| /* |
| * Copyright 2014 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkAutoPixmapStorage.h" |
| #include "SkBitmap.h" |
| #include "SkData.h" |
| #include "SkEndian.h" |
| #include "SkImageInfo.h" |
| #include "SkTemplates.h" |
| #include "SkTextureCompressor.h" |
| #include "Test.h" |
| |
| // TODO: Create separate tests for RGB and RGBA data once |
| // ASTC and ETC1 decompression is implemented. |
| |
| static bool decompresses_a8(SkTextureCompressor::Format fmt) { |
| switch (fmt) { |
| case SkTextureCompressor::kLATC_Format: |
| case SkTextureCompressor::kR11_EAC_Format: |
| return true; |
| |
| default: |
| return false; |
| } |
| } |
| |
| static bool compresses_a8(SkTextureCompressor::Format fmt) { |
| switch (fmt) { |
| case SkTextureCompressor::kLATC_Format: |
| case SkTextureCompressor::kR11_EAC_Format: |
| case SkTextureCompressor::kASTC_12x12_Format: |
| return true; |
| |
| default: |
| return false; |
| } |
| } |
| |
| /** |
| * Make sure that we properly fail when we don't have multiple of four image dimensions. |
| */ |
| DEF_TEST(CompressAlphaFailDimensions, reporter) { |
| static const int kWidth = 17; |
| static const int kHeight = 17; |
| |
| // R11_EAC and LATC are both dimensions of 4, so we need to make sure that we |
| // are violating those assumptions. And if we are, then we're also violating the |
| // assumptions of ASTC, which is 12x12 since any number not divisible by 4 is |
| // also not divisible by 12. Our dimensions are prime, so any block dimension |
| // larger than 1 should fail. |
| REPORTER_ASSERT(reporter, kWidth % 4 != 0); |
| REPORTER_ASSERT(reporter, kHeight % 4 != 0); |
| |
| SkAutoPixmapStorage pixmap; |
| pixmap.alloc(SkImageInfo::MakeA8(kWidth, kHeight)); |
| // leaving the pixels uninitialized, as they don't affect the test... |
| |
| for (int i = 0; i < SkTextureCompressor::kFormatCnt; ++i) { |
| const SkTextureCompressor::Format fmt = static_cast<SkTextureCompressor::Format>(i); |
| if (!compresses_a8(fmt)) { |
| continue; |
| } |
| SkAutoDataUnref data(SkTextureCompressor::CompressBitmapToFormat(pixmap, fmt)); |
| REPORTER_ASSERT(reporter, nullptr == data); |
| } |
| } |
| |
| /** |
| * Make sure that we properly fail when we don't have the correct bitmap type. |
| * compressed textures can (currently) only be created from A8 bitmaps. |
| */ |
| DEF_TEST(CompressAlphaFailColorType, reporter) { |
| static const int kWidth = 12; |
| static const int kHeight = 12; |
| |
| // ASTC is at most 12x12, and any dimension divisible by 12 is also divisible |
| // by 4, which is the dimensions of R11_EAC and LATC. In the future, we might |
| // support additional variants of ASTC, such as 5x6 and 8x8, in which case this would |
| // need to be updated. |
| REPORTER_ASSERT(reporter, kWidth % 12 == 0); |
| REPORTER_ASSERT(reporter, kHeight % 12 == 0); |
| |
| SkAutoPixmapStorage pixmap; |
| pixmap.alloc(SkImageInfo::MakeN32Premul(kWidth, kHeight)); |
| // leaving the pixels uninitialized, as they don't affect the test... |
| |
| for (int i = 0; i < SkTextureCompressor::kFormatCnt; ++i) { |
| const SkTextureCompressor::Format fmt = static_cast<SkTextureCompressor::Format>(i); |
| if (!compresses_a8(fmt)) { |
| continue; |
| } |
| SkAutoDataUnref data(SkTextureCompressor::CompressBitmapToFormat(pixmap, fmt)); |
| REPORTER_ASSERT(reporter, nullptr == data); |
| } |
| } |
| |
| /** |
| * Make sure that if you compress a texture with alternating black/white pixels, and |
| * then decompress it, you get what you started with. |
| */ |
| DEF_TEST(CompressCheckerboard, reporter) { |
| static const int kWidth = 48; // We need the number to be divisible by both |
| static const int kHeight = 48; // 12 (ASTC) and 16 (ARM NEON R11 EAC). |
| |
| // ASTC is at most 12x12, and any dimension divisible by 12 is also divisible |
| // by 4, which is the dimensions of R11_EAC and LATC. In the future, we might |
| // support additional variants of ASTC, such as 5x6 and 8x8, in which case this would |
| // need to be updated. Additionally, ARM NEON and SSE code paths support up to |
| // four blocks of R11 EAC at once, so they operate on 16-wide blocks. Hence, the |
| // valid width and height is going to be the LCM of 12 and 16 which is 4*4*3 = 48 |
| REPORTER_ASSERT(reporter, kWidth % 48 == 0); |
| REPORTER_ASSERT(reporter, kHeight % 48 == 0); |
| |
| SkAutoPixmapStorage pixmap; |
| pixmap.alloc(SkImageInfo::MakeA8(kWidth, kHeight)); |
| |
| // Populate the pixels |
| { |
| uint8_t* pixels = reinterpret_cast<uint8_t*>(pixmap.writable_addr()); |
| REPORTER_ASSERT(reporter, pixels); |
| if (nullptr == pixels) { |
| return; |
| } |
| |
| for (int y = 0; y < kHeight; ++y) { |
| for (int x = 0; x < kWidth; ++x) { |
| if ((x ^ y) & 1) { |
| pixels[x] = 0xFF; |
| } else { |
| pixels[x] = 0; |
| } |
| } |
| pixels += pixmap.rowBytes(); |
| } |
| } |
| |
| SkAutoTMalloc<uint8_t> decompMemory(kWidth*kHeight); |
| uint8_t* decompBuffer = decompMemory.get(); |
| REPORTER_ASSERT(reporter, decompBuffer); |
| if (nullptr == decompBuffer) { |
| return; |
| } |
| |
| for (int i = 0; i < SkTextureCompressor::kFormatCnt; ++i) { |
| const SkTextureCompressor::Format fmt = static_cast<SkTextureCompressor::Format>(i); |
| |
| // Ignore formats for RGBA data, since the decompressed buffer |
| // won't match the size and contents of the original. |
| if (!decompresses_a8(fmt) || !compresses_a8(fmt)) { |
| continue; |
| } |
| |
| SkAutoDataUnref data(SkTextureCompressor::CompressBitmapToFormat(pixmap, fmt)); |
| REPORTER_ASSERT(reporter, data); |
| if (nullptr == data) { |
| continue; |
| } |
| |
| bool decompResult = |
| SkTextureCompressor::DecompressBufferFromFormat( |
| decompBuffer, kWidth, |
| data->bytes(), |
| kWidth, kHeight, fmt); |
| REPORTER_ASSERT(reporter, decompResult); |
| |
| const uint8_t* pixels = reinterpret_cast<const uint8_t*>(pixmap.addr()); |
| REPORTER_ASSERT(reporter, pixels); |
| if (nullptr == pixels) { |
| continue; |
| } |
| |
| for (int y = 0; y < kHeight; ++y) { |
| for (int x = 0; x < kWidth; ++x) { |
| bool ok = pixels[y*pixmap.rowBytes() + x] == decompBuffer[y*kWidth + x]; |
| REPORTER_ASSERT(reporter, ok); |
| } |
| } |
| } |
| } |
| |
| /** |
| * Make sure that if we pass in a solid color bitmap that we get the appropriate results |
| */ |
| DEF_TEST(CompressLATC, reporter) { |
| |
| const SkTextureCompressor::Format kLATCFormat = SkTextureCompressor::kLATC_Format; |
| static const int kLATCEncodedBlockSize = 8; |
| |
| static const int kWidth = 8; |
| static const int kHeight = 8; |
| |
| SkAutoPixmapStorage pixmap; |
| pixmap.alloc(SkImageInfo::MakeA8(kWidth, kHeight)); |
| |
| int latcDimX, latcDimY; |
| SkTextureCompressor::GetBlockDimensions(kLATCFormat, &latcDimX, &latcDimY); |
| |
| REPORTER_ASSERT(reporter, kWidth % latcDimX == 0); |
| REPORTER_ASSERT(reporter, kHeight % latcDimY == 0); |
| const size_t kSizeToBe = |
| SkTextureCompressor::GetCompressedDataSize(kLATCFormat, kWidth, kHeight); |
| REPORTER_ASSERT(reporter, kSizeToBe == ((kWidth*kHeight*kLATCEncodedBlockSize)/16)); |
| REPORTER_ASSERT(reporter, (kSizeToBe % kLATCEncodedBlockSize) == 0); |
| |
| for (int lum = 0; lum < 256; ++lum) { |
| uint8_t* pixels = reinterpret_cast<uint8_t*>(pixmap.writable_addr()); |
| for (int i = 0; i < kWidth*kHeight; ++i) { |
| pixels[i] = lum; |
| } |
| |
| SkAutoDataUnref latcData( |
| SkTextureCompressor::CompressBitmapToFormat(pixmap, kLATCFormat)); |
| REPORTER_ASSERT(reporter, latcData); |
| if (nullptr == latcData) { |
| continue; |
| } |
| |
| REPORTER_ASSERT(reporter, kSizeToBe == latcData->size()); |
| |
| // Make sure that it all matches a given block encoding. Since we have |
| // COMPRESS_LATC_FAST defined in SkTextureCompressor_LATC.cpp, we are using |
| // an approximation scheme that optimizes for speed against coverage maps. |
| // That means that each palette in the encoded block is exactly the same, |
| // and that the three bits saved per pixel are computed from the top three |
| // bits of the luminance value. |
| const uint64_t kIndexEncodingMap[8] = { 1, 7, 6, 5, 4, 3, 2, 0 }; |
| |
| // Quantize to three bits in the same way that we do our LATC compression: |
| // 1. Divide by two |
| // 2. Add 9 |
| // 3. Divide by two |
| // 4. Approximate division by three twice |
| uint32_t quant = static_cast<uint32_t>(lum); |
| quant >>= 1; // 1 |
| quant += 9; // 2 |
| quant >>= 1; // 3 |
| |
| uint32_t a, b, c, ar, br, cr; |
| |
| // First division by three |
| a = quant >> 2; |
| ar = (quant & 0x3) << 4; |
| b = quant >> 4; |
| br = (quant & 0xF) << 2; |
| c = quant >> 6; |
| cr = (quant & 0x3F); |
| quant = (a + b + c) + ((ar + br + cr) >> 6); |
| |
| // Second division by three |
| a = quant >> 2; |
| ar = (quant & 0x3) << 4; |
| b = quant >> 4; |
| br = (quant & 0xF) << 2; |
| c = quant >> 6; |
| cr = (quant & 0x3F); |
| quant = (a + b + c) + ((ar + br + cr) >> 6); |
| |
| const uint64_t kIndex = kIndexEncodingMap[quant]; |
| |
| const uint64_t kConstColorEncoding = |
| SkEndian_SwapLE64( |
| 255 | |
| (kIndex << 16) | (kIndex << 19) | (kIndex << 22) | (kIndex << 25) | |
| (kIndex << 28) | (kIndex << 31) | (kIndex << 34) | (kIndex << 37) | |
| (kIndex << 40) | (kIndex << 43) | (kIndex << 46) | (kIndex << 49) | |
| (kIndex << 52) | (kIndex << 55) | (kIndex << 58) | (kIndex << 61)); |
| |
| const uint64_t* blockPtr = reinterpret_cast<const uint64_t*>(latcData->data()); |
| for (size_t i = 0; i < (kSizeToBe/8); ++i) { |
| REPORTER_ASSERT(reporter, blockPtr[i] == kConstColorEncoding); |
| } |
| } |
| } |