor filteredColor; |
| SkColorFilter* colorFilter = skPaint.getColorFilter(); |
| if (colorFilter) { |
| filteredColor = colorFilter->filterColor(skPaint.getColor()); |
| } else { |
| filteredColor = skPaint.getColor(); |
| } |
| bool useBGR = SkPixelGeometryIsBGR(fSurfaceProps.pixelGeometry()); |
| batch = TextBatch::CreateDistanceField(glyphCount, fContext->getBatchFontCache(), |
| fDistanceAdjustTable, filteredColor, |
| info.fUseLCDText, useBGR); |
| } else { |
| batch = TextBatch::CreateBitmap(format, glyphCount, fContext->getBatchFontCache()); |
| } |
| TextBatch::Geometry& geometry = batch->geometry(); |
| geometry.fBlob = SkRef(cacheBlob); |
| geometry.fRun = run; |
| geometry.fSubRun = subRun; |
| geometry.fColor = subRunColor; |
| geometry.fTransX = transX; |
| geometry.fTransY = transY; |
| batch->init(); |
| |
| return batch; |
| } |
| |
| inline void GrAtlasTextContext::flushRun(GrPipelineBuilder* pipelineBuilder, |
| GrAtlasTextBlob* cacheBlob, int run, GrColor color, |
| SkScalar transX, SkScalar transY, |
| const SkPaint& skPaint) { |
| for (int subRun = 0; subRun < cacheBlob->fRuns[run].fSubRunInfo.count(); subRun++) { |
| const PerSubRunInfo& info = cacheBlob->fRuns[run].fSubRunInfo[subRun]; |
| int glyphCount = info.fGlyphEndIndex - info.fGlyphStartIndex; |
| if (0 == glyphCount) { |
| continue; |
| } |
| |
| SkAutoTUnref<GrDrawBatch> batch(this->createBatch(cacheBlob, info, glyphCount, run, |
| subRun, color, transX, transY, |
| skPaint)); |
| fDrawContext->drawBatch(pipelineBuilder, batch); |
| } |
| } |
| |
| inline void GrAtlasTextContext::flushBigGlyphs(GrAtlasTextBlob* cacheBlob, GrRenderTarget* rt, |
| const GrClip& clip, const SkPaint& skPaint, |
| SkScalar transX, SkScalar transY, |
| const SkIRect& clipBounds) { |
| if (!cacheBlob->fBigGlyphs.count()) { |
| return; |
| } |
| |
| for (int i = 0; i < cacheBlob->fBigGlyphs.count(); i++) { |
| GrAtlasTextBlob::BigGlyph& bigGlyph = cacheBlob->fBigGlyphs[i]; |
| bigGlyph.fVx += transX; |
| bigGlyph.fVy += transY; |
| SkMatrix ctm; |
| ctm.setScale(bigGlyph.fScale, bigGlyph.fScale); |
| ctm.postTranslate(bigGlyph.fVx, bigGlyph.fVy); |
| if (bigGlyph.fApplyVM) { |
| ctm.postConcat(cacheBlob->fViewMatrix); |
| } |
| |
| GrBlurUtils::drawPathWithMaskFilter(fContext, fDrawContext, rt, clip, bigGlyph.fPath, |
| skPaint, ctm, nullptr, clipBounds, false); |
| } |
| } |
| |
| void GrAtlasTextContext::flush(const SkTextBlob* blob, |
| GrAtlasTextBlob* cacheBlob, |
| GrRenderTarget* rt, |
| const SkPaint& skPaint, |
| const GrPaint& grPaint, |
| SkDrawFilter* drawFilter, |
| const GrClip& clip, |
| const SkMatrix& viewMatrix, |
| const SkIRect& clipBounds, |
| SkScalar x, SkScalar y, |
| SkScalar transX, SkScalar transY) { |
| // We loop through the runs of the blob, flushing each. If any run is too large, then we flush |
| // it as paths |
| GrPipelineBuilder pipelineBuilder(grPaint, rt, clip); |
| |
| GrColor color = grPaint.getColor(); |
| |
| SkTextBlob::RunIterator it(blob); |
| for (int run = 0; !it.done(); it.next(), run++) { |
| if (cacheBlob->fRuns[run].fDrawAsPaths) { |
| this->flushRunAsPaths(rt, it, clip, skPaint, |
| drawFilter, viewMatrix, clipBounds, x, y); |
| continue; |
| } |
| cacheBlob->fRuns[run].fVertexBounds.offset(transX, transY); |
| this->flushRun(&pipelineBuilder, cacheBlob, run, color, |
| transX, transY, skPaint); |
| } |
| |
| // Now flush big glyphs |
| this->flushBigGlyphs(cacheBlob, rt, clip, skPaint, transX, transY, clipBounds); |
| } |
| |
| void GrAtlasTextContext::flush(GrAtlasTextBlob* cacheBlob, |
| GrRenderTarget* rt, |
| const SkPaint& skPaint, |
| const GrPaint& grPaint, |
| const GrClip& clip, |
| const SkIRect& clipBounds) { |
| GrPipelineBuilder pipelineBuilder(grPaint, rt, clip); |
| |
| GrColor color = grPaint.getColor(); |
| for (int run = 0; run < cacheBlob->fRunCount; run++) { |
| this->flushRun(&pipelineBuilder, cacheBlob, run, color, 0, 0, skPaint); |
| } |
| |
| // Now flush big glyphs |
| this->flushBigGlyphs(cacheBlob, rt, clip, skPaint, 0, 0, clipBounds); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| #ifdef GR_TEST_UTILS |
| |
| DRAW_BATCH_TEST_DEFINE(TextBlobBatch) { |
| static uint32_t gContextID = SK_InvalidGenID; |
| static GrAtlasTextContext* gTextContext = nullptr; |
| static SkSurfaceProps gSurfaceProps(SkSurfaceProps::kLegacyFontHost_InitType); |
| |
| if (context->uniqueID() != gContextID) { |
| gContextID = context->uniqueID(); |
| delete gTextContext; |
| |
| // We don't yet test the fall back to paths in the GrTextContext base class. This is mostly |
| // because we don't really want to have a gpu device here. |
| // We enable distance fields by twiddling a knob on the paint |
| GrDrawContext* drawContext = context->drawContext(&gSurfaceProps); |
| |
| gTextContext = GrAtlasTextContext::Create(context, drawContext, gSurfaceProps); |
| } |
| |
| // create dummy render target |
| GrSurfaceDesc desc; |
| desc.fFlags = kRenderTarget_GrSurfaceFlag; |
| desc.fWidth = 1024; |
| desc.fHeight = 1024; |
| desc.fConfig = kRGBA_8888_GrPixelConfig; |
| desc.fSampleCnt = 0; |
| SkAutoTUnref<GrTexture> texture(context->textureProvider()->createTexture(desc, true, nullptr, 0)); |
| SkASSERT(texture); |
| SkASSERT(nullptr != texture->asRenderTarget()); |
| GrRenderTarget* rt = texture->asRenderTarget(); |
| |
| // Setup dummy SkPaint / GrPaint |
| GrColor color = GrRandomColor(random); |
| SkMatrix viewMatrix = GrTest::TestMatrixInvertible(random); |
| SkPaint skPaint; |
| skPaint.setColor(color); |
| skPaint.setLCDRenderText(random->nextBool()); |
| skPaint.setAntiAlias(skPaint.isLCDRenderText() ? true : random->nextBool()); |
| skPaint.setSubpixelText(random->nextBool()); |
| |
| GrPaint grPaint; |
| if (!SkPaint2GrPaint(context, rt, skPaint, viewMatrix, true, &grPaint)) { |
| SkFAIL("couldn't convert paint\n"); |
| } |
| |
| const char* text = "The quick brown fox jumps over the lazy dog."; |
| int textLen = (int)strlen(text); |
| |
| // Setup clip |
| GrClip clip; |
| SkIRect noClip = SkIRect::MakeLargest(); |
| |
| // right now we don't handle textblobs, nor do we handle drawPosText. Since we only |
| // intend to test the batch with this unit test, that is okay. |
| SkAutoTUnref<GrAtlasTextBlob> blob( |
| gTextContext->createDrawTextBlob(rt, clip, grPaint, skPaint, viewMatrix, text, |
| static_cast<size_t>(textLen), 0, 0, noClip)); |
| |
| SkScalar transX = static_cast<SkScalar>(random->nextU()); |
| SkScalar transY = static_cast<SkScalar>(random->nextU()); |
| const GrAtlasTextBlob::Run::SubRunInfo& info = blob->fRuns[0].fSubRunInfo[0]; |
| return gTextContext->createBatch(blob, info, textLen, 0, 0, color, transX, transY, skPaint); |
| } |
| |
| #endif |