| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "GrGLGpu.h" |
| #include "GrBackendSemaphore.h" |
| #include "GrBackendSurface.h" |
| #include "GrFixedClip.h" |
| #include "GrGLBuffer.h" |
| #include "GrGLGpuCommandBuffer.h" |
| #include "GrGLSemaphore.h" |
| #include "GrGLStencilAttachment.h" |
| #include "GrGLTextureRenderTarget.h" |
| #include "GrGpuResourcePriv.h" |
| #include "GrMesh.h" |
| #include "GrPipeline.h" |
| #include "GrRenderTargetPriv.h" |
| #include "GrShaderCaps.h" |
| #include "GrSurfaceProxyPriv.h" |
| #include "GrTexturePriv.h" |
| #include "GrTypes.h" |
| #include "SkAutoMalloc.h" |
| #include "SkConvertPixels.h" |
| #include "SkHalf.h" |
| #include "SkMakeUnique.h" |
| #include "SkMipMap.h" |
| #include "SkPixmap.h" |
| #include "SkSLCompiler.h" |
| #include "SkStrokeRec.h" |
| #include "SkTemplates.h" |
| #include "SkTo.h" |
| #include "SkTraceEvent.h" |
| #include "SkTypes.h" |
| #include "builders/GrGLShaderStringBuilder.h" |
| |
| #include <cmath> |
| |
| #define GL_CALL(X) GR_GL_CALL(this->glInterface(), X) |
| #define GL_CALL_RET(RET, X) GR_GL_CALL_RET(this->glInterface(), RET, X) |
| |
| #define SKIP_CACHE_CHECK true |
| |
| #if GR_GL_CHECK_ALLOC_WITH_GET_ERROR |
| #define CLEAR_ERROR_BEFORE_ALLOC(iface) GrGLClearErr(iface) |
| #define GL_ALLOC_CALL(iface, call) GR_GL_CALL_NOERRCHECK(iface, call) |
| #define CHECK_ALLOC_ERROR(iface) GR_GL_GET_ERROR(iface) |
| #else |
| #define CLEAR_ERROR_BEFORE_ALLOC(iface) |
| #define GL_ALLOC_CALL(iface, call) GR_GL_CALL(iface, call) |
| #define CHECK_ALLOC_ERROR(iface) GR_GL_NO_ERROR |
| #endif |
| |
| //#define USE_NSIGHT |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static const GrGLenum gXfermodeEquation2Blend[] = { |
| // Basic OpenGL blend equations. |
| GR_GL_FUNC_ADD, |
| GR_GL_FUNC_SUBTRACT, |
| GR_GL_FUNC_REVERSE_SUBTRACT, |
| |
| // GL_KHR_blend_equation_advanced. |
| GR_GL_SCREEN, |
| GR_GL_OVERLAY, |
| GR_GL_DARKEN, |
| GR_GL_LIGHTEN, |
| GR_GL_COLORDODGE, |
| GR_GL_COLORBURN, |
| GR_GL_HARDLIGHT, |
| GR_GL_SOFTLIGHT, |
| GR_GL_DIFFERENCE, |
| GR_GL_EXCLUSION, |
| GR_GL_MULTIPLY, |
| GR_GL_HSL_HUE, |
| GR_GL_HSL_SATURATION, |
| GR_GL_HSL_COLOR, |
| GR_GL_HSL_LUMINOSITY, |
| |
| // Illegal... needs to map to something. |
| GR_GL_FUNC_ADD, |
| }; |
| GR_STATIC_ASSERT(0 == kAdd_GrBlendEquation); |
| GR_STATIC_ASSERT(1 == kSubtract_GrBlendEquation); |
| GR_STATIC_ASSERT(2 == kReverseSubtract_GrBlendEquation); |
| GR_STATIC_ASSERT(3 == kScreen_GrBlendEquation); |
| GR_STATIC_ASSERT(4 == kOverlay_GrBlendEquation); |
| GR_STATIC_ASSERT(5 == kDarken_GrBlendEquation); |
| GR_STATIC_ASSERT(6 == kLighten_GrBlendEquation); |
| GR_STATIC_ASSERT(7 == kColorDodge_GrBlendEquation); |
| GR_STATIC_ASSERT(8 == kColorBurn_GrBlendEquation); |
| GR_STATIC_ASSERT(9 == kHardLight_GrBlendEquation); |
| GR_STATIC_ASSERT(10 == kSoftLight_GrBlendEquation); |
| GR_STATIC_ASSERT(11 == kDifference_GrBlendEquation); |
| GR_STATIC_ASSERT(12 == kExclusion_GrBlendEquation); |
| GR_STATIC_ASSERT(13 == kMultiply_GrBlendEquation); |
| GR_STATIC_ASSERT(14 == kHSLHue_GrBlendEquation); |
| GR_STATIC_ASSERT(15 == kHSLSaturation_GrBlendEquation); |
| GR_STATIC_ASSERT(16 == kHSLColor_GrBlendEquation); |
| GR_STATIC_ASSERT(17 == kHSLLuminosity_GrBlendEquation); |
| GR_STATIC_ASSERT(SK_ARRAY_COUNT(gXfermodeEquation2Blend) == kGrBlendEquationCnt); |
| |
| static const GrGLenum gXfermodeCoeff2Blend[] = { |
| GR_GL_ZERO, |
| GR_GL_ONE, |
| GR_GL_SRC_COLOR, |
| GR_GL_ONE_MINUS_SRC_COLOR, |
| GR_GL_DST_COLOR, |
| GR_GL_ONE_MINUS_DST_COLOR, |
| GR_GL_SRC_ALPHA, |
| GR_GL_ONE_MINUS_SRC_ALPHA, |
| GR_GL_DST_ALPHA, |
| GR_GL_ONE_MINUS_DST_ALPHA, |
| GR_GL_CONSTANT_COLOR, |
| GR_GL_ONE_MINUS_CONSTANT_COLOR, |
| GR_GL_CONSTANT_ALPHA, |
| GR_GL_ONE_MINUS_CONSTANT_ALPHA, |
| |
| // extended blend coeffs |
| GR_GL_SRC1_COLOR, |
| GR_GL_ONE_MINUS_SRC1_COLOR, |
| GR_GL_SRC1_ALPHA, |
| GR_GL_ONE_MINUS_SRC1_ALPHA, |
| |
| // Illegal... needs to map to something. |
| GR_GL_ZERO, |
| }; |
| |
| bool GrGLGpu::BlendCoeffReferencesConstant(GrBlendCoeff coeff) { |
| static const bool gCoeffReferencesBlendConst[] = { |
| false, |
| false, |
| false, |
| false, |
| false, |
| false, |
| false, |
| false, |
| false, |
| false, |
| true, |
| true, |
| true, |
| true, |
| |
| // extended blend coeffs |
| false, |
| false, |
| false, |
| false, |
| |
| // Illegal. |
| false, |
| }; |
| return gCoeffReferencesBlendConst[coeff]; |
| GR_STATIC_ASSERT(kGrBlendCoeffCnt == SK_ARRAY_COUNT(gCoeffReferencesBlendConst)); |
| |
| GR_STATIC_ASSERT(0 == kZero_GrBlendCoeff); |
| GR_STATIC_ASSERT(1 == kOne_GrBlendCoeff); |
| GR_STATIC_ASSERT(2 == kSC_GrBlendCoeff); |
| GR_STATIC_ASSERT(3 == kISC_GrBlendCoeff); |
| GR_STATIC_ASSERT(4 == kDC_GrBlendCoeff); |
| GR_STATIC_ASSERT(5 == kIDC_GrBlendCoeff); |
| GR_STATIC_ASSERT(6 == kSA_GrBlendCoeff); |
| GR_STATIC_ASSERT(7 == kISA_GrBlendCoeff); |
| GR_STATIC_ASSERT(8 == kDA_GrBlendCoeff); |
| GR_STATIC_ASSERT(9 == kIDA_GrBlendCoeff); |
| GR_STATIC_ASSERT(10 == kConstC_GrBlendCoeff); |
| GR_STATIC_ASSERT(11 == kIConstC_GrBlendCoeff); |
| GR_STATIC_ASSERT(12 == kConstA_GrBlendCoeff); |
| GR_STATIC_ASSERT(13 == kIConstA_GrBlendCoeff); |
| |
| GR_STATIC_ASSERT(14 == kS2C_GrBlendCoeff); |
| GR_STATIC_ASSERT(15 == kIS2C_GrBlendCoeff); |
| GR_STATIC_ASSERT(16 == kS2A_GrBlendCoeff); |
| GR_STATIC_ASSERT(17 == kIS2A_GrBlendCoeff); |
| |
| // assertion for gXfermodeCoeff2Blend have to be in GrGpu scope |
| GR_STATIC_ASSERT(kGrBlendCoeffCnt == SK_ARRAY_COUNT(gXfermodeCoeff2Blend)); |
| } |
| |
| static GrGLenum filter_to_gl_mag_filter(GrSamplerState::Filter filter) { |
| switch (filter) { |
| case GrSamplerState::Filter::kNearest: return GR_GL_NEAREST; |
| case GrSamplerState::Filter::kBilerp: return GR_GL_LINEAR; |
| case GrSamplerState::Filter::kMipMap: return GR_GL_LINEAR; |
| } |
| SK_ABORT("Unknown filter"); |
| return 0; |
| } |
| |
| static GrGLenum filter_to_gl_min_filter(GrSamplerState::Filter filter) { |
| switch (filter) { |
| case GrSamplerState::Filter::kNearest: return GR_GL_NEAREST; |
| case GrSamplerState::Filter::kBilerp: return GR_GL_LINEAR; |
| case GrSamplerState::Filter::kMipMap: return GR_GL_LINEAR_MIPMAP_LINEAR; |
| } |
| SK_ABORT("Unknown filter"); |
| return 0; |
| } |
| |
| static inline GrGLenum wrap_mode_to_gl_wrap(GrSamplerState::WrapMode wrapMode, |
| const GrCaps& caps) { |
| switch (wrapMode) { |
| case GrSamplerState::WrapMode::kClamp: return GR_GL_CLAMP_TO_EDGE; |
| case GrSamplerState::WrapMode::kRepeat: return GR_GL_REPEAT; |
| case GrSamplerState::WrapMode::kMirrorRepeat: return GR_GL_MIRRORED_REPEAT; |
| case GrSamplerState::WrapMode::kClampToBorder: |
| // May not be supported but should have been caught earlier |
| SkASSERT(caps.clampToBorderSupport()); |
| return GR_GL_CLAMP_TO_BORDER; |
| } |
| SK_ABORT("Unknown wrap mode"); |
| return 0; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| class GrGLGpu::SamplerObjectCache { |
| public: |
| SamplerObjectCache(GrGLGpu* gpu) : fGpu(gpu) { |
| fNumTextureUnits = fGpu->glCaps().shaderCaps()->maxFragmentSamplers(); |
| fHWBoundSamplers.reset(new GrGLuint[fNumTextureUnits]); |
| std::fill_n(fHWBoundSamplers.get(), fNumTextureUnits, 0); |
| std::fill_n(fSamplers, kNumSamplers, 0); |
| } |
| |
| ~SamplerObjectCache() { |
| if (!fNumTextureUnits) { |
| // We've already been abandoned. |
| return; |
| } |
| GR_GL_CALL(fGpu->glInterface(), DeleteSamplers(kNumSamplers, fSamplers)); |
| } |
| |
| void bindSampler(int unitIdx, const GrSamplerState& state) { |
| int index = StateToIndex(state); |
| if (!fSamplers[index]) { |
| GrGLuint s; |
| GR_GL_CALL(fGpu->glInterface(), GenSamplers(1, &s)); |
| if (!s) { |
| return; |
| } |
| fSamplers[index] = s; |
| auto minFilter = filter_to_gl_min_filter(state.filter()); |
| auto magFilter = filter_to_gl_mag_filter(state.filter()); |
| auto wrapX = wrap_mode_to_gl_wrap(state.wrapModeX(), fGpu->glCaps()); |
| auto wrapY = wrap_mode_to_gl_wrap(state.wrapModeY(), fGpu->glCaps()); |
| GR_GL_CALL(fGpu->glInterface(), |
| SamplerParameteri(s, GR_GL_TEXTURE_MIN_FILTER, minFilter)); |
| GR_GL_CALL(fGpu->glInterface(), |
| SamplerParameteri(s, GR_GL_TEXTURE_MAG_FILTER, magFilter)); |
| GR_GL_CALL(fGpu->glInterface(), SamplerParameteri(s, GR_GL_TEXTURE_WRAP_S, wrapX)); |
| GR_GL_CALL(fGpu->glInterface(), SamplerParameteri(s, GR_GL_TEXTURE_WRAP_T, wrapY)); |
| } |
| if (fHWBoundSamplers[unitIdx] != fSamplers[index]) { |
| GR_GL_CALL(fGpu->glInterface(), BindSampler(unitIdx, fSamplers[index])); |
| fHWBoundSamplers[unitIdx] = fSamplers[index]; |
| } |
| } |
| |
| void invalidateBindings() { |
| // When we have sampler support we always use samplers. So setting these to zero will cause |
| // a rebind on next usage. |
| std::fill_n(fHWBoundSamplers.get(), fNumTextureUnits, 0); |
| } |
| |
| void abandon() { |
| fHWBoundSamplers.reset(); |
| fNumTextureUnits = 0; |
| } |
| |
| void release() { |
| if (!fNumTextureUnits) { |
| // We've already been abandoned. |
| return; |
| } |
| GR_GL_CALL(fGpu->glInterface(), DeleteSamplers(kNumSamplers, fSamplers)); |
| std::fill_n(fSamplers, kNumSamplers, 0); |
| // Deleting a bound sampler implicitly binds sampler 0. |
| std::fill_n(fHWBoundSamplers.get(), fNumTextureUnits, 0); |
| } |
| |
| private: |
| static int StateToIndex(const GrSamplerState& state) { |
| int filter = static_cast<int>(state.filter()); |
| SkASSERT(filter >= 0 && filter < 3); |
| int wrapX = static_cast<int>(state.wrapModeX()); |
| SkASSERT(wrapX >= 0 && wrapX < 4); |
| int wrapY = static_cast<int>(state.wrapModeY()); |
| SkASSERT(wrapY >= 0 && wrapY < 4); |
| int idx = 16 * filter + 4 * wrapX + wrapY; |
| SkASSERT(idx < kNumSamplers); |
| return idx; |
| } |
| |
| GrGLGpu* fGpu; |
| static constexpr int kNumSamplers = 48; |
| std::unique_ptr<GrGLuint[]> fHWBoundSamplers; |
| GrGLuint fSamplers[kNumSamplers]; |
| int fNumTextureUnits; |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| sk_sp<GrGpu> GrGLGpu::Make(sk_sp<const GrGLInterface> interface, const GrContextOptions& options, |
| GrContext* context) { |
| if (!interface) { |
| interface = GrGLMakeNativeInterface(); |
| // For clients that have written their own GrGLCreateNativeInterface and haven't yet updated |
| // to GrGLMakeNativeInterface. |
| if (!interface) { |
| interface = sk_ref_sp(GrGLCreateNativeInterface()); |
| } |
| if (!interface) { |
| return nullptr; |
| } |
| } |
| #ifdef USE_NSIGHT |
| const_cast<GrContextOptions&>(options).fSuppressPathRendering = true; |
| #endif |
| auto glContext = GrGLContext::Make(std::move(interface), options); |
| if (!glContext) { |
| return nullptr; |
| } |
| return sk_sp<GrGpu>(new GrGLGpu(std::move(glContext), context)); |
| } |
| |
| GrGLGpu::GrGLGpu(std::unique_ptr<GrGLContext> ctx, GrContext* context) |
| : GrGpu(context) |
| , fGLContext(std::move(ctx)) |
| , fProgramCache(new ProgramCache(this)) |
| , fHWProgramID(0) |
| , fTempSrcFBOID(0) |
| , fTempDstFBOID(0) |
| , fStencilClearFBOID(0) { |
| SkASSERT(fGLContext); |
| GrGLClearErr(this->glInterface()); |
| fCaps = sk_ref_sp(fGLContext->caps()); |
| |
| fHWBoundTextureUniqueIDs.reset(this->caps()->shaderCaps()->maxFragmentSamplers()); |
| |
| fHWBufferState[kVertex_GrBufferType].fGLTarget = GR_GL_ARRAY_BUFFER; |
| fHWBufferState[kIndex_GrBufferType].fGLTarget = GR_GL_ELEMENT_ARRAY_BUFFER; |
| fHWBufferState[kTexel_GrBufferType].fGLTarget = GR_GL_TEXTURE_BUFFER; |
| fHWBufferState[kDrawIndirect_GrBufferType].fGLTarget = GR_GL_DRAW_INDIRECT_BUFFER; |
| if (GrGLCaps::kChromium_TransferBufferType == this->glCaps().transferBufferType()) { |
| fHWBufferState[kXferCpuToGpu_GrBufferType].fGLTarget = |
| GR_GL_PIXEL_UNPACK_TRANSFER_BUFFER_CHROMIUM; |
| fHWBufferState[kXferGpuToCpu_GrBufferType].fGLTarget = |
| GR_GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM; |
| } else { |
| fHWBufferState[kXferCpuToGpu_GrBufferType].fGLTarget = GR_GL_PIXEL_UNPACK_BUFFER; |
| fHWBufferState[kXferGpuToCpu_GrBufferType].fGLTarget = GR_GL_PIXEL_PACK_BUFFER; |
| } |
| for (int i = 0; i < kGrBufferTypeCount; ++i) { |
| fHWBufferState[i].invalidate(); |
| } |
| GR_STATIC_ASSERT(6 == SK_ARRAY_COUNT(fHWBufferState)); |
| |
| if (this->glCaps().shaderCaps()->pathRenderingSupport()) { |
| fPathRendering.reset(new GrGLPathRendering(this)); |
| } |
| |
| if (this->glCaps().samplerObjectSupport()) { |
| fSamplerObjectCache.reset(new SamplerObjectCache(this)); |
| } |
| } |
| |
| GrGLGpu::~GrGLGpu() { |
| // Ensure any GrGpuResource objects get deleted first, since they may require a working GrGLGpu |
| // to release the resources held by the objects themselves. |
| fPathRendering.reset(); |
| fCopyProgramArrayBuffer.reset(); |
| fMipmapProgramArrayBuffer.reset(); |
| fStencilClipClearArrayBuffer.reset(); |
| |
| fHWProgram.reset(); |
| if (fHWProgramID) { |
| // detach the current program so there is no confusion on OpenGL's part |
| // that we want it to be deleted |
| GL_CALL(UseProgram(0)); |
| } |
| |
| if (fTempSrcFBOID) { |
| this->deleteFramebuffer(fTempSrcFBOID); |
| } |
| if (fTempDstFBOID) { |
| this->deleteFramebuffer(fTempDstFBOID); |
| } |
| if (fStencilClearFBOID) { |
| this->deleteFramebuffer(fStencilClearFBOID); |
| } |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) { |
| if (0 != fCopyPrograms[i].fProgram) { |
| GL_CALL(DeleteProgram(fCopyPrograms[i].fProgram)); |
| } |
| } |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(fMipmapPrograms); ++i) { |
| if (0 != fMipmapPrograms[i].fProgram) { |
| GL_CALL(DeleteProgram(fMipmapPrograms[i].fProgram)); |
| } |
| } |
| |
| if (fStencilClipClearProgram) { |
| GL_CALL(DeleteProgram(fStencilClipClearProgram)); |
| } |
| |
| if (fClearColorProgram.fProgram) { |
| GL_CALL(DeleteProgram(fClearColorProgram.fProgram)); |
| } |
| |
| delete fProgramCache; |
| fSamplerObjectCache.reset(); |
| } |
| |
| void GrGLGpu::disconnect(DisconnectType type) { |
| INHERITED::disconnect(type); |
| if (DisconnectType::kCleanup == type) { |
| if (fHWProgramID) { |
| GL_CALL(UseProgram(0)); |
| } |
| if (fTempSrcFBOID) { |
| this->deleteFramebuffer(fTempSrcFBOID); |
| } |
| if (fTempDstFBOID) { |
| this->deleteFramebuffer(fTempDstFBOID); |
| } |
| if (fStencilClearFBOID) { |
| this->deleteFramebuffer(fStencilClearFBOID); |
| } |
| for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) { |
| if (fCopyPrograms[i].fProgram) { |
| GL_CALL(DeleteProgram(fCopyPrograms[i].fProgram)); |
| } |
| } |
| for (size_t i = 0; i < SK_ARRAY_COUNT(fMipmapPrograms); ++i) { |
| if (fMipmapPrograms[i].fProgram) { |
| GL_CALL(DeleteProgram(fMipmapPrograms[i].fProgram)); |
| } |
| } |
| if (fStencilClipClearProgram) { |
| GL_CALL(DeleteProgram(fStencilClipClearProgram)); |
| } |
| |
| if (fClearColorProgram.fProgram) { |
| GL_CALL(DeleteProgram(fClearColorProgram.fProgram)); |
| } |
| if (fSamplerObjectCache) { |
| fSamplerObjectCache->release(); |
| } |
| } else { |
| if (fProgramCache) { |
| fProgramCache->abandon(); |
| } |
| if (fSamplerObjectCache) { |
| fSamplerObjectCache->abandon(); |
| } |
| } |
| |
| fHWProgram.reset(); |
| delete fProgramCache; |
| fProgramCache = nullptr; |
| |
| fHWProgramID = 0; |
| fTempSrcFBOID = 0; |
| fTempDstFBOID = 0; |
| fStencilClearFBOID = 0; |
| fCopyProgramArrayBuffer.reset(); |
| for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) { |
| fCopyPrograms[i].fProgram = 0; |
| } |
| fMipmapProgramArrayBuffer.reset(); |
| for (size_t i = 0; i < SK_ARRAY_COUNT(fMipmapPrograms); ++i) { |
| fMipmapPrograms[i].fProgram = 0; |
| } |
| fStencilClipClearProgram = 0; |
| fStencilClipClearArrayBuffer.reset(); |
| fClearColorProgram.fProgram = 0; |
| |
| if (this->glCaps().shaderCaps()->pathRenderingSupport()) { |
| this->glPathRendering()->disconnect(type); |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void GrGLGpu::onResetContext(uint32_t resetBits) { |
| if (resetBits & kMisc_GrGLBackendState) { |
| // we don't use the zb at all |
| GL_CALL(Disable(GR_GL_DEPTH_TEST)); |
| GL_CALL(DepthMask(GR_GL_FALSE)); |
| |
| // We don't use face culling. |
| GL_CALL(Disable(GR_GL_CULL_FACE)); |
| // We do use separate stencil. Our algorithms don't care which face is front vs. back so |
| // just set this to the default for self-consistency. |
| GL_CALL(FrontFace(GR_GL_CCW)); |
| |
| fHWBufferState[kTexel_GrBufferType].invalidate(); |
| fHWBufferState[kDrawIndirect_GrBufferType].invalidate(); |
| fHWBufferState[kXferCpuToGpu_GrBufferType].invalidate(); |
| fHWBufferState[kXferGpuToCpu_GrBufferType].invalidate(); |
| |
| if (kGL_GrGLStandard == this->glStandard()) { |
| #ifndef USE_NSIGHT |
| // Desktop-only state that we never change |
| if (!this->glCaps().isCoreProfile()) { |
| GL_CALL(Disable(GR_GL_POINT_SMOOTH)); |
| GL_CALL(Disable(GR_GL_LINE_SMOOTH)); |
| GL_CALL(Disable(GR_GL_POLYGON_SMOOTH)); |
| GL_CALL(Disable(GR_GL_POLYGON_STIPPLE)); |
| GL_CALL(Disable(GR_GL_COLOR_LOGIC_OP)); |
| GL_CALL(Disable(GR_GL_INDEX_LOGIC_OP)); |
| } |
| // The windows NVIDIA driver has GL_ARB_imaging in the extension string when using a |
| // core profile. This seems like a bug since the core spec removes any mention of |
| // GL_ARB_imaging. |
| if (this->glCaps().imagingSupport() && !this->glCaps().isCoreProfile()) { |
| GL_CALL(Disable(GR_GL_COLOR_TABLE)); |
| } |
| GL_CALL(Disable(GR_GL_POLYGON_OFFSET_FILL)); |
| |
| if (this->caps()->wireframeMode()) { |
| GL_CALL(PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_LINE)); |
| } else { |
| GL_CALL(PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_FILL)); |
| } |
| #endif |
| // Since ES doesn't support glPointSize at all we always use the VS to |
| // set the point size |
| GL_CALL(Enable(GR_GL_VERTEX_PROGRAM_POINT_SIZE)); |
| |
| } |
| |
| if (kGLES_GrGLStandard == this->glStandard() && |
| this->hasExtension("GL_ARM_shader_framebuffer_fetch")) { |
| // The arm extension requires specifically enabling MSAA fetching per sample. |
| // On some devices this may have a perf hit. Also multiple render targets are disabled |
| GL_CALL(Enable(GR_GL_FETCH_PER_SAMPLE_ARM)); |
| } |
| fHWWriteToColor = kUnknown_TriState; |
| // we only ever use lines in hairline mode |
| GL_CALL(LineWidth(1)); |
| GL_CALL(Disable(GR_GL_DITHER)); |
| } |
| |
| if (resetBits & kMSAAEnable_GrGLBackendState) { |
| fMSAAEnabled = kUnknown_TriState; |
| |
| if (this->caps()->usesMixedSamples()) { |
| if (0 != this->caps()->maxRasterSamples()) { |
| fHWRasterMultisampleEnabled = kUnknown_TriState; |
| fHWNumRasterSamples = 0; |
| } |
| |
| // The skia blend modes all use premultiplied alpha and therefore expect RGBA coverage |
| // modulation. This state has no effect when not rendering to a mixed sampled target. |
| GL_CALL(CoverageModulation(GR_GL_RGBA)); |
| } |
| } |
| |
| fHWActiveTextureUnitIdx = -1; // invalid |
| fLastPrimitiveType = static_cast<GrPrimitiveType>(-1); |
| |
| if (resetBits & kTextureBinding_GrGLBackendState) { |
| for (int s = 0; s < fHWBoundTextureUniqueIDs.count(); ++s) { |
| fHWBoundTextureUniqueIDs[s].makeInvalid(); |
| } |
| if (fSamplerObjectCache) { |
| fSamplerObjectCache->invalidateBindings(); |
| } |
| } |
| |
| if (resetBits & kBlend_GrGLBackendState) { |
| fHWBlendState.invalidate(); |
| } |
| |
| if (resetBits & kView_GrGLBackendState) { |
| fHWScissorSettings.invalidate(); |
| fHWWindowRectsState.invalidate(); |
| fHWViewport.invalidate(); |
| } |
| |
| if (resetBits & kStencil_GrGLBackendState) { |
| fHWStencilSettings.invalidate(); |
| fHWStencilTestEnabled = kUnknown_TriState; |
| } |
| |
| // Vertex |
| if (resetBits & kVertex_GrGLBackendState) { |
| fHWVertexArrayState.invalidate(); |
| fHWBufferState[kVertex_GrBufferType].invalidate(); |
| fHWBufferState[kIndex_GrBufferType].invalidate(); |
| } |
| |
| if (resetBits & kRenderTarget_GrGLBackendState) { |
| fHWBoundRenderTargetUniqueID.makeInvalid(); |
| fHWSRGBFramebuffer = kUnknown_TriState; |
| } |
| |
| if (resetBits & kPathRendering_GrGLBackendState) { |
| if (this->caps()->shaderCaps()->pathRenderingSupport()) { |
| this->glPathRendering()->resetContext(); |
| } |
| } |
| |
| // we assume these values |
| if (resetBits & kPixelStore_GrGLBackendState) { |
| if (this->glCaps().unpackRowLengthSupport()) { |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); |
| } |
| if (this->glCaps().packRowLengthSupport()) { |
| GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0)); |
| } |
| if (this->glCaps().packFlipYSupport()) { |
| GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, GR_GL_FALSE)); |
| } |
| } |
| |
| if (resetBits & kProgram_GrGLBackendState) { |
| fHWProgramID = 0; |
| fHWProgram.reset(); |
| } |
| } |
| |
| static bool check_backend_texture(const GrBackendTexture& backendTex, const GrGLCaps& caps, |
| GrGLTexture::IDDesc* idDesc) { |
| GrGLTextureInfo info; |
| if (!backendTex.getGLTextureInfo(&info) || !info.fID) { |
| return false; |
| } |
| |
| idDesc->fInfo = info; |
| |
| if (GR_GL_TEXTURE_EXTERNAL == idDesc->fInfo.fTarget) { |
| if (!caps.shaderCaps()->externalTextureSupport()) { |
| return false; |
| } |
| } else if (GR_GL_TEXTURE_RECTANGLE == idDesc->fInfo.fTarget) { |
| if (!caps.rectangleTextureSupport()) { |
| return false; |
| } |
| } else if (GR_GL_TEXTURE_2D != idDesc->fInfo.fTarget) { |
| return false; |
| } |
| return true; |
| } |
| |
| sk_sp<GrTexture> GrGLGpu::onWrapBackendTexture(const GrBackendTexture& backendTex, |
| GrWrapOwnership ownership, GrIOType ioType, |
| bool purgeImmediately) { |
| GrGLTexture::IDDesc idDesc; |
| if (!check_backend_texture(backendTex, this->glCaps(), &idDesc)) { |
| return nullptr; |
| } |
| if (!idDesc.fInfo.fFormat) { |
| idDesc.fInfo.fFormat = this->glCaps().configSizedInternalFormat(backendTex.config()); |
| } |
| if (kBorrow_GrWrapOwnership == ownership) { |
| idDesc.fOwnership = GrBackendObjectOwnership::kBorrowed; |
| } else { |
| idDesc.fOwnership = GrBackendObjectOwnership::kOwned; |
| } |
| |
| GrSurfaceDesc surfDesc; |
| surfDesc.fFlags = kNone_GrSurfaceFlags; |
| surfDesc.fWidth = backendTex.width(); |
| surfDesc.fHeight = backendTex.height(); |
| surfDesc.fConfig = backendTex.config(); |
| surfDesc.fSampleCnt = 1; |
| |
| GrMipMapsStatus mipMapsStatus = backendTex.hasMipMaps() ? GrMipMapsStatus::kValid |
| : GrMipMapsStatus::kNotAllocated; |
| |
| auto texture = GrGLTexture::MakeWrapped(this, surfDesc, mipMapsStatus, idDesc, ioType, |
| purgeImmediately); |
| // We don't know what parameters are already set on wrapped textures. |
| texture->textureParamsModified(); |
| return std::move(texture); |
| } |
| |
| sk_sp<GrTexture> GrGLGpu::onWrapRenderableBackendTexture(const GrBackendTexture& backendTex, |
| int sampleCnt, |
| GrWrapOwnership ownership) { |
| GrGLTexture::IDDesc idDesc; |
| if (!check_backend_texture(backendTex, this->glCaps(), &idDesc)) { |
| return nullptr; |
| } |
| if (!idDesc.fInfo.fFormat) { |
| idDesc.fInfo.fFormat = this->glCaps().configSizedInternalFormat(backendTex.config()); |
| } |
| |
| // We don't support rendering to a EXTERNAL texture. |
| if (GR_GL_TEXTURE_EXTERNAL == idDesc.fInfo.fTarget) { |
| return nullptr; |
| } |
| |
| if (kBorrow_GrWrapOwnership == ownership) { |
| idDesc.fOwnership = GrBackendObjectOwnership::kBorrowed; |
| } else { |
| idDesc.fOwnership = GrBackendObjectOwnership::kOwned; |
| } |
| |
| GrSurfaceDesc surfDesc; |
| surfDesc.fFlags = kRenderTarget_GrSurfaceFlag; |
| surfDesc.fWidth = backendTex.width(); |
| surfDesc.fHeight = backendTex.height(); |
| surfDesc.fConfig = backendTex.config(); |
| surfDesc.fSampleCnt = this->caps()->getRenderTargetSampleCount(sampleCnt, backendTex.config()); |
| if (surfDesc.fSampleCnt < 1) { |
| return nullptr; |
| } |
| |
| GrGLRenderTarget::IDDesc rtIDDesc; |
| if (!this->createRenderTargetObjects(surfDesc, idDesc.fInfo, &rtIDDesc)) { |
| return nullptr; |
| } |
| |
| GrMipMapsStatus mipMapsStatus = backendTex.hasMipMaps() ? GrMipMapsStatus::kDirty |
| : GrMipMapsStatus::kNotAllocated; |
| |
| sk_sp<GrGLTextureRenderTarget> texRT( |
| GrGLTextureRenderTarget::MakeWrapped(this, surfDesc, idDesc, rtIDDesc, mipMapsStatus)); |
| texRT->baseLevelWasBoundToFBO(); |
| // We don't know what parameters are already set on wrapped textures. |
| texRT->textureParamsModified(); |
| return std::move(texRT); |
| } |
| |
| sk_sp<GrRenderTarget> GrGLGpu::onWrapBackendRenderTarget(const GrBackendRenderTarget& backendRT) { |
| GrGLFramebufferInfo info; |
| if (!backendRT.getGLFramebufferInfo(&info)) { |
| return nullptr; |
| } |
| |
| GrGLRenderTarget::IDDesc idDesc; |
| idDesc.fRTFBOID = info.fFBOID; |
| idDesc.fMSColorRenderbufferID = 0; |
| idDesc.fTexFBOID = GrGLRenderTarget::kUnresolvableFBOID; |
| idDesc.fRTFBOOwnership = GrBackendObjectOwnership::kBorrowed; |
| idDesc.fIsMixedSampled = false; |
| |
| GrSurfaceDesc desc; |
| desc.fFlags = kRenderTarget_GrSurfaceFlag; |
| desc.fWidth = backendRT.width(); |
| desc.fHeight = backendRT.height(); |
| desc.fConfig = backendRT.config(); |
| desc.fSampleCnt = |
| this->caps()->getRenderTargetSampleCount(backendRT.sampleCnt(), backendRT.config()); |
| |
| return GrGLRenderTarget::MakeWrapped(this, desc, info.fFormat, idDesc, backendRT.stencilBits()); |
| } |
| |
| sk_sp<GrRenderTarget> GrGLGpu::onWrapBackendTextureAsRenderTarget(const GrBackendTexture& tex, |
| int sampleCnt) { |
| GrGLTextureInfo info; |
| if (!tex.getGLTextureInfo(&info) || !info.fID) { |
| return nullptr; |
| } |
| |
| if (GR_GL_TEXTURE_RECTANGLE != info.fTarget && |
| GR_GL_TEXTURE_2D != info.fTarget) { |
| // Only texture rectangle and texture 2d are supported. We do not check whether texture |
| // rectangle is supported by Skia - if the caller provided us with a texture rectangle, |
| // we assume the necessary support exists. |
| return nullptr; |
| } |
| |
| GrSurfaceDesc surfDesc; |
| surfDesc.fFlags = kRenderTarget_GrSurfaceFlag; |
| surfDesc.fWidth = tex.width(); |
| surfDesc.fHeight = tex.height(); |
| surfDesc.fConfig = tex.config(); |
| surfDesc.fSampleCnt = this->caps()->getRenderTargetSampleCount(sampleCnt, tex.config()); |
| |
| GrGLRenderTarget::IDDesc rtIDDesc; |
| if (!this->createRenderTargetObjects(surfDesc, info, &rtIDDesc)) { |
| return nullptr; |
| } |
| return GrGLRenderTarget::MakeWrapped(this, surfDesc, info.fFormat, rtIDDesc, 0); |
| } |
| |
| static bool check_write_and_transfer_input(GrGLTexture* glTex) { |
| if (!glTex) { |
| return false; |
| } |
| |
| // Write or transfer of pixels is not implemented for TEXTURE_EXTERNAL textures |
| if (GR_GL_TEXTURE_EXTERNAL == glTex->target()) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool GrGLGpu::onWritePixels(GrSurface* surface, int left, int top, int width, int height, |
| GrColorType srcColorType, const GrMipLevel texels[], |
| int mipLevelCount) { |
| auto glTex = static_cast<GrGLTexture*>(surface->asTexture()); |
| |
| if (!check_write_and_transfer_input(glTex)) { |
| return false; |
| } |
| |
| this->setScratchTextureUnit(); |
| GL_CALL(BindTexture(glTex->target(), glTex->textureID())); |
| |
| // No sRGB transformation occurs in uploadTexData. We choose to make the src config match the |
| // srgb-ness of the surface to avoid issues in ES2 where internal/external formats must match. |
| // When we're on ES2 and the dst is GL_SRGB_ALPHA by making the config be kSRGB_8888 we know |
| // that our caps will choose GL_SRGB_ALPHA as the external format, too. On ES3 or regular GL our |
| // caps knows to make the external format be GL_RGBA. |
| auto srgbEncoded = GrPixelConfigIsSRGBEncoded(surface->config()); |
| auto srcAsConfig = GrColorTypeToPixelConfig(srcColorType, srgbEncoded); |
| |
| SkASSERT(!GrPixelConfigIsCompressed(glTex->config())); |
| return this->uploadTexData(glTex->config(), glTex->width(), glTex->height(), glTex->target(), |
| kWrite_UploadType, left, top, width, height, srcAsConfig, texels, |
| mipLevelCount); |
| } |
| |
| // For GL_[UN]PACK_ALIGNMENT. TODO: This really wants to be GrColorType. |
| static inline GrGLint config_alignment(GrPixelConfig config) { |
| SkASSERT(!GrPixelConfigIsCompressed(config)); |
| switch (config) { |
| case kAlpha_8_GrPixelConfig: |
| case kAlpha_8_as_Alpha_GrPixelConfig: |
| case kAlpha_8_as_Red_GrPixelConfig: |
| case kGray_8_GrPixelConfig: |
| case kGray_8_as_Lum_GrPixelConfig: |
| case kGray_8_as_Red_GrPixelConfig: |
| return 1; |
| case kRGB_565_GrPixelConfig: |
| case kRGBA_4444_GrPixelConfig: |
| case kRG_88_GrPixelConfig: |
| case kAlpha_half_GrPixelConfig: |
| case kAlpha_half_as_Red_GrPixelConfig: |
| case kRGBA_half_GrPixelConfig: |
| return 2; |
| case kRGBA_8888_GrPixelConfig: |
| case kRGB_888_GrPixelConfig: // We're really talking about GrColorType::kRGB_888x here. |
| case kBGRA_8888_GrPixelConfig: |
| case kSRGBA_8888_GrPixelConfig: |
| case kSBGRA_8888_GrPixelConfig: |
| case kRGBA_1010102_GrPixelConfig: |
| case kRGBA_float_GrPixelConfig: |
| case kRG_float_GrPixelConfig: |
| return 4; |
| case kRGB_ETC1_GrPixelConfig: |
| case kUnknown_GrPixelConfig: |
| return 0; |
| } |
| SK_ABORT("Invalid pixel config"); |
| return 0; |
| } |
| |
| bool GrGLGpu::onTransferPixels(GrTexture* texture, int left, int top, int width, int height, |
| GrColorType bufferColorType, GrBuffer* transferBuffer, size_t offset, |
| size_t rowBytes) { |
| GrGLTexture* glTex = static_cast<GrGLTexture*>(texture); |
| GrPixelConfig texConfig = glTex->config(); |
| SkASSERT(this->caps()->isConfigTexturable(texConfig)); |
| |
| // Can't transfer compressed data |
| SkASSERT(!GrPixelConfigIsCompressed(glTex->config())); |
| |
| if (!check_write_and_transfer_input(glTex)) { |
| return false; |
| } |
| |
| static_assert(sizeof(int) == sizeof(int32_t), ""); |
| if (width <= 0 || height <= 0) { |
| return false; |
| } |
| |
| this->setScratchTextureUnit(); |
| GL_CALL(BindTexture(glTex->target(), glTex->textureID())); |
| |
| SkASSERT(!transferBuffer->isMapped()); |
| SkASSERT(!transferBuffer->isCPUBacked()); |
| const GrGLBuffer* glBuffer = static_cast<const GrGLBuffer*>(transferBuffer); |
| this->bindBuffer(kXferCpuToGpu_GrBufferType, glBuffer); |
| |
| SkDEBUGCODE( |
| SkIRect subRect = SkIRect::MakeXYWH(left, top, width, height); |
| SkIRect bounds = SkIRect::MakeWH(texture->width(), texture->height()); |
| SkASSERT(bounds.contains(subRect)); |
| ) |
| |
| int bpp = GrColorTypeBytesPerPixel(bufferColorType); |
| const size_t trimRowBytes = width * bpp; |
| if (!rowBytes) { |
| rowBytes = trimRowBytes; |
| } |
| const void* pixels = (void*)offset; |
| if (width < 0 || height < 0) { |
| return false; |
| } |
| |
| bool restoreGLRowLength = false; |
| if (trimRowBytes != rowBytes) { |
| // we should have checked for this support already |
| SkASSERT(this->glCaps().unpackRowLengthSupport()); |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowBytes / bpp)); |
| restoreGLRowLength = true; |
| } |
| |
| // Internal format comes from the texture desc. |
| GrGLenum internalFormat; |
| // External format and type come from the upload data. |
| GrGLenum externalFormat; |
| GrGLenum externalType; |
| auto bufferAsConfig = GrColorTypeToPixelConfig(bufferColorType, GrSRGBEncoded::kNo); |
| if (!this->glCaps().getTexImageFormats(texConfig, bufferAsConfig, &internalFormat, |
| &externalFormat, &externalType)) { |
| return false; |
| } |
| |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, config_alignment(texConfig))); |
| GL_CALL(TexSubImage2D(glTex->target(), |
| 0, |
| left, top, |
| width, |
| height, |
| externalFormat, externalType, |
| pixels)); |
| |
| if (restoreGLRowLength) { |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); |
| } |
| |
| return true; |
| } |
| |
| /** |
| * Creates storage space for the texture and fills it with texels. |
| * |
| * @param config Pixel config of the texture. |
| * @param interface The GL interface in use. |
| * @param caps The capabilities of the GL device. |
| * @param target Which bound texture to target (GR_GL_TEXTURE_2D, e.g.) |
| * @param internalFormat The data format used for the internal storage of the texture. May be sized. |
| * @param internalFormatForTexStorage The data format used for the TexStorage API. Must be sized. |
| * @param externalFormat The data format used for the external storage of the texture. |
| * @param externalType The type of the data used for the external storage of the texture. |
| * @param texels The texel data of the texture being created. |
| * @param mipLevelCount Number of mipmap levels |
| * @param baseWidth The width of the texture's base mipmap level |
| * @param baseHeight The height of the texture's base mipmap level |
| */ |
| static bool allocate_and_populate_texture(GrPixelConfig config, |
| const GrGLInterface& interface, |
| const GrGLCaps& caps, |
| GrGLenum target, |
| GrGLenum internalFormat, |
| GrGLenum internalFormatForTexStorage, |
| GrGLenum externalFormat, |
| GrGLenum externalType, |
| const GrMipLevel texels[], int mipLevelCount, |
| int baseWidth, int baseHeight) { |
| CLEAR_ERROR_BEFORE_ALLOC(&interface); |
| |
| bool useTexStorage = caps.isConfigTexSupportEnabled(config); |
| // We can only use TexStorage if we know we will not later change the storage requirements. |
| // This means if we may later want to add mipmaps, we cannot use TexStorage. |
| // Right now, we cannot know if we will later add mipmaps or not. |
| // The only time we can use TexStorage is when we already have the |
| // mipmaps. |
| useTexStorage &= mipLevelCount > 1; |
| |
| if (useTexStorage) { |
| // We never resize or change formats of textures. |
| GL_ALLOC_CALL(&interface, |
| TexStorage2D(target, SkTMax(mipLevelCount, 1), internalFormatForTexStorage, |
| baseWidth, baseHeight)); |
| GrGLenum error = CHECK_ALLOC_ERROR(&interface); |
| if (error != GR_GL_NO_ERROR) { |
| return false; |
| } else { |
| for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) { |
| const void* currentMipData = texels[currentMipLevel].fPixels; |
| if (currentMipData == nullptr) { |
| continue; |
| } |
| int twoToTheMipLevel = 1 << currentMipLevel; |
| int currentWidth = SkTMax(1, baseWidth / twoToTheMipLevel); |
| int currentHeight = SkTMax(1, baseHeight / twoToTheMipLevel); |
| |
| GR_GL_CALL(&interface, |
| TexSubImage2D(target, |
| currentMipLevel, |
| 0, // left |
| 0, // top |
| currentWidth, |
| currentHeight, |
| externalFormat, externalType, |
| currentMipData)); |
| } |
| return true; |
| } |
| } else { |
| if (!mipLevelCount) { |
| GL_ALLOC_CALL(&interface, |
| TexImage2D(target, |
| 0, |
| internalFormat, |
| baseWidth, |
| baseHeight, |
| 0, // border |
| externalFormat, externalType, |
| nullptr)); |
| GrGLenum error = CHECK_ALLOC_ERROR(&interface); |
| if (error != GR_GL_NO_ERROR) { |
| return false; |
| } |
| } else { |
| for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) { |
| int twoToTheMipLevel = 1 << currentMipLevel; |
| int currentWidth = SkTMax(1, baseWidth / twoToTheMipLevel); |
| int currentHeight = SkTMax(1, baseHeight / twoToTheMipLevel); |
| const void* currentMipData = texels[currentMipLevel].fPixels; |
| // Even if curremtMipData is nullptr, continue to call TexImage2D. |
| // This will allocate texture memory which we can later populate. |
| GL_ALLOC_CALL(&interface, |
| TexImage2D(target, |
| currentMipLevel, |
| internalFormat, |
| currentWidth, |
| currentHeight, |
| 0, // border |
| externalFormat, externalType, |
| currentMipData)); |
| GrGLenum error = CHECK_ALLOC_ERROR(&interface); |
| if (error != GR_GL_NO_ERROR) { |
| return false; |
| } |
| } |
| } |
| } |
| return true; |
| } |
| |
| /** |
| * Creates storage space for the texture and fills it with texels. |
| * |
| * @param config Compressed pixel config of the texture. |
| * @param interface The GL interface in use. |
| * @param caps The capabilities of the GL device. |
| * @param target Which bound texture to target (GR_GL_TEXTURE_2D, e.g.) |
| * @param internalFormat The data format used for the internal storage of the texture. |
| * @param texels The texel data of the texture being created. |
| * @param mipLevelCount Number of mipmap levels |
| * @param baseWidth The width of the texture's base mipmap level |
| * @param baseHeight The height of the texture's base mipmap level |
| */ |
| static bool allocate_and_populate_compressed_texture(GrPixelConfig config, |
| const GrGLInterface& interface, |
| const GrGLCaps& caps, |
| GrGLenum target, GrGLenum internalFormat, |
| const GrMipLevel texels[], int mipLevelCount, |
| int baseWidth, int baseHeight) { |
| CLEAR_ERROR_BEFORE_ALLOC(&interface); |
| SkASSERT(GrPixelConfigIsCompressed(config)); |
| |
| bool useTexStorage = caps.isConfigTexSupportEnabled(config); |
| // We can only use TexStorage if we know we will not later change the storage requirements. |
| // This means if we may later want to add mipmaps, we cannot use TexStorage. |
| // Right now, we cannot know if we will later add mipmaps or not. |
| // The only time we can use TexStorage is when we already have the |
| // mipmaps. |
| useTexStorage &= mipLevelCount > 1; |
| |
| if (useTexStorage) { |
| // We never resize or change formats of textures. |
| GL_ALLOC_CALL(&interface, |
| TexStorage2D(target, |
| mipLevelCount, |
| internalFormat, |
| baseWidth, baseHeight)); |
| GrGLenum error = CHECK_ALLOC_ERROR(&interface); |
| if (error != GR_GL_NO_ERROR) { |
| return false; |
| } else { |
| for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) { |
| const void* currentMipData = texels[currentMipLevel].fPixels; |
| if (currentMipData == nullptr) { |
| // Compressed textures require data for every level |
| return false; |
| } |
| |
| int twoToTheMipLevel = 1 << currentMipLevel; |
| int currentWidth = SkTMax(1, baseWidth / twoToTheMipLevel); |
| int currentHeight = SkTMax(1, baseHeight / twoToTheMipLevel); |
| |
| // Make sure that the width and height that we pass to OpenGL |
| // is a multiple of the block size. |
| size_t dataSize = GrCompressedFormatDataSize(config, currentWidth, currentHeight); |
| GR_GL_CALL(&interface, CompressedTexSubImage2D(target, |
| currentMipLevel, |
| 0, // left |
| 0, // top |
| currentWidth, |
| currentHeight, |
| internalFormat, |
| SkToInt(dataSize), |
| currentMipData)); |
| } |
| } |
| } else { |
| for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) { |
| const void* currentMipData = texels[currentMipLevel].fPixels; |
| if (currentMipData == nullptr) { |
| // Compressed textures require data for every level |
| return false; |
| } |
| |
| int twoToTheMipLevel = 1 << currentMipLevel; |
| int currentWidth = SkTMax(1, baseWidth / twoToTheMipLevel); |
| int currentHeight = SkTMax(1, baseHeight / twoToTheMipLevel); |
| |
| // Make sure that the width and height that we pass to OpenGL |
| // is a multiple of the block size. |
| size_t dataSize = GrCompressedFormatDataSize(config, baseWidth, baseHeight); |
| |
| GL_ALLOC_CALL(&interface, |
| CompressedTexImage2D(target, |
| currentMipLevel, |
| internalFormat, |
| currentWidth, |
| currentHeight, |
| 0, // border |
| SkToInt(dataSize), |
| currentMipData)); |
| |
| GrGLenum error = CHECK_ALLOC_ERROR(&interface); |
| if (error != GR_GL_NO_ERROR) { |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| /** |
| * After a texture is created, any state which was altered during its creation |
| * needs to be restored. |
| * |
| * @param interface The GL interface to use. |
| * @param caps The capabilities of the GL device. |
| * @param restoreGLRowLength Should the row length unpacking be restored? |
| * @param glFlipY Did GL flip the texture vertically? |
| */ |
| static void restore_pixelstore_state(const GrGLInterface& interface, const GrGLCaps& caps, |
| bool restoreGLRowLength) { |
| if (restoreGLRowLength) { |
| SkASSERT(caps.unpackRowLengthSupport()); |
| GR_GL_CALL(&interface, PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); |
| } |
| } |
| |
| void GrGLGpu::unbindCpuToGpuXferBuffer() { |
| auto& xferBufferState = fHWBufferState[kXferCpuToGpu_GrBufferType]; |
| if (!xferBufferState.fBoundBufferUniqueID.isInvalid()) { |
| GL_CALL(BindBuffer(xferBufferState.fGLTarget, 0)); |
| xferBufferState.invalidate(); |
| } |
| |
| } |
| |
| // TODO: Make this take a GrColorType instead of dataConfig. This requires updating GrGLCaps to |
| // convert from GrColorType to externalFormat/externalType GLenum values. |
| bool GrGLGpu::uploadTexData(GrPixelConfig texConfig, int texWidth, int texHeight, GrGLenum target, |
| UploadType uploadType, int left, int top, int width, int height, |
| GrPixelConfig dataConfig, const GrMipLevel texels[], int mipLevelCount, |
| GrMipMapsStatus* mipMapsStatus) { |
| // If we're uploading compressed data then we should be using uploadCompressedTexData |
| SkASSERT(!GrPixelConfigIsCompressed(dataConfig)); |
| |
| SkASSERT(this->caps()->isConfigTexturable(texConfig)); |
| SkDEBUGCODE( |
| SkIRect subRect = SkIRect::MakeXYWH(left, top, width, height); |
| SkIRect bounds = SkIRect::MakeWH(texWidth, texHeight); |
| SkASSERT(bounds.contains(subRect)); |
| ) |
| SkASSERT(1 == mipLevelCount || |
| (0 == left && 0 == top && width == texWidth && height == texHeight)); |
| |
| this->unbindCpuToGpuXferBuffer(); |
| |
| // texels is const. |
| // But we may need to flip the texture vertically to prepare it. |
| // Rather than flip in place and alter the incoming data, |
| // we allocate a new buffer to flip into. |
| // This means we need to make a non-const shallow copy of texels. |
| SkAutoTMalloc<GrMipLevel> texelsShallowCopy; |
| |
| if (mipLevelCount) { |
| texelsShallowCopy.reset(mipLevelCount); |
| memcpy(texelsShallowCopy.get(), texels, mipLevelCount*sizeof(GrMipLevel)); |
| } |
| |
| const GrGLInterface* interface = this->glInterface(); |
| const GrGLCaps& caps = this->glCaps(); |
| |
| size_t bpp = GrBytesPerPixel(dataConfig); |
| |
| if (width == 0 || height == 0) { |
| return false; |
| } |
| |
| // Internal format comes from the texture desc. |
| GrGLenum internalFormat; |
| // External format and type come from the upload data. |
| GrGLenum externalFormat; |
| GrGLenum externalType; |
| if (!this->glCaps().getTexImageFormats(texConfig, dataConfig, &internalFormat, &externalFormat, |
| &externalType)) { |
| return false; |
| } |
| // TexStorage requires a sized format, and internalFormat may or may not be |
| GrGLenum internalFormatForTexStorage = this->glCaps().configSizedInternalFormat(texConfig); |
| |
| /* |
| * Check whether to allocate a temporary buffer for flipping y or |
| * because our srcData has extra bytes past each row. If so, we need |
| * to trim those off here, since GL ES may not let us specify |
| * GL_UNPACK_ROW_LENGTH. |
| */ |
| bool restoreGLRowLength = false; |
| |
| // in case we need a temporary, trimmed copy of the src pixels |
| SkAutoSMalloc<128 * 128> tempStorage; |
| |
| if (mipMapsStatus) { |
| *mipMapsStatus = GrMipMapsStatus::kValid; |
| } |
| |
| const bool usesMips = mipLevelCount > 1; |
| |
| // find the combined size of all the mip levels and the relative offset of |
| // each into the collective buffer |
| bool willNeedData = false; |
| size_t combinedBufferSize = 0; |
| SkTArray<size_t> individualMipOffsets(mipLevelCount); |
| for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) { |
| if (texelsShallowCopy[currentMipLevel].fPixels) { |
| int twoToTheMipLevel = 1 << currentMipLevel; |
| int currentWidth = SkTMax(1, width / twoToTheMipLevel); |
| int currentHeight = SkTMax(1, height / twoToTheMipLevel); |
| const size_t trimRowBytes = currentWidth * bpp; |
| const size_t trimmedSize = trimRowBytes * currentHeight; |
| |
| const size_t rowBytes = texelsShallowCopy[currentMipLevel].fRowBytes |
| ? texelsShallowCopy[currentMipLevel].fRowBytes |
| : trimRowBytes; |
| |
| if (((!caps.unpackRowLengthSupport() || usesMips) && trimRowBytes != rowBytes)) { |
| willNeedData = true; |
| } |
| |
| individualMipOffsets.push_back(combinedBufferSize); |
| combinedBufferSize += trimmedSize; |
| } else { |
| if (mipMapsStatus) { |
| *mipMapsStatus = GrMipMapsStatus::kDirty; |
| } |
| individualMipOffsets.push_back(0); |
| } |
| } |
| if (mipMapsStatus && mipLevelCount <= 1) { |
| *mipMapsStatus = GrMipMapsStatus::kNotAllocated; |
| } |
| char* buffer = nullptr; |
| if (willNeedData) { |
| buffer = (char*)tempStorage.reset(combinedBufferSize); |
| } |
| |
| for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) { |
| if (!texelsShallowCopy[currentMipLevel].fPixels) { |
| continue; |
| } |
| int twoToTheMipLevel = 1 << currentMipLevel; |
| int currentWidth = SkTMax(1, width / twoToTheMipLevel); |
| int currentHeight = SkTMax(1, height / twoToTheMipLevel); |
| const size_t trimRowBytes = currentWidth * bpp; |
| |
| /* |
| * check whether to allocate a temporary buffer for flipping y or |
| * because our srcData has extra bytes past each row. If so, we need |
| * to trim those off here, since GL ES may not let us specify |
| * GL_UNPACK_ROW_LENGTH. |
| */ |
| restoreGLRowLength = false; |
| |
| const size_t rowBytes = texelsShallowCopy[currentMipLevel].fRowBytes |
| ? texelsShallowCopy[currentMipLevel].fRowBytes |
| : trimRowBytes; |
| |
| // TODO: This optimization should be enabled with or without mips. |
| // For use with mips, we must set GR_GL_UNPACK_ROW_LENGTH once per |
| // mip level, before calling glTexImage2D. |
| if (caps.unpackRowLengthSupport() && !usesMips) { |
| // can't use this for flipping, only non-neg values allowed. :( |
| if (rowBytes != trimRowBytes) { |
| GrGLint rowLength = static_cast<GrGLint>(rowBytes / bpp); |
| GR_GL_CALL(interface, PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowLength)); |
| restoreGLRowLength = true; |
| } |
| } else if (trimRowBytes != rowBytes) { |
| // copy data into our new storage, skipping the trailing bytes |
| const char* src = (const char*)texelsShallowCopy[currentMipLevel].fPixels; |
| char* dst = buffer + individualMipOffsets[currentMipLevel]; |
| SkRectMemcpy(dst, trimRowBytes, src, rowBytes, trimRowBytes, currentHeight); |
| // now point data to our copied version |
| texelsShallowCopy[currentMipLevel].fPixels = buffer + |
| individualMipOffsets[currentMipLevel]; |
| texelsShallowCopy[currentMipLevel].fRowBytes = trimRowBytes; |
| } |
| } |
| |
| if (mipLevelCount) { |
| GR_GL_CALL(interface, PixelStorei(GR_GL_UNPACK_ALIGNMENT, config_alignment(texConfig))); |
| } |
| |
| bool succeeded = true; |
| if (kNewTexture_UploadType == uploadType) { |
| if (0 == left && 0 == top && texWidth == width && texHeight == height) { |
| succeeded = allocate_and_populate_texture( |
| texConfig, *interface, caps, target, internalFormat, |
| internalFormatForTexStorage, externalFormat, externalType, |
| texelsShallowCopy, mipLevelCount, width, height); |
| } else { |
| succeeded = false; |
| } |
| } else { |
| for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) { |
| if (!texelsShallowCopy[currentMipLevel].fPixels) { |
| continue; |
| } |
| int twoToTheMipLevel = 1 << currentMipLevel; |
| int currentWidth = SkTMax(1, width / twoToTheMipLevel); |
| int currentHeight = SkTMax(1, height / twoToTheMipLevel); |
| |
| GL_CALL(TexSubImage2D(target, |
| currentMipLevel, |
| left, top, |
| currentWidth, |
| currentHeight, |
| externalFormat, externalType, |
| texelsShallowCopy[currentMipLevel].fPixels)); |
| } |
| } |
| |
| restore_pixelstore_state(*interface, caps, restoreGLRowLength); |
| |
| return succeeded; |
| } |
| |
| bool GrGLGpu::uploadCompressedTexData(GrPixelConfig texConfig, int texWidth, int texHeight, |
| GrGLenum target, GrPixelConfig dataConfig, |
| const GrMipLevel texels[], int mipLevelCount, |
| GrMipMapsStatus* mipMapsStatus) { |
| SkASSERT(this->caps()->isConfigTexturable(texConfig)); |
| |
| const GrGLInterface* interface = this->glInterface(); |
| const GrGLCaps& caps = this->glCaps(); |
| |
| // We only need the internal format for compressed 2D textures. |
| GrGLenum internalFormat; |
| if (!caps.getCompressedTexImageFormats(texConfig, &internalFormat)) { |
| return false; |
| } |
| |
| if (mipMapsStatus && mipLevelCount <= 1) { |
| *mipMapsStatus = GrMipMapsStatus::kNotAllocated; |
| } else { |
| *mipMapsStatus = GrMipMapsStatus::kValid; |
| } |
| |
| return allocate_and_populate_compressed_texture(texConfig, *interface, caps, target, |
| internalFormat, texels, mipLevelCount, |
| texWidth, texHeight); |
| |
| return true; |
| } |
| |
| static bool renderbuffer_storage_msaa(const GrGLContext& ctx, |
| int sampleCount, |
| GrGLenum format, |
| int width, int height) { |
| CLEAR_ERROR_BEFORE_ALLOC(ctx.interface()); |
| SkASSERT(GrGLCaps::kNone_MSFBOType != ctx.caps()->msFBOType()); |
| switch (ctx.caps()->msFBOType()) { |
| case GrGLCaps::kStandard_MSFBOType: |
| case GrGLCaps::kMixedSamples_MSFBOType: |
| GL_ALLOC_CALL(ctx.interface(), |
| RenderbufferStorageMultisample(GR_GL_RENDERBUFFER, |
| sampleCount, |
| format, |
| width, height)); |
| break; |
| case GrGLCaps::kES_Apple_MSFBOType: |
| GL_ALLOC_CALL(ctx.interface(), |
| RenderbufferStorageMultisampleES2APPLE(GR_GL_RENDERBUFFER, |
| sampleCount, |
| format, |
| width, height)); |
| break; |
| case GrGLCaps::kES_EXT_MsToTexture_MSFBOType: |
| case GrGLCaps::kES_IMG_MsToTexture_MSFBOType: |
| GL_ALLOC_CALL(ctx.interface(), |
| RenderbufferStorageMultisampleES2EXT(GR_GL_RENDERBUFFER, |
| sampleCount, |
| format, |
| width, height)); |
| break; |
| case GrGLCaps::kNone_MSFBOType: |
| SK_ABORT("Shouldn't be here if we don't support multisampled renderbuffers."); |
| break; |
| } |
| return (GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(ctx.interface())); |
| } |
| |
| bool GrGLGpu::createRenderTargetObjects(const GrSurfaceDesc& desc, |
| const GrGLTextureInfo& texInfo, |
| GrGLRenderTarget::IDDesc* idDesc) { |
| idDesc->fMSColorRenderbufferID = 0; |
| idDesc->fRTFBOID = 0; |
| idDesc->fRTFBOOwnership = GrBackendObjectOwnership::kOwned; |
| idDesc->fTexFBOID = 0; |
| SkASSERT((GrGLCaps::kMixedSamples_MSFBOType == this->glCaps().msFBOType()) == |
| this->caps()->usesMixedSamples()); |
| idDesc->fIsMixedSampled = desc.fSampleCnt > 1 && this->caps()->usesMixedSamples(); |
| |
| GrGLenum status; |
| |
| GrGLenum colorRenderbufferFormat = 0; // suppress warning |
| |
| if (desc.fSampleCnt > 1 && GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType()) { |
| goto FAILED; |
| } |
| |
| GL_CALL(GenFramebuffers(1, &idDesc->fTexFBOID)); |
| if (!idDesc->fTexFBOID) { |
| goto FAILED; |
| } |
| |
| // If we are using multisampling we will create two FBOS. We render to one and then resolve to |
| // the texture bound to the other. The exception is the IMG multisample extension. With this |
| // extension the texture is multisampled when rendered to and then auto-resolves it when it is |
| // rendered from. |
| if (desc.fSampleCnt > 1 && this->glCaps().usesMSAARenderBuffers()) { |
| GL_CALL(GenFramebuffers(1, &idDesc->fRTFBOID)); |
| GL_CALL(GenRenderbuffers(1, &idDesc->fMSColorRenderbufferID)); |
| if (!idDesc->fRTFBOID || |
| !idDesc->fMSColorRenderbufferID) { |
| goto FAILED; |
| } |
| this->glCaps().getRenderbufferFormat(desc.fConfig, &colorRenderbufferFormat); |
| } else { |
| idDesc->fRTFBOID = idDesc->fTexFBOID; |
| } |
| |
| // below here we may bind the FBO |
| fHWBoundRenderTargetUniqueID.makeInvalid(); |
| if (idDesc->fRTFBOID != idDesc->fTexFBOID) { |
| SkASSERT(desc.fSampleCnt > 1); |
| GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, idDesc->fMSColorRenderbufferID)); |
| if (!renderbuffer_storage_msaa(*fGLContext, |
| desc.fSampleCnt, |
| colorRenderbufferFormat, |
| desc.fWidth, desc.fHeight)) { |
| goto FAILED; |
| } |
| this->bindFramebuffer(GR_GL_FRAMEBUFFER, idDesc->fRTFBOID); |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_RENDERBUFFER, |
| idDesc->fMSColorRenderbufferID)); |
| if (!this->glCaps().isConfigVerifiedColorAttachment(desc.fConfig)) { |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| if (status != GR_GL_FRAMEBUFFER_COMPLETE) { |
| goto FAILED; |
| } |
| fGLContext->caps()->markConfigAsValidColorAttachment(desc.fConfig); |
| } |
| } |
| this->bindFramebuffer(GR_GL_FRAMEBUFFER, idDesc->fTexFBOID); |
| |
| if (this->glCaps().usesImplicitMSAAResolve() && desc.fSampleCnt > 1) { |
| GL_CALL(FramebufferTexture2DMultisample(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| texInfo.fTarget, |
| texInfo.fID, 0, desc.fSampleCnt)); |
| } else { |
| GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| texInfo.fTarget, |
| texInfo.fID, 0)); |
| } |
| if (!this->glCaps().isConfigVerifiedColorAttachment(desc.fConfig)) { |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| if (status != GR_GL_FRAMEBUFFER_COMPLETE) { |
| goto FAILED; |
| } |
| fGLContext->caps()->markConfigAsValidColorAttachment(desc.fConfig); |
| } |
| |
| return true; |
| |
| FAILED: |
| if (idDesc->fMSColorRenderbufferID) { |
| GL_CALL(DeleteRenderbuffers(1, &idDesc->fMSColorRenderbufferID)); |
| } |
| if (idDesc->fRTFBOID != idDesc->fTexFBOID) { |
| this->deleteFramebuffer(idDesc->fRTFBOID); |
| } |
| if (idDesc->fTexFBOID) { |
| this->deleteFramebuffer(idDesc->fTexFBOID); |
| } |
| return false; |
| } |
| |
| // good to set a break-point here to know when createTexture fails |
| static sk_sp<GrTexture> return_null_texture() { |
| // SkDEBUGFAIL("null texture"); |
| return nullptr; |
| } |
| |
| static GrGLTexture::SamplerParams set_initial_texture_params(const GrGLInterface* interface, |
| const GrGLTextureInfo& info) { |
| // Some drivers like to know filter/wrap before seeing glTexImage2D. Some |
| // drivers have a bug where an FBO won't be complete if it includes a |
| // texture that is not mipmap complete (considering the filter in use). |
| GrGLTexture::SamplerParams params; |
| params.fMinFilter = GR_GL_NEAREST; |
| params.fMagFilter = GR_GL_NEAREST; |
| params.fWrapS = GR_GL_CLAMP_TO_EDGE; |
| params.fWrapT = GR_GL_CLAMP_TO_EDGE; |
| GR_GL_CALL(interface, TexParameteri(info.fTarget, GR_GL_TEXTURE_MAG_FILTER, params.fMagFilter)); |
| GR_GL_CALL(interface, TexParameteri(info.fTarget, GR_GL_TEXTURE_MIN_FILTER, params.fMinFilter)); |
| GR_GL_CALL(interface, TexParameteri(info.fTarget, GR_GL_TEXTURE_WRAP_S, params.fWrapS)); |
| GR_GL_CALL(interface, TexParameteri(info.fTarget, GR_GL_TEXTURE_WRAP_T, params.fWrapT)); |
| return params; |
| } |
| |
| sk_sp<GrTexture> GrGLGpu::onCreateTexture(const GrSurfaceDesc& desc, |
| SkBudgeted budgeted, |
| const GrMipLevel texels[], |
| int mipLevelCount) { |
| // We fail if the MSAA was requested and is not available. |
| if (GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType() && desc.fSampleCnt > 1) { |
| //SkDebugf("MSAA RT requested but not supported on this platform."); |
| return return_null_texture(); |
| } |
| |
| bool performClear = (desc.fFlags & kPerformInitialClear_GrSurfaceFlag) && |
| !GrPixelConfigIsCompressed(desc.fConfig); |
| |
| GrMipLevel zeroLevel; |
| std::unique_ptr<uint8_t[]> zeros; |
| if (performClear && !this->glCaps().clearTextureSupport() && |
| !this->glCaps().canConfigBeFBOColorAttachment(desc.fConfig)) { |
| size_t rowSize = GrBytesPerPixel(desc.fConfig) * desc.fWidth; |
| size_t size = rowSize * desc.fHeight; |
| zeros.reset(new uint8_t[size]); |
| memset(zeros.get(), 0, size); |
| zeroLevel.fPixels = zeros.get(); |
| zeroLevel.fRowBytes = 0; |
| texels = &zeroLevel; |
| mipLevelCount = 1; |
| performClear = false; |
| } |
| |
| bool isRenderTarget = SkToBool(desc.fFlags & kRenderTarget_GrSurfaceFlag); |
| |
| GrGLTexture::IDDesc idDesc; |
| idDesc.fOwnership = GrBackendObjectOwnership::kOwned; |
| GrMipMapsStatus mipMapsStatus; |
| GrGLTexture::SamplerParams initialTexParams; |
| if (!this->createTextureImpl(desc, &idDesc.fInfo, isRenderTarget, &initialTexParams, texels, |
| mipLevelCount, &mipMapsStatus)) { |
| return return_null_texture(); |
| } |
| |
| sk_sp<GrGLTexture> tex; |
| if (isRenderTarget) { |
| // unbind the texture from the texture unit before binding it to the frame buffer |
| GL_CALL(BindTexture(idDesc.fInfo.fTarget, 0)); |
| GrGLRenderTarget::IDDesc rtIDDesc; |
| |
| if (!this->createRenderTargetObjects(desc, idDesc.fInfo, &rtIDDesc)) { |
| GL_CALL(DeleteTextures(1, &idDesc.fInfo.fID)); |
| return return_null_texture(); |
| } |
| tex = sk_make_sp<GrGLTextureRenderTarget>(this, budgeted, desc, idDesc, rtIDDesc, |
| mipMapsStatus); |
| tex->baseLevelWasBoundToFBO(); |
| } else { |
| tex = sk_make_sp<GrGLTexture>(this, budgeted, desc, idDesc, mipMapsStatus); |
| } |
| |
| tex->setCachedParams(&initialTexParams, tex->getCachedNonSamplerParams(), |
| this->getResetTimestamp()); |
| #ifdef TRACE_TEXTURE_CREATION |
| SkDebugf("--- new texture [%d] size=(%d %d) config=%d\n", |
| idDesc.fInfo.fID, desc.fWidth, desc.fHeight, desc.fConfig); |
| #endif |
| if (tex && performClear) { |
| if (this->glCaps().clearTextureSupport()) { |
| static constexpr uint32_t kZero = 0; |
| GL_CALL(ClearTexImage(tex->textureID(), 0, GR_GL_RGBA, GR_GL_UNSIGNED_BYTE, &kZero)); |
| } else { |
| GrGLIRect viewport; |
| this->bindSurfaceFBOForPixelOps(tex.get(), GR_GL_FRAMEBUFFER, &viewport, |
| kDst_TempFBOTarget); |
| this->disableScissor(); |
| this->disableWindowRectangles(); |
| GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE)); |
| fHWWriteToColor = kYes_TriState; |
| GL_CALL(ClearColor(0, 0, 0, 0)); |
| GL_CALL(Clear(GR_GL_COLOR_BUFFER_BIT)); |
| this->unbindTextureFBOForPixelOps(GR_GL_FRAMEBUFFER, tex.get()); |
| fHWBoundRenderTargetUniqueID.makeInvalid(); |
| } |
| } |
| return std::move(tex); |
| } |
| |
| namespace { |
| |
| const GrGLuint kUnknownBitCount = GrGLStencilAttachment::kUnknownBitCount; |
| |
| void inline get_stencil_rb_sizes(const GrGLInterface* gl, |
| GrGLStencilAttachment::Format* format) { |
| |
| // we shouldn't ever know one size and not the other |
| SkASSERT((kUnknownBitCount == format->fStencilBits) == |
| (kUnknownBitCount == format->fTotalBits)); |
| if (kUnknownBitCount == format->fStencilBits) { |
| GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER, |
| GR_GL_RENDERBUFFER_STENCIL_SIZE, |
| (GrGLint*)&format->fStencilBits); |
| if (format->fPacked) { |
| GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER, |
| GR_GL_RENDERBUFFER_DEPTH_SIZE, |
| (GrGLint*)&format->fTotalBits); |
| format->fTotalBits += format->fStencilBits; |
| } else { |
| format->fTotalBits = format->fStencilBits; |
| } |
| } |
| } |
| } |
| |
| int GrGLGpu::getCompatibleStencilIndex(GrPixelConfig config) { |
| static const int kSize = 16; |
| SkASSERT(this->caps()->isConfigRenderable(config)); |
| if (!this->glCaps().hasStencilFormatBeenDeterminedForConfig(config)) { |
| // Default to unsupported, set this if we find a stencil format that works. |
| int firstWorkingStencilFormatIndex = -1; |
| |
| // Create color texture |
| GrGLuint colorID = 0; |
| GL_CALL(GenTextures(1, &colorID)); |
| this->setScratchTextureUnit(); |
| GL_CALL(BindTexture(GR_GL_TEXTURE_2D, colorID)); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_MAG_FILTER, |
| GR_GL_NEAREST)); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_MIN_FILTER, |
| GR_GL_NEAREST)); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_WRAP_S, |
| GR_GL_CLAMP_TO_EDGE)); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_WRAP_T, |
| GR_GL_CLAMP_TO_EDGE)); |
| |
| GrGLenum internalFormat; |
| GrGLenum externalFormat; |
| GrGLenum externalType; |
| if (!this->glCaps().getTexImageFormats(config, config, &internalFormat, &externalFormat, |
| &externalType)) { |
| return false; |
| } |
| this->unbindCpuToGpuXferBuffer(); |
| CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); |
| GL_ALLOC_CALL(this->glInterface(), TexImage2D(GR_GL_TEXTURE_2D, |
| 0, |
| internalFormat, |
| kSize, |
| kSize, |
| 0, |
| externalFormat, |
| externalType, |
| nullptr)); |
| if (GR_GL_NO_ERROR != CHECK_ALLOC_ERROR(this->glInterface())) { |
| GL_CALL(DeleteTextures(1, &colorID)); |
| return -1; |
| } |
| |
| // unbind the texture from the texture unit before binding it to the frame buffer |
| GL_CALL(BindTexture(GR_GL_TEXTURE_2D, 0)); |
| |
| // Create Framebuffer |
| GrGLuint fb = 0; |
| GL_CALL(GenFramebuffers(1, &fb)); |
| this->bindFramebuffer(GR_GL_FRAMEBUFFER, fb); |
| fHWBoundRenderTargetUniqueID.makeInvalid(); |
| GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_TEXTURE_2D, |
| colorID, |
| 0)); |
| GrGLuint sbRBID = 0; |
| GL_CALL(GenRenderbuffers(1, &sbRBID)); |
| |
| // look over formats till I find a compatible one |
| int stencilFmtCnt = this->glCaps().stencilFormats().count(); |
| if (sbRBID) { |
| GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbRBID)); |
| for (int i = 0; i < stencilFmtCnt && sbRBID; ++i) { |
| const GrGLCaps::StencilFormat& sFmt = this->glCaps().stencilFormats()[i]; |
| CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); |
| GL_ALLOC_CALL(this->glInterface(), RenderbufferStorage(GR_GL_RENDERBUFFER, |
| sFmt.fInternalFormat, |
| kSize, kSize)); |
| if (GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(this->glInterface())) { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_STENCIL_ATTACHMENT, |
| GR_GL_RENDERBUFFER, sbRBID)); |
| if (sFmt.fPacked) { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, sbRBID)); |
| } else { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| } |
| GrGLenum status; |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| if (status == GR_GL_FRAMEBUFFER_COMPLETE) { |
| firstWorkingStencilFormatIndex = i; |
| break; |
| } |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_STENCIL_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| if (sFmt.fPacked) { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| } |
| } |
| } |
| GL_CALL(DeleteRenderbuffers(1, &sbRBID)); |
| } |
| GL_CALL(DeleteTextures(1, &colorID)); |
| this->bindFramebuffer(GR_GL_FRAMEBUFFER, 0); |
| this->deleteFramebuffer(fb); |
| fGLContext->caps()->setStencilFormatIndexForConfig(config, firstWorkingStencilFormatIndex); |
| } |
| return this->glCaps().getStencilFormatIndexForConfig(config); |
| } |
| |
| bool GrGLGpu::createTextureImpl(const GrSurfaceDesc& desc, GrGLTextureInfo* info, bool renderTarget, |
| GrGLTexture::SamplerParams* initialTexParams, |
| const GrMipLevel texels[], int mipLevelCount, |
| GrMipMapsStatus* mipMapsStatus) { |
| info->fID = 0; |
| info->fTarget = GR_GL_TEXTURE_2D; |
| GL_CALL(GenTextures(1, &(info->fID))); |
| |
| if (!info->fID) { |
| return false; |
| } |
| |
| this->setScratchTextureUnit(); |
| GL_CALL(BindTexture(info->fTarget, info->fID)); |
| |
| if (renderTarget && this->glCaps().textureUsageSupport()) { |
| // provides a hint about how this texture will be used |
| GL_CALL(TexParameteri(info->fTarget, |
| GR_GL_TEXTURE_USAGE, |
| GR_GL_FRAMEBUFFER_ATTACHMENT)); |
| } |
| |
| if (info) { |
| *initialTexParams = set_initial_texture_params(this->glInterface(), *info); |
| } |
| |
| bool success = false; |
| if (GrPixelConfigIsCompressed(desc.fConfig)) { |
| SkASSERT(!renderTarget); |
| success = this->uploadCompressedTexData(desc.fConfig, desc.fWidth, desc.fHeight, |
| info->fTarget, desc.fConfig, |
| texels, mipLevelCount, mipMapsStatus); |
| } else { |
| success = this->uploadTexData(desc.fConfig, desc.fWidth, desc.fHeight, info->fTarget, |
| kNewTexture_UploadType, 0, 0, desc.fWidth, desc.fHeight, |
| desc.fConfig, texels, mipLevelCount, mipMapsStatus); |
| } |
| if (!success) { |
| GL_CALL(DeleteTextures(1, &(info->fID))); |
| return false; |
| } |
| info->fFormat = this->glCaps().configSizedInternalFormat(desc.fConfig); |
| return true; |
| } |
| |
| GrStencilAttachment* GrGLGpu::createStencilAttachmentForRenderTarget(const GrRenderTarget* rt, |
| int width, int height) { |
| SkASSERT(width >= rt->width()); |
| SkASSERT(height >= rt->height()); |
| |
| int samples = rt->numStencilSamples(); |
| GrGLStencilAttachment::IDDesc sbDesc; |
| |
| int sIdx = this->getCompatibleStencilIndex(rt->config()); |
| if (sIdx < 0) { |
| return nullptr; |
| } |
| |
| if (!sbDesc.fRenderbufferID) { |
| GL_CALL(GenRenderbuffers(1, &sbDesc.fRenderbufferID)); |
| } |
| if (!sbDesc.fRenderbufferID) { |
| return nullptr; |
| } |
| GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbDesc.fRenderbufferID)); |
| const GrGLCaps::StencilFormat& sFmt = this->glCaps().stencilFormats()[sIdx]; |
| CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); |
| // we do this "if" so that we don't call the multisample |
| // version on a GL that doesn't have an MSAA extension. |
| if (samples > 1) { |
| SkAssertResult(renderbuffer_storage_msaa(*fGLContext, |
| samples, |
| sFmt.fInternalFormat, |
| width, height)); |
| } else { |
| GL_ALLOC_CALL(this->glInterface(), RenderbufferStorage(GR_GL_RENDERBUFFER, |
| sFmt.fInternalFormat, |
| width, height)); |
| SkASSERT(GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(this->glInterface())); |
| } |
| fStats.incStencilAttachmentCreates(); |
| // After sized formats we attempt an unsized format and take |
| // whatever sizes GL gives us. In that case we query for the size. |
| GrGLStencilAttachment::Format format = sFmt; |
| get_stencil_rb_sizes(this->glInterface(), &format); |
| GrGLStencilAttachment* stencil = new GrGLStencilAttachment(this, |
| sbDesc, |
| width, |
| height, |
| samples, |
| format); |
| return stencil; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| // GL_STREAM_DRAW triggers an optimization in Chromium's GPU process where a client's vertex buffer |
| // objects are implemented as client-side-arrays on tile-deferred architectures. |
| #define DYNAMIC_USAGE_PARAM GR_GL_STREAM_DRAW |
| |
| GrBuffer* GrGLGpu::onCreateBuffer(size_t size, GrBufferType intendedType, |
| GrAccessPattern accessPattern, const void* data) { |
| return GrGLBuffer::Create(this, size, intendedType, accessPattern, data); |
| } |
| |
| void GrGLGpu::flushScissor(const GrScissorState& scissorState, |
| const GrGLIRect& rtViewport, |
| GrSurfaceOrigin rtOrigin) { |
| if (scissorState.enabled()) { |
| GrGLIRect scissor; |
| scissor.setRelativeTo(rtViewport, scissorState.rect(), rtOrigin); |
| // if the scissor fully contains the viewport then we fall through and |
| // disable the scissor test. |
| if (!scissor.contains(rtViewport)) { |
| if (fHWScissorSettings.fRect != scissor) { |
| scissor.pushToGLScissor(this->glInterface()); |
| fHWScissorSettings.fRect = scissor; |
| } |
| if (kYes_TriState != fHWScissorSettings.fEnabled) { |
| GL_CALL(Enable(GR_GL_SCISSOR_TEST)); |
| fHWScissorSettings.fEnabled = kYes_TriState; |
| } |
| return; |
| } |
| } |
| |
| // See fall through note above |
| this->disableScissor(); |
| } |
| |
| void GrGLGpu::flushWindowRectangles(const GrWindowRectsState& windowState, |
| const GrGLRenderTarget* rt, GrSurfaceOrigin origin) { |
| #ifndef USE_NSIGHT |
| typedef GrWindowRectsState::Mode Mode; |
| SkASSERT(!windowState.enabled() || rt->renderFBOID()); // Window rects can't be used on-screen. |
| SkASSERT(windowState.numWindows() <= this->caps()->maxWindowRectangles()); |
| |
| if (!this->caps()->maxWindowRectangles() || |
| fHWWindowRectsState.knownEqualTo(origin, rt->getViewport(), windowState)) { |
| return; |
| } |
| |
| // This is purely a workaround for a spurious warning generated by gcc. Otherwise the above |
| // assert would be sufficient. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=5912 |
| int numWindows = SkTMin(windowState.numWindows(), int(GrWindowRectangles::kMaxWindows)); |
| SkASSERT(windowState.numWindows() == numWindows); |
| |
| GrGLIRect glwindows[GrWindowRectangles::kMaxWindows]; |
| const SkIRect* skwindows = windowState.windows().data(); |
| for (int i = 0; i < numWindows; ++i) { |
| glwindows[i].setRelativeTo(rt->getViewport(), skwindows[i], origin); |
| } |
| |
| GrGLenum glmode = (Mode::kExclusive == windowState.mode()) ? GR_GL_EXCLUSIVE : GR_GL_INCLUSIVE; |
| GL_CALL(WindowRectangles(glmode, numWindows, glwindows->asInts())); |
| |
| fHWWindowRectsState.set(origin, rt->getViewport(), windowState); |
| #endif |
| } |
| |
| void GrGLGpu::disableWindowRectangles() { |
| #ifndef USE_NSIGHT |
| if (!this->caps()->maxWindowRectangles() || fHWWindowRectsState.knownDisabled()) { |
| return; |
| } |
| GL_CALL(WindowRectangles(GR_GL_EXCLUSIVE, 0, nullptr)); |
| fHWWindowRectsState.setDisabled(); |
| #endif |
| } |
| |
| void GrGLGpu::resolveAndGenerateMipMapsForProcessorTextures( |
| const GrPrimitiveProcessor& primProc, |
| const GrPipeline& pipeline, |
| const GrTextureProxy* const primProcTextures[], |
| int numPrimitiveProcessorTextureSets) { |
| auto genLevelsIfNeeded = [this](GrTexture* tex, const GrSamplerState& sampler) { |
| SkASSERT(tex); |
| if (sampler.filter() == GrSamplerState::Filter::kMipMap && |
| tex->texturePriv().mipMapped() == GrMipMapped::kYes && |
| tex->texturePriv().mipMapsAreDirty()) { |
| SkASSERT(this->caps()->mipMapSupport()); |
| this->regenerateMipMapLevels(static_cast<GrGLTexture*>(tex)); |
| SkASSERT(!tex->asRenderTarget() || !tex->asRenderTarget()->needsResolve()); |
| } else if (auto* rt = tex->asRenderTarget()) { |
| if (rt->needsResolve()) { |
| this->resolveRenderTarget(rt); |
| } |
| } |
| }; |
| |
| for (int set = 0, tex = 0; set < numPrimitiveProcessorTextureSets; ++set) { |
| for (int sampler = 0; sampler < primProc.numTextureSamplers(); ++sampler, ++tex) { |
| GrTexture* texture = primProcTextures[tex]->peekTexture(); |
| genLevelsIfNeeded(texture, primProc.textureSampler(sampler).samplerState()); |
| } |
| } |
| |
| GrFragmentProcessor::Iter iter(pipeline); |
| while (const GrFragmentProcessor* fp = iter.next()) { |
| for (int i = 0; i < fp->numTextureSamplers(); ++i) { |
| const auto& textureSampler = fp->textureSampler(i); |
| genLevelsIfNeeded(textureSampler.peekTexture(), textureSampler.samplerState()); |
| } |
| } |
| } |
| |
| bool GrGLGpu::flushGLState(const GrPrimitiveProcessor& primProc, |
| const GrPipeline& pipeline, |
| const GrPipeline::FixedDynamicState* fixedDynamicState, |
| const GrPipeline::DynamicStateArrays* dynamicStateArrays, |
| int dynamicStateArraysLength, |
| bool willDrawPoints) { |
| const GrTextureProxy* const* primProcProxiesForMipRegen = nullptr; |
| const GrTextureProxy* const* primProcProxiesToBind = nullptr; |
| int numPrimProcTextureSets = 1; // number of texture per prim proc sampler. |
| if (dynamicStateArrays && dynamicStateArrays->fPrimitiveProcessorTextures) { |
| primProcProxiesForMipRegen = dynamicStateArrays->fPrimitiveProcessorTextures; |
| numPrimProcTextureSets = dynamicStateArraysLength; |
| } else if (fixedDynamicState && fixedDynamicState->fPrimitiveProcessorTextures) { |
| primProcProxiesForMipRegen = fixedDynamicState->fPrimitiveProcessorTextures; |
| primProcProxiesToBind = fixedDynamicState->fPrimitiveProcessorTextures; |
| } |
| |
| SkASSERT(SkToBool(primProcProxiesForMipRegen) == SkToBool(primProc.numTextureSamplers())); |
| |
| sk_sp<GrGLProgram> program(fProgramCache->refProgram(this, primProc, primProcProxiesForMipRegen, |
| pipeline, willDrawPoints)); |
| if (!program) { |
| GrCapsDebugf(this->caps(), "Failed to create program!\n"); |
| return false; |
| } |
| this->resolveAndGenerateMipMapsForProcessorTextures( |
| primProc, pipeline, primProcProxiesForMipRegen, numPrimProcTextureSets); |
| |
| GrXferProcessor::BlendInfo blendInfo; |
| pipeline.getXferProcessor().getBlendInfo(&blendInfo); |
| |
| this->flushColorWrite(blendInfo.fWriteColor); |
| |
| this->flushProgram(std::move(program)); |
| |
| // Swizzle the blend to match what the shader will output. |
| const GrSwizzle& swizzle = this->caps()->shaderCaps()->configOutputSwizzle( |
| pipeline.proxy()->config()); |
| this->flushBlend(blendInfo, swizzle); |
| |
| fHWProgram->updateUniformsAndTextureBindings(primProc, pipeline, primProcProxiesToBind); |
| |
| GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(pipeline.renderTarget()); |
| GrStencilSettings stencil; |
| if (pipeline.isStencilEnabled()) { |
| // TODO: attach stencil and create settings during render target flush. |
| SkASSERT(glRT->renderTargetPriv().getStencilAttachment()); |
| stencil.reset(*pipeline.getUserStencil(), pipeline.hasStencilClip(), |
| glRT->renderTargetPriv().numStencilBits()); |
| } |
| this->flushStencil(stencil); |
| if (pipeline.isScissorEnabled()) { |
| static constexpr SkIRect kBogusScissor{0, 0, 1, 1}; |
| GrScissorState state(fixedDynamicState ? fixedDynamicState->fScissorRect : kBogusScissor); |
| this->flushScissor(state, glRT->getViewport(), pipeline.proxy()->origin()); |
| } else { |
| this->disableScissor(); |
| } |
| this->flushWindowRectangles(pipeline.getWindowRectsState(), glRT, pipeline.proxy()->origin()); |
| this->flushHWAAState(glRT, pipeline.isHWAntialiasState(), !stencil.isDisabled()); |
| |
| // This must come after textures are flushed because a texture may need |
| // to be msaa-resolved (which will modify bound FBO state). |
| this->flushRenderTarget(glRT); |
| |
| return true; |
| } |
| |
| void GrGLGpu::flushProgram(sk_sp<GrGLProgram> program) { |
| if (!program) { |
| fHWProgram.reset(); |
| fHWProgramID = 0; |
| return; |
| } |
| SkASSERT((program == fHWProgram) == (fHWProgramID == program->programID())); |
| if (program == fHWProgram) { |
| return; |
| } |
| auto id = program->programID(); |
| SkASSERT(id); |
| GL_CALL(UseProgram(id)); |
| fHWProgram = std::move(program); |
| fHWProgramID = id; |
| } |
| |
| void GrGLGpu::flushProgram(GrGLuint id) { |
| SkASSERT(id); |
| if (fHWProgramID == id) { |
| SkASSERT(!fHWProgram); |
| return; |
| } |
| fHWProgram.reset(); |
| GL_CALL(UseProgram(id)); |
| fHWProgramID = id; |
| } |
| |
| void GrGLGpu::setupGeometry(const GrBuffer* indexBuffer, |
| const GrBuffer* vertexBuffer, |
| int baseVertex, |
| const GrBuffer* instanceBuffer, |
| int baseInstance, |
| GrPrimitiveRestart enablePrimitiveRestart) { |
| SkASSERT((enablePrimitiveRestart == GrPrimitiveRestart::kNo) || indexBuffer); |
| |
| GrGLAttribArrayState* attribState; |
| if (indexBuffer) { |
| SkASSERT(indexBuffer && !indexBuffer->isMapped()); |
| attribState = fHWVertexArrayState.bindInternalVertexArray(this, indexBuffer); |
| } else { |
| attribState = fHWVertexArrayState.bindInternalVertexArray(this); |
| } |
| |
| int numAttribs = fHWProgram->numVertexAttributes() + fHWProgram->numInstanceAttributes(); |
| attribState->enableVertexArrays(this, numAttribs, enablePrimitiveRestart); |
| |
| if (int vertexStride = fHWProgram->vertexStride()) { |
| SkASSERT(vertexBuffer && !vertexBuffer->isMapped()); |
| size_t bufferOffset = vertexBuffer->baseOffset(); |
| bufferOffset += baseVertex * static_cast<size_t>(vertexStride); |
| for (int i = 0; i < fHWProgram->numVertexAttributes(); ++i) { |
| const auto& attrib = fHWProgram->vertexAttribute(i); |
| static constexpr int kDivisor = 0; |
| attribState->set(this, attrib.fLocation, vertexBuffer, attrib.fCPUType, attrib.fGPUType, |
| vertexStride, bufferOffset + attrib.fOffset, kDivisor); |
| } |
| } |
| if (int instanceStride = fHWProgram->instanceStride()) { |
| SkASSERT(instanceBuffer && !instanceBuffer->isMapped()); |
| size_t bufferOffset = instanceBuffer->baseOffset(); |
| bufferOffset += baseInstance * static_cast<size_t>(instanceStride); |
| int attribIdx = fHWProgram->numVertexAttributes(); |
| for (int i = 0; i < fHWProgram->numInstanceAttributes(); ++i, ++attribIdx) { |
| const auto& attrib = fHWProgram->instanceAttribute(i); |
| static constexpr int kDivisor = 1; |
| attribState->set(this, attrib.fLocation, instanceBuffer, attrib.fCPUType, |
| attrib.fGPUType, instanceStride, bufferOffset + attrib.fOffset, |
| kDivisor); |
| } |
| } |
| } |
| |
| GrGLenum GrGLGpu::bindBuffer(GrBufferType type, const GrBuffer* buffer) { |
| this->handleDirtyContext(); |
| |
| // Index buffer state is tied to the vertex array. |
| if (kIndex_GrBufferType == type) { |
| this->bindVertexArray(0); |
| } |
| |
| SkASSERT(type >= 0 && type <= kLast_GrBufferType); |
| auto& bufferState = fHWBufferState[type]; |
| |
| if (buffer->uniqueID() != bufferState.fBoundBufferUniqueID) { |
| if (buffer->isCPUBacked()) { |
| if (!bufferState.fBufferZeroKnownBound) { |
| GL_CALL(BindBuffer(bufferState.fGLTarget, 0)); |
| } |
| } else { |
| const GrGLBuffer* glBuffer = static_cast<const GrGLBuffer*>(buffer); |
| GL_CALL(BindBuffer(bufferState.fGLTarget, glBuffer->bufferID())); |
| } |
| bufferState.fBufferZeroKnownBound = buffer->isCPUBacked(); |
| bufferState.fBoundBufferUniqueID = buffer->uniqueID(); |
| } |
| |
| return bufferState.fGLTarget; |
| } |
| void GrGLGpu::disableScissor() { |
| if (kNo_TriState != fHWScissorSettings.fEnabled) { |
| GL_CALL(Disable(GR_GL_SCISSOR_TEST)); |
| fHWScissorSettings.fEnabled = kNo_TriState; |
| return; |
| } |
| } |
| |
| void GrGLGpu::clear(const GrFixedClip& clip, const SkPMColor4f& color, |
| GrRenderTarget* target, GrSurfaceOrigin origin) { |
| // parent class should never let us get here with no RT |
| SkASSERT(target); |
| SkASSERT(!this->caps()->performColorClearsAsDraws()); |
| SkASSERT(!clip.scissorEnabled() || !this->caps()->performPartialClearsAsDraws()); |
| |
| this->handleDirtyContext(); |
| |
| GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(target); |
| |
| if (clip.scissorEnabled()) { |
| this->flushRenderTarget(glRT, origin, clip.scissorRect()); |
| } else { |
| this->flushRenderTarget(glRT); |
| } |
| this->flushScissor(clip.scissorState(), glRT->getViewport(), origin); |
| this->flushWindowRectangles(clip.windowRectsState(), glRT, origin); |
| |
| GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE)); |
| fHWWriteToColor = kYes_TriState; |
| |
| GrGLfloat r = color.fR, g = color.fG, b = color.fB, a = color.fA; |
| |
| if (this->glCaps().clearToBoundaryValuesIsBroken() && |
| (1 == r || 0 == r) && (1 == g || 0 == g) && (1 == b || 0 == b) && (1 == a || 0 == a)) { |
| static const GrGLfloat safeAlpha1 = nextafter(1.f, 2.f); |
| static const GrGLfloat safeAlpha0 = nextafter(0.f, -1.f); |
| a = (1 == a) ? safeAlpha1 : safeAlpha0; |
| } |
| GL_CALL(ClearColor(r, g, b, a)); |
| GL_CALL(Clear(GR_GL_COLOR_BUFFER_BIT)); |
| } |
| |
| void GrGLGpu::clearStencil(GrRenderTarget* target, int clearValue) { |
| SkASSERT(!this->caps()->performStencilClearsAsDraws()); |
| |
| if (!target) { |
| return; |
| } |
| |
| GrStencilAttachment* sb = target->renderTargetPriv().getStencilAttachment(); |
| // this should only be called internally when we know we have a |
| // stencil buffer. |
| SkASSERT(sb); |
| |
| GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(target); |
| this->flushRenderTargetNoColorWrites(glRT); |
| |
| this->disableScissor(); |
| this->disableWindowRectangles(); |
| |
| GL_CALL(StencilMask(0xffffffff)); |
| GL_CALL(ClearStencil(clearValue)); |
| GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT)); |
| fHWStencilSettings.invalidate(); |
| if (!clearValue) { |
| sb->cleared(); |
| } |
| } |
| |
| void GrGLGpu::clearStencilClip(const GrFixedClip& clip, |
| bool insideStencilMask, |
| GrRenderTarget* target, GrSurfaceOrigin origin) { |
| SkASSERT(target); |
| SkASSERT(!this->caps()->performStencilClearsAsDraws()); |
| this->handleDirtyContext(); |
| |
| GrStencilAttachment* sb = target->renderTargetPriv().getStencilAttachment(); |
| // this should only be called internally when we know we have a |
| // stencil buffer. |
| SkASSERT(sb); |
| GrGLint stencilBitCount = sb->bits(); |
| #if 0 |
| SkASSERT(stencilBitCount > 0); |
| GrGLint clipStencilMask = (1 << (stencilBitCount - 1)); |
| #else |
| // we could just clear the clip bit but when we go through |
| // ANGLE a partial stencil mask will cause clears to be |
| // turned into draws. Our contract on GrOpList says that |
| // changing the clip between stencil passes may or may not |
| // zero the client's clip bits. So we just clear the whole thing. |
| static const GrGLint clipStencilMask = ~0; |
| #endif |
| GrGLint value; |
| if (insideStencilMask) { |
| value = (1 << (stencilBitCount - 1)); |
| } else { |
| value = 0; |
| } |
| GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(target); |
| this->flushRenderTargetNoColorWrites(glRT); |
| |
| this->flushScissor(clip.scissorState(), glRT->getViewport(), origin); |
| this->flushWindowRectangles(clip.windowRectsState(), glRT, origin); |
| |
| GL_CALL(StencilMask((uint32_t) clipStencilMask)); |
| GL_CALL(ClearStencil(value)); |
| GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT)); |
| fHWStencilSettings.invalidate(); |
| } |
| |
| bool GrGLGpu::readPixelsSupported(GrRenderTarget* target, GrPixelConfig readConfig) { |
| #ifdef SK_BUILD_FOR_MAC |
| // Chromium may ask us to read back from locked IOSurfaces. Calling the command buffer's |
| // glGetIntegerv() with GL_IMPLEMENTATION_COLOR_READ_FORMAT/_TYPE causes the command buffer |
| // to make a call to check the framebuffer status which can hang the driver. So in Mac Chromium |
| // we always use a temporary surface to test for read pixels support. |
| // https://www.crbug.com/662802 |
| if (this->glContext().driver() == kChromium_GrGLDriver) { |
| return this->readPixelsSupported(target->config(), readConfig); |
| } |
| #endif |
| auto bindRenderTarget = [this, target]() -> bool { |
| this->flushRenderTargetNoColorWrites(static_cast<GrGLRenderTarget*>(target)); |
| return true; |
| }; |
| auto unbindRenderTarget = []{}; |
| auto getIntegerv = [this](GrGLenum query, GrGLint* value) { |
| GR_GL_GetIntegerv(this->glInterface(), query, value); |
| }; |
| GrPixelConfig rtConfig = target->config(); |
| return this->glCaps().readPixelsSupported(rtConfig, readConfig, getIntegerv, bindRenderTarget, |
| unbindRenderTarget); |
| } |
| |
| bool GrGLGpu::readPixelsSupported(GrPixelConfig rtConfig, GrPixelConfig readConfig) { |
| sk_sp<GrTexture> temp; |
| auto bindRenderTarget = [this, rtConfig, &temp]() -> bool { |
| GrSurfaceDesc desc; |
| desc.fConfig = rtConfig; |
| desc.fWidth = desc.fHeight = 16; |
| if (this->glCaps().isConfigRenderable(rtConfig)) { |
| desc.fFlags = kRenderTarget_GrSurfaceFlag; |
| temp = this->createTexture(desc, SkBudgeted::kNo); |
| if (!temp) { |
| return false; |
| } |
| GrGLRenderTarget* glrt = static_cast<GrGLRenderTarget*>(temp->asRenderTarget()); |
| this->flushRenderTargetNoColorWrites(glrt); |
| return true; |
| } else if (this->glCaps().canConfigBeFBOColorAttachment(rtConfig)) { |
| temp = this->createTexture(desc, SkBudgeted::kNo); |
| if (!temp) { |
| return false; |
| } |
| GrGLIRect vp; |
| this->bindSurfaceFBOForPixelOps(temp.get(), GR_GL_FRAMEBUFFER, &vp, kDst_TempFBOTarget); |
| fHWBoundRenderTargetUniqueID.makeInvalid(); |
| return true; |
| } |
| return false; |
| }; |
| auto unbindRenderTarget = [this, &temp]() { |
| this->unbindTextureFBOForPixelOps(GR_GL_FRAMEBUFFER, temp.get()); |
| }; |
| auto getIntegerv = [this](GrGLenum query, GrGLint* value) { |
| GR_GL_GetIntegerv(this->glInterface(), query, value); |
| }; |
| return this->glCaps().readPixelsSupported(rtConfig, readConfig, getIntegerv, bindRenderTarget, |
| unbindRenderTarget); |
| } |
| |
| bool GrGLGpu::readPixelsSupported(GrSurface* surfaceForConfig, GrPixelConfig readConfig) { |
| if (GrRenderTarget* rt = surfaceForConfig->asRenderTarget()) { |
| return this->readPixelsSupported(rt, readConfig); |
| } else { |
| GrPixelConfig config = surfaceForConfig->config(); |
| return this->readPixelsSupported(config, readConfig); |
| } |
| } |
| |
| bool GrGLGpu::onReadPixels(GrSurface* surface, int left, int top, int width, int height, |
| GrColorType dstColorType, void* buffer, size_t rowBytes) { |
| SkASSERT(surface); |
| |
| GrGLRenderTarget* renderTarget = static_cast<GrGLRenderTarget*>(surface->asRenderTarget()); |
| if (!renderTarget && !this->glCaps().canConfigBeFBOColorAttachment(surface->config())) { |
| return false; |
| } |
| |
| // TODO: Avoid this conversion by making GrGLCaps work with color types. |
| auto dstAsConfig = GrColorTypeToPixelConfig(dstColorType, GrSRGBEncoded::kNo); |
| |
| if (!this->readPixelsSupported(surface, dstAsConfig)) { |
| return false; |
| } |
| |
| GrGLenum externalFormat; |
| GrGLenum externalType; |
| if (!this->glCaps().getReadPixelsFormat(surface->config(), dstAsConfig, &externalFormat, |
| &externalType)) { |
| return false; |
| } |
| |
| GrGLIRect glvp; |
| if (renderTarget) { |
| // resolve the render target if necessary |
| switch (renderTarget->getResolveType()) { |
| case GrGLRenderTarget::kCantResolve_ResolveType: |
| return false; |
| case GrGLRenderTarget::kAutoResolves_ResolveType: |
| this->flushRenderTargetNoColorWrites(renderTarget); |
| break; |
| case GrGLRenderTarget::kCanResolve_ResolveType: |
| this->onResolveRenderTarget(renderTarget); |
| // we don't track the state of the READ FBO ID. |
| this->bindFramebuffer(GR_GL_READ_FRAMEBUFFER, renderTarget->textureFBOID()); |
| break; |
| default: |
| SK_ABORT("Unknown resolve type"); |
| } |
| glvp = renderTarget->getViewport(); |
| } else { |
| // Use a temporary FBO. |
| this->bindSurfaceFBOForPixelOps(surface, GR_GL_FRAMEBUFFER, &glvp, kSrc_TempFBOTarget); |
| fHWBoundRenderTargetUniqueID.makeInvalid(); |
| } |
| |
| // the read rect is viewport-relative |
| GrGLIRect readRect; |
| readRect.setRelativeTo(glvp, left, top, width, height, kTopLeft_GrSurfaceOrigin); |
| |
| int bytesPerPixel = GrBytesPerPixel(dstAsConfig); |
| size_t tightRowBytes = bytesPerPixel * width; |
| |
| size_t readDstRowBytes = tightRowBytes; |
| void* readDst = buffer; |
| |
| // determine if GL can read using the passed rowBytes or if we need a scratch buffer. |
| SkAutoSMalloc<32 * sizeof(GrColor)> scratch; |
| if (rowBytes != tightRowBytes) { |
| if (this->glCaps().packRowLengthSupport() && !(rowBytes % bytesPerPixel)) { |
| GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, |
| static_cast<GrGLint>(rowBytes / bytesPerPixel))); |
| readDstRowBytes = rowBytes; |
| } else { |
| scratch.reset(tightRowBytes * height); |
| readDst = scratch.get(); |
| } |
| } |
| GL_CALL(PixelStorei(GR_GL_PACK_ALIGNMENT, config_alignment(dstAsConfig))); |
| |
| bool reattachStencil = false; |
| if (this->glCaps().detachStencilFromMSAABuffersBeforeReadPixels() && |
| renderTarget && |
| renderTarget->renderTargetPriv().getStencilAttachment() && |
| renderTarget->numColorSamples() > 1) { |
| // Fix Adreno devices that won't read from MSAA framebuffers with stencil attached |
| reattachStencil = true; |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| } |
| |
| GL_CALL(ReadPixels(readRect.fLeft, readRect.fBottom, |
| readRect.fWidth, readRect.fHeight, |
| externalFormat, externalType, readDst)); |
| |
| if (reattachStencil) { |
| GrGLStencilAttachment* stencilAttachment = static_cast<GrGLStencilAttachment*>( |
| renderTarget->renderTargetPriv().getStencilAttachment()); |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT, |
| GR_GL_RENDERBUFFER, stencilAttachment->renderbufferID())); |
| } |
| |
| if (readDstRowBytes != tightRowBytes) { |
| SkASSERT(this->glCaps().packRowLengthSupport()); |
| GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0)); |
| } |
| |
| if (readDst != buffer) { |
| SkASSERT(readDst != buffer); |
| SkASSERT(rowBytes != tightRowBytes); |
| const char* src = reinterpret_cast<const char*>(readDst); |
| char* dst = reinterpret_cast<char*>(buffer); |
| SkRectMemcpy(dst, rowBytes, src, readDstRowBytes, tightRowBytes, height); |
| } |
| if (!renderTarget) { |
| this->unbindTextureFBOForPixelOps(GR_GL_FRAMEBUFFER, surface); |
| } |
| return true; |
| } |
| |
| GrGpuRTCommandBuffer* GrGLGpu::getCommandBuffer( |
| GrRenderTarget* rt, GrSurfaceOrigin origin, const SkRect& bounds, |
| const GrGpuRTCommandBuffer::LoadAndStoreInfo& colorInfo, |
| const GrGpuRTCommandBuffer::StencilLoadAndStoreInfo& stencilInfo) { |
| if (!fCachedRTCommandBuffer) { |
| fCachedRTCommandBuffer.reset(new GrGLGpuRTCommandBuffer(this)); |
| } |
| |
| fCachedRTCommandBuffer->set(rt, origin, colorInfo, stencilInfo); |
| return fCachedRTCommandBuffer.get(); |
| } |
| |
| GrGpuTextureCommandBuffer* GrGLGpu::getCommandBuffer(GrTexture* texture, GrSurfaceOrigin origin) { |
| if (!fCachedTexCommandBuffer) { |
| fCachedTexCommandBuffer.reset(new GrGLGpuTextureCommandBuffer(this)); |
| } |
| |
| fCachedTexCommandBuffer->set(texture, origin); |
| return fCachedTexCommandBuffer.get(); |
| } |
| |
| void GrGLGpu::flushRenderTarget(GrGLRenderTarget* target, GrSurfaceOrigin origin, |
| const SkIRect& bounds) { |
| this->flushRenderTargetNoColorWrites(target); |
| this->didWriteToSurface(target, origin, &bounds); |
| } |
| |
| void GrGLGpu::flushRenderTarget(GrGLRenderTarget* target) { |
| this->flushRenderTargetNoColorWrites(target); |
| this->didWriteToSurface(target, kTopLeft_GrSurfaceOrigin, nullptr); |
| } |
| |
| void GrGLGpu::flushRenderTargetNoColorWrites(GrGLRenderTarget* target) { |
| SkASSERT(target); |
| GrGpuResource::UniqueID rtID = target->uniqueID(); |
| if (fHWBoundRenderTargetUniqueID != rtID) { |
| this->bindFramebuffer(GR_GL_FRAMEBUFFER, target->renderFBOID()); |
| #ifdef SK_DEBUG |
| // don't do this check in Chromium -- this is causing |
| // lots of repeated command buffer flushes when the compositor is |
| // rendering with Ganesh, which is really slow; even too slow for |
| // Debug mode. |
| if (kChromium_GrGLDriver != this->glContext().driver()) { |
| GrGLenum status; |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| if (status != GR_GL_FRAMEBUFFER_COMPLETE) { |
| SkDebugf("GrGLGpu::flushRenderTarget glCheckFramebufferStatus %x\n", status); |
| } |
| } |
| #endif |
| fHWBoundRenderTargetUniqueID = rtID; |
| this->flushViewport(target->getViewport()); |
| } |
| |
| if (this->glCaps().srgbWriteControl()) { |
| this->flushFramebufferSRGB(GrPixelConfigIsSRGB(target->config())); |
| } |
| } |
| |
| void GrGLGpu::flushFramebufferSRGB(bool enable) { |
| if (enable && kYes_TriState != fHWSRGBFramebuffer) { |
| GL_CALL(Enable(GR_GL_FRAMEBUFFER_SRGB)); |
| fHWSRGBFramebuffer = kYes_TriState; |
| } else if (!enable && kNo_TriState != fHWSRGBFramebuffer) { |
| GL_CALL(Disable(GR_GL_FRAMEBUFFER_SRGB)); |
| fHWSRGBFramebuffer = kNo_TriState; |
| } |
| } |
| |
| void GrGLGpu::flushViewport(const GrGLIRect& viewport) { |
| if (fHWViewport != viewport) { |
| viewport.pushToGLViewport(this->glInterface()); |
| fHWViewport = viewport; |
| } |
| } |
| |
| #define SWAP_PER_DRAW 0 |
| |
| #if SWAP_PER_DRAW |
| #if defined(SK_BUILD_FOR_MAC) |
| #include <AGL/agl.h> |
| #elif defined(SK_BUILD_FOR_WIN) |
| #include <gl/GL.h> |
| void SwapBuf() { |
| DWORD procID = GetCurrentProcessId(); |
| HWND hwnd = GetTopWindow(GetDesktopWindow()); |
| while(hwnd) { |
| DWORD wndProcID = 0; |
| GetWindowThreadProcessId(hwnd, &wndProcID); |
| if(wndProcID == procID) { |
| SwapBuffers(GetDC(hwnd)); |
| } |
| hwnd = GetNextWindow(hwnd, GW_HWNDNEXT); |
| } |
| } |
| #endif |
| #endif |
| |
| void GrGLGpu::draw(const GrPrimitiveProcessor& primProc, |
| const GrPipeline& pipeline, |
| const GrPipeline::FixedDynamicState* fixedDynamicState, |
| const GrPipeline::DynamicStateArrays* dynamicStateArrays, |
| const GrMesh meshes[], |
| int meshCount) { |
| this->handleDirtyContext(); |
| |
| bool hasPoints = false; |
| for (int i = 0; i < meshCount; ++i) { |
| if (meshes[i].primitiveType() == GrPrimitiveType::kPoints) { |
| hasPoints = true; |
| break; |
| } |
| } |
| if (!this->flushGLState(primProc, pipeline, fixedDynamicState, dynamicStateArrays, meshCount, |
| hasPoints)) { |
| return; |
| } |
| |
| bool dynamicScissor = false; |
| bool dynamicPrimProcTextures = false; |
| if (dynamicStateArrays) { |
| dynamicScissor = pipeline.isScissorEnabled() && dynamicStateArrays->fScissorRects; |
| dynamicPrimProcTextures = dynamicStateArrays->fPrimitiveProcessorTextures; |
| } |
| for (int m = 0; m < meshCount; ++m) { |
| if (GrXferBarrierType barrierType = pipeline.xferBarrierType(*this->caps())) { |
| this->xferBarrier(pipeline.renderTarget(), barrierType); |
| } |
| |
| if (dynamicScissor) { |
| GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(pipeline.renderTarget()); |
| this->flushScissor(GrScissorState(dynamicStateArrays->fScissorRects[m]), |
| glRT->getViewport(), pipeline.proxy()->origin()); |
| } |
| if (dynamicPrimProcTextures) { |
| auto texProxyArray = dynamicStateArrays->fPrimitiveProcessorTextures + |
| m * primProc.numTextureSamplers(); |
| fHWProgram->updatePrimitiveProcessorTextureBindings(primProc, texProxyArray); |
| } |
| if (this->glCaps().requiresCullFaceEnableDisableWhenDrawingLinesAfterNonLines() && |
| GrIsPrimTypeLines(meshes[m].primitiveType()) && |
| !GrIsPrimTypeLines(fLastPrimitiveType)) { |
| GL_CALL(Enable(GR_GL_CULL_FACE)); |
| GL_CALL(Disable(GR_GL_CULL_FACE)); |
| } |
| meshes[m].sendToGpu(this); |
| fLastPrimitiveType = meshes[m].primitiveType(); |
| } |
| |
| #if SWAP_PER_DRAW |
| glFlush(); |
| #if defined(SK_BUILD_FOR_MAC) |
| aglSwapBuffers(aglGetCurrentContext()); |
| int set_a_break_pt_here = 9; |
| aglSwapBuffers(aglGetCurrentContext()); |
| #elif defined(SK_BUILD_FOR_WIN) |
| SwapBuf(); |
| int set_a_break_pt_here = 9; |
| SwapBuf(); |
| #endif |
| #endif |
| } |
| |
| static GrGLenum gr_primitive_type_to_gl_mode(GrPrimitiveType primitiveType) { |
| switch (primitiveType) { |
| case GrPrimitiveType::kTriangles: |
| return GR_GL_TRIANGLES; |
| case GrPrimitiveType::kTriangleStrip: |
| return GR_GL_TRIANGLE_STRIP; |
| case GrPrimitiveType::kPoints: |
| return GR_GL_POINTS; |
| case GrPrimitiveType::kLines: |
| return GR_GL_LINES; |
| case GrPrimitiveType::kLineStrip: |
| return GR_GL_LINE_STRIP; |
| case GrPrimitiveType::kLinesAdjacency: |
| return GR_GL_LINES_ADJACENCY; |
| } |
| SK_ABORT("invalid GrPrimitiveType"); |
| return GR_GL_TRIANGLES; |
| } |
| |
| void GrGLGpu::sendMeshToGpu(GrPrimitiveType primitiveType, const GrBuffer* vertexBuffer, |
| int vertexCount, int baseVertex) { |
| const GrGLenum glPrimType = gr_primitive_type_to_gl_mode(primitiveType); |
| if (this->glCaps().drawArraysBaseVertexIsBroken()) { |
| this->setupGeometry(nullptr, vertexBuffer, baseVertex, nullptr, 0, GrPrimitiveRestart::kNo); |
| GL_CALL(DrawArrays(glPrimType, 0, vertexCount)); |
| } else { |
| this->setupGeometry(nullptr, vertexBuffer, 0, nullptr, 0, GrPrimitiveRestart::kNo); |
| GL_CALL(DrawArrays(glPrimType, baseVertex, vertexCount)); |
| } |
| fStats.incNumDraws(); |
| } |
| |
| void GrGLGpu::sendIndexedMeshToGpu(GrPrimitiveType primitiveType, const GrBuffer* indexBuffer, |
| int indexCount, int baseIndex, uint16_t minIndexValue, |
| uint16_t maxIndexValue, const GrBuffer* vertexBuffer, |
| int baseVertex, GrPrimitiveRestart enablePrimitiveRestart) { |
| const GrGLenum glPrimType = gr_primitive_type_to_gl_mode(primitiveType); |
| GrGLvoid* const indices = reinterpret_cast<void*>(indexBuffer->baseOffset() + |
| sizeof(uint16_t) * baseIndex); |
| |
| this->setupGeometry(indexBuffer, vertexBuffer, baseVertex, nullptr, 0, enablePrimitiveRestart); |
| |
| if (this->glCaps().drawRangeElementsSupport()) { |
| GL_CALL(DrawRangeElements(glPrimType, minIndexValue, maxIndexValue, indexCount, |
| GR_GL_UNSIGNED_SHORT, indices)); |
| } else { |
| GL_CALL(DrawElements(glPrimType, indexCount, GR_GL_UNSIGNED_SHORT, indices)); |
| } |
| fStats.incNumDraws(); |
| } |
| |
| void GrGLGpu::sendInstancedMeshToGpu(GrPrimitiveType primitiveType, const GrBuffer* vertexBuffer, |
| int vertexCount, int baseVertex, |
| const GrBuffer* instanceBuffer, int instanceCount, |
| int baseInstance) { |
| GrGLenum glPrimType = gr_primitive_type_to_gl_mode(primitiveType); |
| int maxInstances = this->glCaps().maxInstancesPerDrawWithoutCrashing(instanceCount); |
| for (int i = 0; i < instanceCount; i += maxInstances) { |
| this->setupGeometry(nullptr, vertexBuffer, 0, instanceBuffer, baseInstance + i, |
| GrPrimitiveRestart::kNo); |
| GL_CALL(DrawArraysInstanced(glPrimType, baseVertex, vertexCount, |
| SkTMin(instanceCount - i, maxInstances))); |
| fStats.incNumDraws(); |
| } |
| } |
| |
| void GrGLGpu::sendIndexedInstancedMeshToGpu(GrPrimitiveType primitiveType, |
| const GrBuffer* indexBuffer, int indexCount, |
| int baseIndex, const GrBuffer* vertexBuffer, |
| int baseVertex, const GrBuffer* instanceBuffer, |
| int instanceCount, int baseInstance, |
| GrPrimitiveRestart enablePrimitiveRestart) { |
| const GrGLenum glPrimType = gr_primitive_type_to_gl_mode(primitiveType); |
| GrGLvoid* indices = reinterpret_cast<void*>(indexBuffer->baseOffset() + |
| sizeof(uint16_t) * baseIndex); |
| int maxInstances = this->glCaps().maxInstancesPerDrawWithoutCrashing(instanceCount); |
| for (int i = 0; i < instanceCount; i += maxInstances) { |
| this->setupGeometry(indexBuffer, vertexBuffer, baseVertex, instanceBuffer, baseInstance + i, |
| enablePrimitiveRestart); |
| GL_CALL(DrawElementsInstanced(glPrimType, indexCount, GR_GL_UNSIGNED_SHORT, indices, |
| SkTMin(instanceCount - i, maxInstances))); |
| fStats.incNumDraws(); |
| } |
| } |
| |
| void GrGLGpu::onResolveRenderTarget(GrRenderTarget* target) { |
| GrGLRenderTarget* rt = static_cast<GrGLRenderTarget*>(target); |
| if (rt->needsResolve()) { |
| // Some extensions automatically resolves the texture when it is read. |
| if (this->glCaps().usesMSAARenderBuffers()) { |
| SkASSERT(rt->textureFBOID() != rt->renderFBOID()); |
| SkASSERT(rt->textureFBOID() != 0 && rt->renderFBOID() != 0); |
| this->bindFramebuffer(GR_GL_READ_FRAMEBUFFER, rt->renderFBOID()); |
| this->bindFramebuffer(GR_GL_DRAW_FRAMEBUFFER, rt->textureFBOID()); |
| |
| // make sure we go through flushRenderTarget() since we've modified |
| // the bound DRAW FBO ID. |
| fHWBoundRenderTargetUniqueID.makeInvalid(); |
| const GrGLIRect& vp = rt->getViewport(); |
| const SkIRect dirtyRect = rt->getResolveRect(); |
| // The dirty rect tracked on the RT is always stored in the native coordinates of the |
| // surface. Choose kTopLeft so no adjustments are made |
| static constexpr auto kDirtyRectOrigin = kTopLeft_GrSurfaceOrigin; |
| if (GrGLCaps::kES_Apple_MSFBOType == this->glCaps().msFBOType()) { |
| // Apple's extension uses the scissor as the blit bounds. |
| GrScissorState scissorState; |
| scissorState.set(dirtyRect); |
| this->flushScissor(scissorState, vp, kDirtyRectOrigin); |
| this->disableWindowRectangles(); |
| GL_CALL(ResolveMultisampleFramebuffer()); |
| } else { |
| int l, b, r, t; |
| if (GrGLCaps::kResolveMustBeFull_BlitFrambufferFlag & |
| this->glCaps().blitFramebufferSupportFlags()) { |
| l = 0; |
| b = 0; |
| r = target->width(); |
| t = target->height(); |
| } else { |
| GrGLIRect rect; |
| rect.setRelativeTo(vp, dirtyRect, kDirtyRectOrigin); |
| l = rect.fLeft; |
| b = rect.fBottom; |
| r = rect.fLeft + rect.fWidth; |
| t = rect.fBottom + rect.fHeight; |
| } |
| |
| // BlitFrameBuffer respects the scissor, so disable it. |
| this->disableScissor(); |
| this->disableWindowRectangles(); |
| GL_CALL(BlitFramebuffer(l, b, r, t, l, b, r, t, |
| GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST)); |
| } |
| } |
| rt->flagAsResolved(); |
| } |
| } |
| |
| namespace { |
| |
| |
| GrGLenum gr_to_gl_stencil_op(GrStencilOp op) { |
| static const GrGLenum gTable[kGrStencilOpCount] = { |
| GR_GL_KEEP, // kKeep |
| GR_GL_ZERO, // kZero |
| GR_GL_REPLACE, // kReplace |
| GR_GL_INVERT, // kInvert |
| GR_GL_INCR_WRAP, // kIncWrap |
| GR_GL_DECR_WRAP, // kDecWrap |
| GR_GL_INCR, // kIncClamp |
| GR_GL_DECR, // kDecClamp |
| }; |
| GR_STATIC_ASSERT(0 == (int)GrStencilOp::kKeep); |
| GR_STATIC_ASSERT(1 == (int)GrStencilOp::kZero); |
| GR_STATIC_ASSERT(2 == (int)GrStencilOp::kReplace); |
| GR_STATIC_ASSERT(3 == (int)GrStencilOp::kInvert); |
| GR_STATIC_ASSERT(4 == (int)GrStencilOp::kIncWrap); |
| GR_STATIC_ASSERT(5 == (int)GrStencilOp::kDecWrap); |
| GR_STATIC_ASSERT(6 == (int)GrStencilOp::kIncClamp); |
| GR_STATIC_ASSERT(7 == (int)GrStencilOp::kDecClamp); |
| SkASSERT(op < (GrStencilOp)kGrStencilOpCount); |
| return gTable[(int)op]; |
| } |
| |
| void set_gl_stencil(const GrGLInterface* gl, |
| const GrStencilSettings::Face& face, |
| GrGLenum glFace) { |
| GrGLenum glFunc = GrToGLStencilFunc(face.fTest); |
| GrGLenum glFailOp = gr_to_gl_stencil_op(face.fFailOp); |
| GrGLenum glPassOp = gr_to_gl_stencil_op(face.fPassOp); |
| |
| GrGLint ref = face.fRef; |
| GrGLint mask = face.fTestMask; |
| GrGLint writeMask = face.fWriteMask; |
| |
| if (GR_GL_FRONT_AND_BACK == glFace) { |
| // we call the combined func just in case separate stencil is not |
| // supported. |
| GR_GL_CALL(gl, StencilFunc(glFunc, ref, mask)); |
| GR_GL_CALL(gl, StencilMask(writeMask)); |
| GR_GL_CALL(gl, StencilOp(glFailOp, GR_GL_KEEP, glPassOp)); |
| } else { |
| GR_GL_CALL(gl, StencilFuncSeparate(glFace, glFunc, ref, mask)); |
| GR_GL_CALL(gl, StencilMaskSeparate(glFace, writeMask)); |
| GR_GL_CALL(gl, StencilOpSeparate(glFace, glFailOp, GR_GL_KEEP, glPassOp)); |
| } |
| } |
| } |
| |
| void GrGLGpu::flushStencil(const GrStencilSettings& stencilSettings) { |
| if (stencilSettings.isDisabled()) { |
| this->disableStencil(); |
| } else if (fHWStencilSettings != stencilSettings) { |
| if (kYes_TriState != fHWStencilTestEnabled) { |
| GL_CALL(Enable(GR_GL_STENCIL_TEST)); |
| |
| fHWStencilTestEnabled = kYes_TriState; |
| } |
| if (stencilSettings.isTwoSided()) { |
| set_gl_stencil(this->glInterface(), |
| stencilSettings.front(), |
| GR_GL_FRONT); |
| set_gl_stencil(this->glInterface(), |
| stencilSettings.back(), |
| GR_GL_BACK); |
| } else { |
| set_gl_stencil(this->glInterface(), |
| stencilSettings.front(), |
| GR_GL_FRONT_AND_BACK); |
| } |
| fHWStencilSettings = stencilSettings; |
| } |
| } |
| |
| void GrGLGpu::disableStencil() { |
| if (kNo_TriState != fHWStencilTestEnabled) { |
| GL_CALL(Disable(GR_GL_STENCIL_TEST)); |
| |
| fHWStencilTestEnabled = kNo_TriState; |
| fHWStencilSettings.invalidate(); |
| } |
| } |
| |
| void GrGLGpu::flushHWAAState(GrRenderTarget* rt, bool useHWAA, bool stencilEnabled) { |
| // rt is only optional if useHWAA is false. |
| SkASSERT(rt || !useHWAA); |
| SkASSERT(!useHWAA || rt->isStencilBufferMultisampled()); |
| |
| if (this->caps()->multisampleDisableSupport()) { |
| if (useHWAA) { |
| if (kYes_TriState != fMSAAEnabled) { |
| GL_CALL(Enable(GR_GL_MULTISAMPLE)); |
| fMSAAEnabled = kYes_TriState; |
| } |
| } else { |
| if (kNo_TriState != fMSAAEnabled) { |
| GL_CALL(Disable(GR_GL_MULTISAMPLE)); |
| fMSAAEnabled = kNo_TriState; |
| } |
| } |
| } |
| |
| if (0 != this->caps()->maxRasterSamples()) { |
| if (useHWAA && GrFSAAType::kMixedSamples == rt->fsaaType() && !stencilEnabled) { |
| // Since stencil is disabled and we want more samples than are in the color buffer, we |
| // need to tell the rasterizer explicitly how many to run. |
| if (kYes_TriState != fHWRasterMultisampleEnabled) { |
| GL_CALL(Enable(GR_GL_RASTER_MULTISAMPLE)); |
| fHWRasterMultisampleEnabled = kYes_TriState; |
| } |
| int numStencilSamples = rt->numStencilSamples(); |
| // convert to GL's understanding of sample counts where 0 means nonMSAA. |
| numStencilSamples = 1 == numStencilSamples ? 0 : numStencilSamples; |
| if (numStencilSamples != fHWNumRasterSamples) { |
| SkASSERT(numStencilSamples <= this->caps()->maxRasterSamples()); |
| GL_CALL(RasterSamples(numStencilSamples, GR_GL_TRUE)); |
| fHWNumRasterSamples = numStencilSamples; |
| } |
| } else { |
| if (kNo_TriState != fHWRasterMultisampleEnabled) { |
| GL_CALL(Disable(GR_GL_RASTER_MULTISAMPLE)); |
| fHWRasterMultisampleEnabled = kNo_TriState; |
| } |
| } |
| } else { |
| SkASSERT(!useHWAA || GrFSAAType::kMixedSamples != rt->fsaaType() || stencilEnabled); |
| } |
| } |
| |
| void GrGLGpu::flushBlend(const GrXferProcessor::BlendInfo& blendInfo, const GrSwizzle& swizzle) { |
| // Any optimization to disable blending should have already been applied and |
| // tweaked the equation to "add" or "subtract", and the coeffs to (1, 0). |
| |
| GrBlendEquation equation = blendInfo.fEquation; |
| GrBlendCoeff srcCoeff = blendInfo.fSrcBlend; |
| GrBlendCoeff dstCoeff = blendInfo.fDstBlend; |
| bool blendOff = |
| ((kAdd_GrBlendEquation == equation || kSubtract_GrBlendEquation == equation) && |
| kOne_GrBlendCoeff == srcCoeff && kZero_GrBlendCoeff == dstCoeff) || |
| !blendInfo.fWriteColor; |
| if (blendOff) { |
| if (kNo_TriState != fHWBlendState.fEnabled) { |
| GL_CALL(Disable(GR_GL_BLEND)); |
| |
| // Workaround for the ARM KHR_blend_equation_advanced blacklist issue |
| // https://code.google.com/p/skia/issues/detail?id=3943 |
| if (kARM_GrGLVendor == this->ctxInfo().vendor() && |
| GrBlendEquationIsAdvanced(fHWBlendState.fEquation)) { |
| SkASSERT(this->caps()->advancedBlendEquationSupport()); |
| // Set to any basic blending equation. |
| GrBlendEquation blend_equation = kAdd_GrBlendEquation; |
| GL_CALL(BlendEquation(gXfermodeEquation2Blend[blend_equation])); |
| fHWBlendState.fEquation = blend_equation; |
| } |
| |
| fHWBlendState.fEnabled = kNo_TriState; |
| } |
| return; |
| } |
| |
| if (kYes_TriState != fHWBlendState.fEnabled) { |
| GL_CALL(Enable(GR_GL_BLEND)); |
| |
| fHWBlendState.fEnabled = kYes_TriState; |
| } |
| |
| if (fHWBlendState.fEquation != equation) { |
| GL_CALL(BlendEquation(gXfermodeEquation2Blend[equation])); |
| fHWBlendState.fEquation = equation; |
| } |
| |
| if (GrBlendEquationIsAdvanced(equation)) { |
| SkASSERT(this->caps()->advancedBlendEquationSupport()); |
| // Advanced equations have no other blend state. |
| return; |
| } |
| |
| if (fHWBlendState.fSrcCoeff != srcCoeff || fHWBlendState.fDstCoeff != dstCoeff) { |
| GL_CALL(BlendFunc(gXfermodeCoeff2Blend[srcCoeff], |
| gXfermodeCoeff2Blend[dstCoeff])); |
| fHWBlendState.fSrcCoeff = srcCoeff; |
| fHWBlendState.fDstCoeff = dstCoeff; |
| } |
| |
| if ((BlendCoeffReferencesConstant(srcCoeff) || BlendCoeffReferencesConstant(dstCoeff))) { |
| SkPMColor4f blendConst = swizzle.applyTo(blendInfo.fBlendConstant); |
| if (!fHWBlendState.fConstColorValid || fHWBlendState.fConstColor != blendConst) { |
| GL_CALL(BlendColor(blendConst.fR, blendConst.fG, blendConst.fB, blendConst.fA)); |
| fHWBlendState.fConstColor = blendConst; |
| fHWBlendState.fConstColorValid = true; |
| } |
| } |
| } |
| |
| static void get_gl_swizzle_values(const GrSwizzle& swizzle, GrGLenum glValues[4]) { |
| for (int i = 0; i < 4; ++i) { |
| switch (swizzle[i]) { |
| case 'r': glValues[i] = GR_GL_RED; break; |
| case 'g': glValues[i] = GR_GL_GREEN; break; |
| case 'b': glValues[i] = GR_GL_BLUE; break; |
| case 'a': glValues[i] = GR_GL_ALPHA; break; |
| default: SK_ABORT("Unsupported component"); |
| } |
| } |
| } |
| |
| void GrGLGpu::bindTexture(int unitIdx, GrSamplerState samplerState, GrGLTexture* texture) { |
| SkASSERT(texture); |
| |
| #ifdef SK_DEBUG |
| if (!this->caps()->npotTextureTileSupport()) { |
| if (samplerState.isRepeated()) { |
| const int w = texture->width(); |
| const int h = texture->height(); |
| SkASSERT(SkIsPow2(w) && SkIsPow2(h)); |
| } |
| } |
| #endif |
| |
| // If we created a rt/tex and rendered to it without using a texture and now we're texturing |
| // from the rt it will still be the last bound texture, but it needs resolving. So keep this |
| // out of the "last != next" check. |
| GrGLRenderTarget* texRT = static_cast<GrGLRenderTarget*>(texture->asRenderTarget()); |
| if (texRT) { |
| this->onResolveRenderTarget(texRT); |
| } |
| |
| GrGpuResource::UniqueID textureID = texture->uniqueID(); |
| GrGLenum target = texture->target(); |
| if (fHWBoundTextureUniqueIDs[unitIdx] != textureID) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(BindTexture(target, texture->textureID())); |
| fHWBoundTextureUniqueIDs[unitIdx] = textureID; |
| } |
| |
| if (samplerState.filter() == GrSamplerState::Filter::kMipMap) { |
| if (!this->caps()->mipMapSupport() || |
| texture->texturePriv().mipMapped() == GrMipMapped::kNo) { |
| samplerState.setFilterMode(GrSamplerState::Filter::kBilerp); |
| } |
| } |
| |
| #ifdef SK_DEBUG |
| // We were supposed to ensure MipMaps were up-to-date before getting here. |
| if (samplerState.filter() == GrSamplerState::Filter::kMipMap) { |
| SkASSERT(!texture->texturePriv().mipMapsAreDirty()); |
| } |
| #endif |
| |
| ResetTimestamp timestamp = texture->getCachedParamsTimestamp(); |
| bool setAll = timestamp < this->getResetTimestamp(); |
| |
| const GrGLTexture::SamplerParams* samplerParamsToRecord = nullptr; |
| GrGLTexture::SamplerParams newSamplerParams; |
| if (fSamplerObjectCache) { |
| fSamplerObjectCache->bindSampler(unitIdx, samplerState); |
| } else { |
| const GrGLTexture::SamplerParams& oldSamplerParams = texture->getCachedSamplerParams(); |
| samplerParamsToRecord = &newSamplerParams; |
| |
| newSamplerParams.fMinFilter = filter_to_gl_min_filter(samplerState.filter()); |
| newSamplerParams.fMagFilter = filter_to_gl_mag_filter(samplerState.filter()); |
| |
| newSamplerParams.fWrapS = wrap_mode_to_gl_wrap(samplerState.wrapModeX(), this->glCaps()); |
| newSamplerParams.fWrapT = wrap_mode_to_gl_wrap(samplerState.wrapModeY(), this->glCaps()); |
| |
| // These are the OpenGL default values. |
| newSamplerParams.fMinLOD = -1000.f; |
| newSamplerParams.fMaxLOD = 1000.f; |
| |
| if (setAll || newSamplerParams.fMagFilter != oldSamplerParams.fMagFilter) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MAG_FILTER, newSamplerParams.fMagFilter)); |
| } |
| if (setAll || newSamplerParams.fMinFilter != oldSamplerParams.fMinFilter) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MIN_FILTER, newSamplerParams.fMinFilter)); |
| } |
| if (this->glCaps().mipMapLevelAndLodControlSupport()) { |
| if (setAll || newSamplerParams.fMinLOD != oldSamplerParams.fMinLOD) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameterf(target, GR_GL_TEXTURE_MIN_LOD, newSamplerParams.fMinLOD)); |
| } |
| if (setAll || newSamplerParams.fMaxLOD != oldSamplerParams.fMaxLOD) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameterf(target, GR_GL_TEXTURE_MAX_LOD, newSamplerParams.fMaxLOD)); |
| } |
| } |
| if (setAll || newSamplerParams.fWrapS != oldSamplerParams.fWrapS) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_WRAP_S, newSamplerParams.fWrapS)); |
| } |
| if (setAll || newSamplerParams.fWrapT != oldSamplerParams.fWrapT) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_WRAP_T, newSamplerParams.fWrapT)); |
| } |
| if (this->glCaps().clampToBorderSupport()) { |
| // Make sure the border color is transparent black (the default) |
| if (setAll || oldSamplerParams.fBorderColorInvalid) { |
| this->setTextureUnit(unitIdx); |
| static const GrGLfloat kTransparentBlack[4] = {0.f, 0.f, 0.f, 0.f}; |
| GL_CALL(TexParameterfv(target, GR_GL_TEXTURE_BORDER_COLOR, kTransparentBlack)); |
| } |
| } |
| } |
| GrGLTexture::NonSamplerParams newNonSamplerParams; |
| newNonSamplerParams.fBaseMipMapLevel = 0; |
| newNonSamplerParams.fMaxMipMapLevel = texture->texturePriv().maxMipMapLevel(); |
| |
| const GrGLTexture::NonSamplerParams& oldNonSamplerParams = texture->getCachedNonSamplerParams(); |
| if (this->glCaps().textureSwizzleSupport()) { |
| auto swizzle = this->glCaps().configSwizzle(texture->config()); |
| newNonSamplerParams.fSwizzleKey = swizzle.asKey(); |
| if (setAll || swizzle.asKey() != oldNonSamplerParams.fSwizzleKey) { |
| GrGLenum glValues[4]; |
| get_gl_swizzle_values(swizzle, glValues); |
| this->setTextureUnit(unitIdx); |
| if (this->glStandard() == kGLES_GrGLStandard) { |
| // ES3 added swizzle support but not GL_TEXTURE_SWIZZLE_RGBA. |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_R, glValues[0])); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_G, glValues[1])); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_B, glValues[2])); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_A, glValues[3])); |
| } else { |
| GR_STATIC_ASSERT(sizeof(glValues[0]) == sizeof(GrGLint)); |
| GL_CALL(TexParameteriv(target, GR_GL_TEXTURE_SWIZZLE_RGBA, |
| reinterpret_cast<const GrGLint*>(glValues))); |
| } |
| } |
| } |
| // These are not supported in ES2 contexts |
| if (this->glCaps().mipMapLevelAndLodControlSupport() && |
| (texture->texturePriv().textureType() != GrTextureType::kExternal || |
| !this->glCaps().dontSetBaseOrMaxLevelForExternalTextures())) { |
| if (newNonSamplerParams.fBaseMipMapLevel != oldNonSamplerParams.fBaseMipMapLevel) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_BASE_LEVEL, |
| newNonSamplerParams.fBaseMipMapLevel)); |
| } |
| if (newNonSamplerParams.fMaxMipMapLevel != oldNonSamplerParams.fMaxMipMapLevel) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MAX_LEVEL, |
| newNonSamplerParams.fMaxMipMapLevel)); |
| } |
| } |
| texture->setCachedParams(samplerParamsToRecord, newNonSamplerParams, this->getResetTimestamp()); |
| } |
| |
| void GrGLGpu::flushColorWrite(bool writeColor) { |
| if (!writeColor) { |
| if (kNo_TriState != fHWWriteToColor) { |
| GL_CALL(ColorMask(GR_GL_FALSE, GR_GL_FALSE, |
| GR_GL_FALSE, GR_GL_FALSE)); |
| fHWWriteToColor = kNo_TriState; |
| } |
| } else { |
| if (kYes_TriState != fHWWriteToColor) { |
| GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE)); |
| fHWWriteToColor = kYes_TriState; |
| } |
| } |
| } |
| |
| void GrGLGpu::setTextureUnit(int unit) { |
| SkASSERT(unit >= 0 && unit < fHWBoundTextureUniqueIDs.count()); |
| if (unit != fHWActiveTextureUnitIdx) { |
| GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + unit)); |
| fHWActiveTextureUnitIdx = unit; |
| } |
| } |
| |
| void GrGLGpu::setScratchTextureUnit() { |
| // Bind the last texture unit since it is the least likely to be used by GrGLProgram. |
| int lastUnitIdx = fHWBoundTextureUniqueIDs.count() - 1; |
| if (lastUnitIdx != fHWActiveTextureUnitIdx) { |
| GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + lastUnitIdx)); |
| fHWActiveTextureUnitIdx = lastUnitIdx; |
| } |
| // clear out the this field so that if a program does use this unit it will rebind the correct |
| // texture. |
| fHWBoundTextureUniqueIDs[lastUnitIdx].makeInvalid(); |
| } |
| |
| // Determines whether glBlitFramebuffer could be used between src and dst by onCopySurface. |
| static inline bool can_blit_framebuffer_for_copy_surface( |
| const GrSurface* dst, GrSurfaceOrigin dstOrigin, |
| const GrSurface* src, GrSurfaceOrigin srcOrigin, |
| const SkIRect& srcRect, |
| const SkIPoint& dstPoint, |
| const GrGLCaps& caps) { |
| int dstSampleCnt = 0; |
| int srcSampleCnt = 0; |
| if (const GrRenderTarget* rt = dst->asRenderTarget()) { |
| dstSampleCnt = rt->numColorSamples(); |
| } |
| if (const GrRenderTarget* rt = src->asRenderTarget()) { |
| srcSampleCnt = rt->numColorSamples(); |
| } |
| SkASSERT((dstSampleCnt > 0) == SkToBool(dst->asRenderTarget())); |
| SkASSERT((srcSampleCnt > 0) == SkToBool(src->asRenderTarget())); |
| |
| const GrGLTexture* dstTex = static_cast<const GrGLTexture*>(dst->asTexture()); |
| const GrGLTexture* srcTex = static_cast<const GrGLTexture*>(src->asTexture()); |
| |
| bool dstIsGLTexture2D = dstTex ? GR_GL_TEXTURE_2D == dstTex->target() : false; |
| bool srcIsGLTexture2D = srcTex ? GR_GL_TEXTURE_2D == srcTex->target() : false; |
| |
| return caps.canCopyAsBlit(dst->config(), dstSampleCnt, SkToBool(dstTex), dstIsGLTexture2D, |
| dstOrigin, src->config(), srcSampleCnt, SkToBool(srcTex), |
| srcIsGLTexture2D, srcOrigin, src->getBoundsRect(), srcRect, dstPoint); |
| } |
| |
| static bool rt_has_msaa_render_buffer(const GrGLRenderTarget* rt, const GrGLCaps& glCaps) { |
| // A RT has a separate MSAA renderbuffer if: |
| // 1) It's multisampled |
| // 2) We're using an extension with separate MSAA renderbuffers |
| // 3) It's not FBO 0, which is special and always auto-resolves |
| return rt->numColorSamples() > 1 && glCaps.usesMSAARenderBuffers() && rt->renderFBOID() != 0; |
| } |
| |
| static inline bool can_copy_texsubimage(const GrSurface* dst, GrSurfaceOrigin dstOrigin, |
| const GrSurface* src, GrSurfaceOrigin srcOrigin, |
| const GrGLCaps& caps) { |
| |
| const GrGLRenderTarget* dstRT = static_cast<const GrGLRenderTarget*>(dst->asRenderTarget()); |
| const GrGLRenderTarget* srcRT = static_cast<const GrGLRenderTarget*>(src->asRenderTarget()); |
| const GrGLTexture* dstTex = static_cast<const GrGLTexture*>(dst->asTexture()); |
| const GrGLTexture* srcTex = static_cast<const GrGLTexture*>(src->asTexture()); |
| |
| bool dstHasMSAARenderBuffer = dstRT ? rt_has_msaa_render_buffer(dstRT, caps) : false; |
| bool srcHasMSAARenderBuffer = srcRT ? rt_has_msaa_render_buffer(srcRT, caps) : false; |
| |
| bool dstIsGLTexture2D = dstTex ? GR_GL_TEXTURE_2D == dstTex->target() : false; |
| bool srcIsGLTexture2D = srcTex ? GR_GL_TEXTURE_2D == srcTex->target() : false; |
| |
| return caps.canCopyTexSubImage(dst->config(), dstHasMSAARenderBuffer, SkToBool(dstTex), |
| dstIsGLTexture2D, dstOrigin, src->config(), |
| srcHasMSAARenderBuffer, SkToBool(srcTex), srcIsGLTexture2D, |
| srcOrigin); |
| } |
| |
| // If a temporary FBO was created, its non-zero ID is returned. The viewport that the copy rect is |
| // relative to is output. |
| void GrGLGpu::bindSurfaceFBOForPixelOps(GrSurface* surface, GrGLenum fboTarget, GrGLIRect* viewport, |
| TempFBOTarget tempFBOTarget) { |
| GrGLRenderTarget* rt = static_cast<GrGLRenderTarget*>(surface->asRenderTarget()); |
| if (!rt) { |
| SkASSERT(surface->asTexture()); |
| GrGLTexture* texture = static_cast<GrGLTexture*>(surface->asTexture()); |
| GrGLuint texID = texture->textureID(); |
| GrGLenum target = texture->target(); |
| GrGLuint* tempFBOID; |
| tempFBOID = kSrc_TempFBOTarget == tempFBOTarget ? &fTempSrcFBOID : &fTempDstFBOID; |
| |
| if (0 == *tempFBOID) { |
| GR_GL_CALL(this->glInterface(), GenFramebuffers(1, tempFBOID)); |
| } |
| |
| this->bindFramebuffer(fboTarget, *tempFBOID); |
| GR_GL_CALL(this->glInterface(), FramebufferTexture2D(fboTarget, |
| GR_GL_COLOR_ATTACHMENT0, |
| target, |
| texID, |
| 0)); |
| texture->baseLevelWasBoundToFBO(); |
| viewport->fLeft = 0; |
| viewport->fBottom = 0; |
| viewport->fWidth = surface->width(); |
| viewport->fHeight = surface->height(); |
| } else { |
| this->bindFramebuffer(fboTarget, rt->renderFBOID()); |
| *viewport = rt->getViewport(); |
| } |
| } |
| |
| void GrGLGpu::unbindTextureFBOForPixelOps(GrGLenum fboTarget, GrSurface* surface) { |
| // bindSurfaceFBOForPixelOps temporarily binds textures that are not render targets to |
| if (!surface->asRenderTarget()) { |
| SkASSERT(surface->asTexture()); |
| GrGLenum textureTarget = static_cast<GrGLTexture*>(surface->asTexture())->target(); |
| GR_GL_CALL(this->glInterface(), FramebufferTexture2D(fboTarget, |
| GR_GL_COLOR_ATTACHMENT0, |
| textureTarget, |
| 0, |
| 0)); |
| } |
| } |
| |
| void GrGLGpu::onFBOChanged() { |
| if (this->caps()->workarounds().flush_on_framebuffer_change || |
| this->caps()->workarounds().restore_scissor_on_fbo_change) { |
| GL_CALL(Flush()); |
| } |
| } |
| |
| void GrGLGpu::bindFramebuffer(GrGLenum target, GrGLuint fboid) { |
| fStats.incRenderTargetBinds(); |
| GL_CALL(BindFramebuffer(target, fboid)); |
| if (target == GR_GL_FRAMEBUFFER || target == GR_GL_DRAW_FRAMEBUFFER) { |
| fBoundDrawFramebuffer = fboid; |
| } |
| |
| if (this->caps()->workarounds().restore_scissor_on_fbo_change) { |
| // The driver forgets the correct scissor when modifying the FBO binding. |
| if (!fHWScissorSettings.fRect.isInvalid()) { |
| fHWScissorSettings.fRect.pushToGLScissor(this->glInterface()); |
| } |
| } |
| |
| this->onFBOChanged(); |
| } |
| |
| void GrGLGpu::deleteFramebuffer(GrGLuint fboid) { |
| if (fboid == fBoundDrawFramebuffer && |
| this->caps()->workarounds().unbind_attachments_on_bound_render_fbo_delete) { |
| // This workaround only applies to deleting currently bound framebuffers |
| // on Adreno 420. Because this is a somewhat rare case, instead of |
| // tracking all the attachments of every framebuffer instead just always |
| // unbind all attachments. |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_RENDERBUFFER, 0)); |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| } |
| |
| GL_CALL(DeleteFramebuffers(1, &fboid)); |
| |
| // Deleting the currently bound framebuffer rebinds to 0. |
| if (fboid == fBoundDrawFramebuffer) { |
| this->onFBOChanged(); |
| } |
| } |
| |
| bool GrGLGpu::onCopySurface(GrSurface* dst, GrSurfaceOrigin dstOrigin, |
| GrSurface* src, GrSurfaceOrigin srcOrigin, |
| const SkIRect& srcRect, const SkIPoint& dstPoint, |
| bool canDiscardOutsideDstRect) { |
| // None of our copy methods can handle a swizzle. TODO: Make copySurfaceAsDraw handle the |
| // swizzle. |
| if (this->caps()->shaderCaps()->configOutputSwizzle(src->config()) != |
| this->caps()->shaderCaps()->configOutputSwizzle(dst->config())) { |
| return false; |
| } |
| // Don't prefer copying as a draw if the dst doesn't already have a FBO object. |
| // This implicitly handles this->glCaps().useDrawInsteadOfAllRenderTargetWrites(). |
| bool preferCopy = SkToBool(dst->asRenderTarget()); |
| if (preferCopy && this->glCaps().canCopyAsDraw(dst->config(), SkToBool(src->asTexture()))) { |
| if (this->copySurfaceAsDraw(dst, dstOrigin, src, srcOrigin, srcRect, dstPoint)) { |
| return true; |
| } |
| } |
| |
| if (can_copy_texsubimage(dst, dstOrigin, src, srcOrigin, this->glCaps())) { |
| this->copySurfaceAsCopyTexSubImage(dst, dstOrigin, src, srcOrigin, srcRect, dstPoint); |
| return true; |
| } |
| |
| if (can_blit_framebuffer_for_copy_surface(dst, dstOrigin, src, srcOrigin, |
| srcRect, dstPoint, this->glCaps())) { |
| return this->copySurfaceAsBlitFramebuffer(dst, dstOrigin, src, srcOrigin, |
| srcRect, dstPoint); |
| } |
| |
| if (!preferCopy && this->glCaps().canCopyAsDraw(dst->config(), SkToBool(src->asTexture()))) { |
| if (this->copySurfaceAsDraw(dst, dstOrigin, src, srcOrigin, srcRect, dstPoint)) { |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool GrGLGpu::createCopyProgram(GrTexture* srcTex) { |
| TRACE_EVENT0("skia", TRACE_FUNC); |
| |
| int progIdx = TextureToCopyProgramIdx(srcTex); |
| const GrShaderCaps* shaderCaps = this->caps()->shaderCaps(); |
| GrSLType samplerType = |
| GrSLCombinedSamplerTypeForTextureType(srcTex->texturePriv().textureType()); |
| |
| if (!fCopyProgramArrayBuffer) { |
| static const GrGLfloat vdata[] = { |
| 0, 0, |
| 0, 1, |
| 1, 0, |
| 1, 1 |
| }; |
| fCopyProgramArrayBuffer.reset(GrGLBuffer::Create(this, sizeof(vdata), kVertex_GrBufferType, |
| kStatic_GrAccessPattern, vdata)); |
| } |
| if (!fCopyProgramArrayBuffer) { |
| return false; |
| } |
| |
| SkASSERT(!fCopyPrograms[progIdx].fProgram); |
| GL_CALL_RET(fCopyPrograms[progIdx].fProgram, CreateProgram()); |
| if (!fCopyPrograms[progIdx].fProgram) { |
| return false; |
| } |
| |
| const char* version = shaderCaps->versionDeclString(); |
| GrShaderVar aVertex("a_vertex", kHalf2_GrSLType, GrShaderVar::kIn_TypeModifier); |
| GrShaderVar uTexCoordXform("u_texCoordXform", kHalf4_GrSLType, |
| GrShaderVar::kUniform_TypeModifier); |
| GrShaderVar uPosXform("u_posXform", kHalf4_GrSLType, GrShaderVar::kUniform_TypeModifier); |
| GrShaderVar uTexture("u_texture", samplerType, GrShaderVar::kUniform_TypeModifier); |
| GrShaderVar vTexCoord("v_texCoord", kHalf2_GrSLType, GrShaderVar::kOut_TypeModifier); |
| GrShaderVar oFragColor("o_FragColor", kHalf4_GrSLType, GrShaderVar::kOut_TypeModifier); |
| |
| SkString vshaderTxt(version); |
| if (shaderCaps->noperspectiveInterpolationSupport()) { |
| if (const char* extension = shaderCaps->noperspectiveInterpolationExtensionString()) { |
| vshaderTxt.appendf("#extension %s : require\n", extension); |
| } |
| vTexCoord.addModifier("noperspective"); |
| } |
| |
| aVertex.appendDecl(shaderCaps, &vshaderTxt); |
| vshaderTxt.append(";"); |
| uTexCoordXform.appendDecl(shaderCaps, &vshaderTxt); |
| vshaderTxt.append(";"); |
| uPosXform.appendDecl(shaderCaps, &vshaderTxt); |
| vshaderTxt.append(";"); |
| vTexCoord.appendDecl(shaderCaps, &vshaderTxt); |
| vshaderTxt.append(";"); |
| |
| vshaderTxt.append( |
| "// Copy Program VS\n" |
| "void main() {" |
| " v_texCoord = a_vertex.xy * u_texCoordXform.xy + u_texCoordXform.zw;" |
| " sk_Position.xy = a_vertex * u_posXform.xy + u_posXform.zw;" |
| " sk_Position.zw = half2(0, 1);" |
| "}" |
| ); |
| |
| SkString fshaderTxt(version); |
| if (shaderCaps->noperspectiveInterpolationSupport()) { |
| if (const char* extension = shaderCaps->noperspectiveInterpolationExtensionString()) { |
| fshaderTxt.appendf("#extension %s : require\n", extension); |
| } |
| } |
| vTexCoord.setTypeModifier(GrShaderVar::kIn_TypeModifier); |
| vTexCoord.appendDecl(shaderCaps, &fshaderTxt); |
| fshaderTxt.append(";"); |
| uTexture.appendDecl(shaderCaps, &fshaderTxt); |
| fshaderTxt.append(";"); |
| fshaderTxt.appendf( |
| "// Copy Program FS\n" |
| "void main() {" |
| " sk_FragColor = texture(u_texture, v_texCoord);" |
| "}" |
| ); |
| |
| const char* str; |
| GrGLint length; |
| |
| str = vshaderTxt.c_str(); |
| length = SkToInt(vshaderTxt.size()); |
| SkSL::Program::Settings settings; |
| settings.fCaps = shaderCaps; |
| SkSL::String glsl; |
| std::unique_ptr<SkSL::Program> program = GrSkSLtoGLSL(*fGLContext, GR_GL_VERTEX_SHADER, |
| &str, &length, 1, settings, &glsl); |
| GrGLuint vshader = GrGLCompileAndAttachShader(*fGLContext, fCopyPrograms[progIdx].fProgram, |
| GR_GL_VERTEX_SHADER, glsl.c_str(), glsl.size(), |
| &fStats, settings); |
| SkASSERT(program->fInputs.isEmpty()); |
| |
| str = fshaderTxt.c_str(); |
| length = SkToInt(fshaderTxt.size()); |
| program = GrSkSLtoGLSL(*fGLContext, GR_GL_FRAGMENT_SHADER, &str, &length, 1, settings, &glsl); |
| GrGLuint fshader = GrGLCompileAndAttachShader(*fGLContext, fCopyPrograms[progIdx].fProgram, |
| GR_GL_FRAGMENT_SHADER, glsl.c_str(), glsl.size(), |
| &fStats, settings); |
| SkASSERT(program->fInputs.isEmpty()); |
| |
| GL_CALL(LinkProgram(fCopyPrograms[progIdx].fProgram)); |
| |
| GL_CALL_RET(fCopyPrograms[progIdx].fTextureUniform, |
| GetUniformLocation(fCopyPrograms[progIdx].fProgram, "u_texture")); |
| GL_CALL_RET(fCopyPrograms[progIdx].fPosXformUniform, |
| GetUniformLocation(fCopyPrograms[progIdx].fProgram, "u_posXform")); |
| GL_CALL_RET(fCopyPrograms[progIdx].fTexCoordXformUniform, |
| GetUniformLocation(fCopyPrograms[progIdx].fProgram, "u_texCoordXform")); |
| |
| GL_CALL(BindAttribLocation(fCopyPrograms[progIdx].fProgram, 0, "a_vertex")); |
| |
| GL_CALL(DeleteShader(vshader)); |
| GL_CALL(DeleteShader(fshader)); |
| |
| return true; |
| } |
| |
| bool GrGLGpu::createMipmapProgram(int progIdx) { |
| const bool oddWidth = SkToBool(progIdx & 0x2); |
| const bool oddHeight = SkToBool(progIdx & 0x1); |
| const int numTaps = (oddWidth ? 2 : 1) * (oddHeight ? 2 : 1); |
| |
| const GrShaderCaps* shaderCaps = this->caps()->shaderCaps(); |
| |
| SkASSERT(!fMipmapPrograms[progIdx].fProgram); |
| GL_CALL_RET(fMipmapPrograms[progIdx].fProgram, CreateProgram()); |
| if (!fMipmapPrograms[progIdx].fProgram) { |
| return false; |
| } |
| |
| const char* version = shaderCaps->versionDeclString(); |
| GrShaderVar aVertex("a_vertex", kHalf2_GrSLType, GrShaderVar::kIn_TypeModifier); |
| GrShaderVar uTexCoordXform("u_texCoordXform", kHalf4_GrSLType, |
| GrShaderVar::kUniform_TypeModifier); |
| GrShaderVar uTexture("u_texture", kTexture2DSampler_GrSLType, |
| GrShaderVar::kUniform_TypeModifier); |
| // We need 1, 2, or 4 texture coordinates (depending on parity of each dimension): |
| GrShaderVar vTexCoords[] = { |
| GrShaderVar("v_texCoord0", kHalf2_GrSLType, GrShaderVar::kOut_TypeModifier), |
| GrShaderVar("v_texCoord1", kHalf2_GrSLType, GrShaderVar::kOut_TypeModifier), |
| GrShaderVar("v_texCoord2", kHalf2_GrSLType, GrShaderVar::kOut_TypeModifier), |
| GrShaderVar("v_texCoord3", kHalf2_GrSLType, GrShaderVar::kOut_TypeModifier), |
| }; |
| GrShaderVar oFragColor("o_FragColor", kHalf4_GrSLType,GrShaderVar::kOut_TypeModifier); |
| |
| SkString vshaderTxt(version); |
| if (shaderCaps->noperspectiveInterpolationSupport()) { |
| if (const char* extension = shaderCaps->noperspectiveInterpolationExtensionString()) { |
| vshaderTxt.appendf("#extension %s : require\n", extension); |
| } |
| vTexCoords[0].addModifier("noperspective"); |
| vTexCoords[1].addModifier("noperspective"); |
| vTexCoords[2].addModifier("noperspective"); |
| vTexCoords[3].addModifier("noperspective"); |
| } |
| |
| aVertex.appendDecl(shaderCaps, &vshaderTxt); |
| vshaderTxt.append(";"); |
| uTexCoordXform.appendDecl(shaderCaps, &vshaderTxt); |
| vshaderTxt.append(";"); |
| for (int i = 0; i < numTaps; ++i) { |
| vTexCoords[i].appendDecl(shaderCaps, &vshaderTxt); |
| vshaderTxt.append(";"); |
| } |
| |
| vshaderTxt.append( |
| "// Mipmap Program VS\n" |
| "void main() {" |
| " sk_Position.xy = a_vertex * half2(2, 2) - half2(1, 1);" |
| " sk_Position.zw = half2(0, 1);" |
| ); |
| |
| // Insert texture coordinate computation: |
| if (oddWidth && oddHeight) { |
| vshaderTxt.append( |
| " v_texCoord0 = a_vertex.xy * u_texCoordXform.yw;" |
| " v_texCoord1 = a_vertex.xy * u_texCoordXform.yw + half2(u_texCoordXform.x, 0);" |
| " v_texCoord2 = a_vertex.xy * u_texCoordXform.yw + half2(0, u_texCoordXform.z);" |
| " v_texCoord3 = a_vertex.xy * u_texCoordXform.yw + u_texCoordXform.xz;" |
| ); |
| } else if (oddWidth) { |
| vshaderTxt.append( |
| " v_texCoord0 = a_vertex.xy * half2(u_texCoordXform.y, 1);" |
| " v_texCoord1 = a_vertex.xy * half2(u_texCoordXform.y, 1) + half2(u_texCoordXform.x, 0);" |
| ); |
| } else if (oddHeight) { |
| vshaderTxt.append( |
| " v_texCoord0 = a_vertex.xy * half2(1, u_texCoordXform.w);" |
| " v_texCoord1 = a_vertex.xy * half2(1, u_texCoordXform.w) + half2(0, u_texCoordXform.z);" |
| ); |
| } else { |
| vshaderTxt.append( |
| " v_texCoord0 = a_vertex.xy;" |
| ); |
| } |
| |
| vshaderTxt.append("}"); |
| |
| SkString fshaderTxt(version); |
| if (shaderCaps->noperspectiveInterpolationSupport()) { |
| if (const char* extension = shaderCaps->noperspectiveInterpolationExtensionString()) { |
| fshaderTxt.appendf("#extension %s : require\n", extension); |
| } |
| } |
| for (int i = 0; i < numTaps; ++i) { |
| vTexCoords[i].setTypeModifier(GrShaderVar::kIn_TypeModifier); |
| vTexCoords[i].appendDecl(shaderCaps, &fshaderTxt); |
| fshaderTxt.append(";"); |
| } |
| uTexture.appendDecl(shaderCaps, &fshaderTxt); |
| fshaderTxt.append(";"); |
| fshaderTxt.append( |
| "// Mipmap Program FS\n" |
| "void main() {" |
| ); |
| |
| if (oddWidth && oddHeight) { |
| fshaderTxt.append( |
| " sk_FragColor = (texture(u_texture, v_texCoord0) + " |
| " texture(u_texture, v_texCoord1) + " |
| " texture(u_texture, v_texCoord2) + " |
| " texture(u_texture, v_texCoord3)) * 0.25;" |
| ); |
| } else if (oddWidth || oddHeight) { |
| fshaderTxt.append( |
| " sk_FragColor = (texture(u_texture, v_texCoord0) + " |
| " texture(u_texture, v_texCoord1)) * 0.5;" |
| ); |
| } else { |
| fshaderTxt.append( |
| " sk_FragColor = texture(u_texture, v_texCoord0);" |
| ); |
| } |
| |
| fshaderTxt.append("}"); |
| |
| const char* str; |
| GrGLint length; |
| |
| str = vshaderTxt.c_str(); |
| length = SkToInt(vshaderTxt.size()); |
| SkSL::Program::Settings settings; |
| settings.fCaps = shaderCaps; |
| SkSL::String glsl; |
| std::unique_ptr<SkSL::Program> program = GrSkSLtoGLSL(*fGLContext, GR_GL_VERTEX_SHADER, |
| &str, &length, 1, settings, &glsl); |
| GrGLuint vshader = GrGLCompileAndAttachShader(*fGLContext, fMipmapPrograms[progIdx].fProgram, |
| GR_GL_VERTEX_SHADER, glsl.c_str(), glsl.size(), |
| &fStats, settings); |
| SkASSERT(program->fInputs.isEmpty()); |
| |
| str = fshaderTxt.c_str(); |
| length = SkToInt(fshaderTxt.size()); |
| program = GrSkSLtoGLSL(*fGLContext, GR_GL_FRAGMENT_SHADER, &str, &length, 1, settings, &glsl); |
| GrGLuint fshader = GrGLCompileAndAttachShader(*fGLContext, fMipmapPrograms[progIdx].fProgram, |
| GR_GL_FRAGMENT_SHADER, glsl.c_str(), glsl.size(), |
| &fStats, settings); |
| SkASSERT(program->fInputs.isEmpty()); |
| |
| GL_CALL(LinkProgram(fMipmapPrograms[progIdx].fProgram)); |
| |
| GL_CALL_RET(fMipmapPrograms[progIdx].fTextureUniform, |
| GetUniformLocation(fMipmapPrograms[progIdx].fProgram, "u_texture")); |
| GL_CALL_RET(fMipmapPrograms[progIdx].fTexCoordXformUniform, |
| GetUniformLocation(fMipmapPrograms[progIdx].fProgram, "u_texCoordXform")); |
| |
| GL_CALL(BindAttribLocation(fMipmapPrograms[progIdx].fProgram, 0, "a_vertex")); |
| |
| GL_CALL(DeleteShader(vshader)); |
| GL_CALL(DeleteShader(fshader)); |
| |
| return true; |
| } |
| |
| bool GrGLGpu::copySurfaceAsDraw(GrSurface* dst, GrSurfaceOrigin dstOrigin, |
| GrSurface* src, GrSurfaceOrigin srcOrigin, |
| const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| GrGLTexture* srcTex = static_cast<GrGLTexture*>(src->asTexture()); |
| int progIdx = TextureToCopyProgramIdx(srcTex); |
| |
| if (!this->glCaps().canConfigBeFBOColorAttachment(dst->config())) { |
| return false; |
| } |
| |
| if (!fCopyPrograms[progIdx].fProgram) { |
| if (!this->createCopyProgram(srcTex)) { |
| SkDebugf("Failed to create copy program.\n"); |
| return false; |
| } |
| } |
| |
| int w = srcRect.width(); |
| int h = srcRect.height(); |
| |
| this->bindTexture(0, GrSamplerState::ClampNearest(), srcTex); |
| |
| GrGLIRect dstVP; |
| this->bindSurfaceFBOForPixelOps(dst, GR_GL_FRAMEBUFFER, &dstVP, kDst_TempFBOTarget); |
| this->flushViewport(dstVP); |
| fHWBoundRenderTargetUniqueID.makeInvalid(); |
| |
| SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, w, h); |
| |
| this->flushProgram(fCopyPrograms[progIdx].fProgram); |
| |
| fHWVertexArrayState.setVertexArrayID(this, 0); |
| |
| GrGLAttribArrayState* attribs = fHWVertexArrayState.bindInternalVertexArray(this); |
| attribs->enableVertexArrays(this, 1); |
| attribs->set(this, 0, fCopyProgramArrayBuffer.get(), kFloat2_GrVertexAttribType, |
| kFloat2_GrSLType, 2 * sizeof(GrGLfloat), 0); |
| |
| // dst rect edges in NDC (-1 to 1) |
| int dw = dst->width(); |
| int dh = dst->height(); |
| GrGLfloat dx0 = 2.f * dstPoint.fX / dw - 1.f; |
| GrGLfloat dx1 = 2.f * (dstPoint.fX + w) / dw - 1.f; |
| GrGLfloat dy0 = 2.f * dstPoint.fY / dh - 1.f; |
| GrGLfloat dy1 = 2.f * (dstPoint.fY + h) / dh - 1.f; |
| if (kBottomLeft_GrSurfaceOrigin == dstOrigin) { |
| dy0 = -dy0; |
| dy1 = -dy1; |
| } |
| |
| GrGLfloat sx0 = (GrGLfloat)srcRect.fLeft; |
| GrGLfloat sx1 = (GrGLfloat)(srcRect.fLeft + w); |
| GrGLfloat sy0 = (GrGLfloat)srcRect.fTop; |
| GrGLfloat sy1 = (GrGLfloat)(srcRect.fTop + h); |
| int sw = src->width(); |
| int sh = src->height(); |
| if (kBottomLeft_GrSurfaceOrigin == srcOrigin) { |
| sy0 = sh - sy0; |
| sy1 = sh - sy1; |
| } |
| if (srcTex->texturePriv().textureType() != GrTextureType::kRectangle) { |
| // src rect edges in normalized texture space (0 to 1) |
| sx0 /= sw; |
| sx1 /= sw; |
| sy0 /= sh; |
| sy1 /= sh; |
| } |
| |
| GL_CALL(Uniform4f(fCopyPrograms[progIdx].fPosXformUniform, dx1 - dx0, dy1 - dy0, dx0, dy0)); |
| GL_CALL(Uniform4f(fCopyPrograms[progIdx].fTexCoordXformUniform, |
| sx1 - sx0, sy1 - sy0, sx0, sy0)); |
| GL_CALL(Uniform1i(fCopyPrograms[progIdx].fTextureUniform, 0)); |
| |
| GrXferProcessor::BlendInfo blendInfo; |
| blendInfo.reset(); |
| this->flushBlend(blendInfo, GrSwizzle::RGBA()); |
| this->flushColorWrite(true); |
| this->flushHWAAState(nullptr, false, false); |
| this->disableScissor(); |
| this->disableWindowRectangles(); |
| this->disableStencil(); |
| if (this->glCaps().srgbWriteControl()) { |
| this->flushFramebufferSRGB(true); |
| } |
| |
| GL_CALL(DrawArrays(GR_GL_TRIANGLE_STRIP, 0, 4)); |
| this->unbindTextureFBOForPixelOps(GR_GL_FRAMEBUFFER, dst); |
| this->didWriteToSurface(dst, dstOrigin, &dstRect); |
| |
| return true; |
| } |
| |
| void GrGLGpu::copySurfaceAsCopyTexSubImage(GrSurface* dst, GrSurfaceOrigin dstOrigin, |
| GrSurface* src, GrSurfaceOrigin srcOrigin, |
| const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| SkASSERT(can_copy_texsubimage(dst, dstOrigin, src, srcOrigin, this->glCaps())); |
| GrGLIRect srcVP; |
| this->bindSurfaceFBOForPixelOps(src, GR_GL_FRAMEBUFFER, &srcVP, kSrc_TempFBOTarget); |
| GrGLTexture* dstTex = static_cast<GrGLTexture *>(dst->asTexture()); |
| SkASSERT(dstTex); |
| // We modified the bound FBO |
| fHWBoundRenderTargetUniqueID.makeInvalid(); |
| GrGLIRect srcGLRect; |
| srcGLRect.setRelativeTo(srcVP, srcRect, srcOrigin); |
| |
| this->setScratchTextureUnit(); |
| GL_CALL(BindTexture(dstTex->target(), dstTex->textureID())); |
| GrGLint dstY; |
| if (kBottomLeft_GrSurfaceOrigin == dstOrigin) { |
| dstY = dst->height() - (dstPoint.fY + srcGLRect.fHeight); |
| } else { |
| dstY = dstPoint.fY; |
| } |
| GL_CALL(CopyTexSubImage2D(dstTex->target(), 0, |
| dstPoint.fX, dstY, |
| srcGLRect.fLeft, srcGLRect.fBottom, |
| srcGLRect.fWidth, srcGLRect.fHeight)); |
| this->unbindTextureFBOForPixelOps(GR_GL_FRAMEBUFFER, src); |
| SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, |
| srcRect.width(), srcRect.height()); |
| this->didWriteToSurface(dst, dstOrigin, &dstRect); |
| } |
| |
| bool GrGLGpu::copySurfaceAsBlitFramebuffer(GrSurface* dst, GrSurfaceOrigin dstOrigin, |
| GrSurface* src, GrSurfaceOrigin srcOrigin, |
| const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| SkASSERT(can_blit_framebuffer_for_copy_surface(dst, dstOrigin, src, srcOrigin, |
| srcRect, dstPoint, this->glCaps())); |
| SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, |
| srcRect.width(), srcRect.height()); |
| if (dst == src) { |
| if (SkIRect::IntersectsNoEmptyCheck(dstRect, srcRect)) { |
| return false; |
| } |
| } |
| |
| GrGLIRect dstVP; |
| GrGLIRect srcVP; |
| this->bindSurfaceFBOForPixelOps(dst, GR_GL_DRAW_FRAMEBUFFER, &dstVP, kDst_TempFBOTarget); |
| this->bindSurfaceFBOForPixelOps(src, GR_GL_READ_FRAMEBUFFER, &srcVP, kSrc_TempFBOTarget); |
| // We modified the bound FBO |
| fHWBoundRenderTargetUniqueID.makeInvalid(); |
| GrGLIRect srcGLRect; |
| GrGLIRect dstGLRect; |
| srcGLRect.setRelativeTo(srcVP, srcRect, srcOrigin); |
| dstGLRect.setRelativeTo(dstVP, dstRect, dstOrigin); |
| |
| // BlitFrameBuffer respects the scissor, so disable it. |
| this->disableScissor(); |
| this->disableWindowRectangles(); |
| |
| GrGLint srcY0; |
| GrGLint srcY1; |
| // Does the blit need to y-mirror or not? |
| if (srcOrigin == dstOrigin) { |
| srcY0 = srcGLRect.fBottom; |
| srcY1 = srcGLRect.fBottom + srcGLRect.fHeight; |
| } else { |
| srcY0 = srcGLRect.fBottom + srcGLRect.fHeight; |
| srcY1 = srcGLRect.fBottom; |
| } |
| GL_CALL(BlitFramebuffer(srcGLRect.fLeft, |
| srcY0, |
| srcGLRect.fLeft + srcGLRect.fWidth, |
| srcY1, |
| dstGLRect.fLeft, |
| dstGLRect.fBottom, |
| dstGLRect.fLeft + dstGLRect.fWidth, |
| dstGLRect.fBottom + dstGLRect.fHeight, |
| GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST)); |
| this->unbindTextureFBOForPixelOps(GR_GL_DRAW_FRAMEBUFFER, dst); |
| this->unbindTextureFBOForPixelOps(GR_GL_READ_FRAMEBUFFER, src); |
| this->didWriteToSurface(dst, dstOrigin, &dstRect); |
| return true; |
| } |
| |
| bool GrGLGpu::onRegenerateMipMapLevels(GrTexture* texture) { |
| auto glTex = static_cast<GrGLTexture*>(texture); |
| // Mipmaps are only supported on 2D textures: |
| if (GR_GL_TEXTURE_2D != glTex->target()) { |
| return false; |
| } |
| |
| // Manual implementation of mipmap generation, to work around driver bugs w/sRGB. |
| // Uses draw calls to do a series of downsample operations to successive mips. |
| |
| // The manual approach requires the ability to limit which level we're sampling and that the |
| // destination can be bound to a FBO: |
| if (!this->glCaps().doManualMipmapping() || |
| !this->glCaps().canConfigBeFBOColorAttachment(texture->config())) { |
| GrGLenum target = glTex->target(); |
| this->setScratchTextureUnit(); |
| GL_CALL(BindTexture(target, glTex->textureID())); |
| GL_CALL(GenerateMipmap(glTex->target())); |
| return true; |
| } |
| |
| int width = texture->width(); |
| int height = texture->height(); |
| int levelCount = SkMipMap::ComputeLevelCount(width, height) + 1; |
| SkASSERT(levelCount == texture->texturePriv().maxMipMapLevel() + 1); |
| |
| // Create (if necessary), then bind temporary FBO: |
| if (0 == fTempDstFBOID) { |
| GL_CALL(GenFramebuffers(1, &fTempDstFBOID)); |
| } |
| this->bindFramebuffer(GR_GL_FRAMEBUFFER, fTempDstFBOID); |
| fHWBoundRenderTargetUniqueID.makeInvalid(); |
| |
| // Bind the texture, to get things configured for filtering. |
| // We'll be changing our base level further below: |
| this->setTextureUnit(0); |
| this->bindTexture(0, GrSamplerState::ClampBilerp(), glTex); |
| |
| // Vertex data: |
| if (!fMipmapProgramArrayBuffer) { |
| static const GrGLfloat vdata[] = { |
| 0, 0, |
| 0, 1, |
| 1, 0, |
| 1, 1 |
| }; |
| fMipmapProgramArrayBuffer.reset(GrGLBuffer::Create(this, sizeof(vdata), |
| kVertex_GrBufferType, |
| kStatic_GrAccessPattern, vdata)); |
| } |
| if (!fMipmapProgramArrayBuffer) { |
| return false; |
| } |
| |
| fHWVertexArrayState.setVertexArrayID(this, 0); |
| |
| GrGLAttribArrayState* attribs = fHWVertexArrayState.bindInternalVertexArray(this); |
| attribs->enableVertexArrays(this, 1); |
| attribs->set(this, 0, fMipmapProgramArrayBuffer.get(), kFloat2_GrVertexAttribType, |
| kFloat2_GrSLType, 2 * sizeof(GrGLfloat), 0); |
| |
| // Set "simple" state once: |
| GrXferProcessor::BlendInfo blendInfo; |
| blendInfo.reset(); |
| this->flushBlend(blendInfo, GrSwizzle::RGBA()); |
| this->flushColorWrite(true); |
| this->flushHWAAState(nullptr, false, false); |
| this->disableScissor(); |
| this->disableWindowRectangles(); |
| this->disableStencil(); |
| |
| // Do all the blits: |
| width = texture->width(); |
| height = texture->height(); |
| GrGLIRect viewport; |
| viewport.fLeft = 0; |
| viewport.fBottom = 0; |
| |
| for (GrGLint level = 1; level < levelCount; ++level) { |
| // Get and bind the program for this particular downsample (filter shape can vary): |
| int progIdx = TextureSizeToMipmapProgramIdx(width, height); |
| if (!fMipmapPrograms[progIdx].fProgram) { |
| if (!this->createMipmapProgram(progIdx)) { |
| SkDebugf("Failed to create mipmap program.\n"); |
| // Invalidate all params to cover base level change in a previous iteration. |
| glTex->textureParamsModified(); |
| return false; |
| } |
| } |
| this->flushProgram(fMipmapPrograms[progIdx].fProgram); |
| |
| // Texcoord uniform is expected to contain (1/w, (w-1)/w, 1/h, (h-1)/h) |
| const float invWidth = 1.0f / width; |
| const float invHeight = 1.0f / height; |
| GL_CALL(Uniform4f(fMipmapPrograms[progIdx].fTexCoordXformUniform, |
| invWidth, (width - 1) * invWidth, invHeight, (height - 1) * invHeight)); |
| GL_CALL(Uniform1i(fMipmapPrograms[progIdx].fTextureUniform, 0)); |
| |
| // Only sample from previous mip |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_BASE_LEVEL, level - 1)); |
| |
| GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, GR_GL_TEXTURE_2D, |
| glTex->textureID(), level)); |
| |
| width = SkTMax(1, width / 2); |
| height = SkTMax(1, height / 2); |
| viewport.fWidth = width; |
| viewport.fHeight = height; |
| this->flushViewport(viewport); |
| |
| GL_CALL(DrawArrays(GR_GL_TRIANGLE_STRIP, 0, 4)); |
| } |
| |
| // Unbind: |
| GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_TEXTURE_2D, 0, 0)); |
| |
| // We modified the base level param. |
| GrGLTexture::NonSamplerParams params = glTex->getCachedNonSamplerParams(); |
| params.fBaseMipMapLevel = levelCount - 2; // we drew the 2nd to last level into the last level. |
| glTex->setCachedParams(nullptr, params, this->getResetTimestamp()); |
| |
| return true; |
| } |
| |
| void GrGLGpu::xferBarrier(GrRenderTarget* rt, GrXferBarrierType type) { |
| SkASSERT(type); |
| switch (type) { |
| case kTexture_GrXferBarrierType: { |
| GrGLRenderTarget* glrt = static_cast<GrGLRenderTarget*>(rt); |
| SkASSERT(glrt->textureFBOID() != 0 && glrt->renderFBOID() != 0); |
| if (glrt->textureFBOID() != glrt->renderFBOID()) { |
| // The render target uses separate storage so no need for glTextureBarrier. |
| // FIXME: The render target will resolve automatically when its texture is bound, |
| // but we could resolve only the bounds that will be read if we do it here instead. |
| return; |
| } |
| SkASSERT(this->caps()->textureBarrierSupport()); |
| GL_CALL(TextureBarrier()); |
| return; |
| } |
| case kBlend_GrXferBarrierType: |
| SkASSERT(GrCaps::kAdvanced_BlendEquationSupport == |
| this->caps()->blendEquationSupport()); |
| GL_CALL(BlendBarrier()); |
| return; |
| default: break; // placate compiler warnings that kNone not handled |
| } |
| } |
| |
| #if GR_TEST_UTILS |
| GrBackendTexture GrGLGpu::createTestingOnlyBackendTexture(const void* pixels, int w, int h, |
| GrColorType colorType, bool /*isRT*/, |
| GrMipMapped mipMapped, |
| size_t rowBytes) { |
| this->handleDirtyContext(); |
| |
| GrPixelConfig config = GrColorTypeToPixelConfig(colorType, GrSRGBEncoded::kNo); |
| if (!this->caps()->isConfigTexturable(config)) { |
| return GrBackendTexture(); // invalid |
| } |
| |
| if (w > this->caps()->maxTextureSize() || h > this->caps()->maxTextureSize()) { |
| return GrBackendTexture(); // invalid |
| } |
| |
| // Currently we don't support uploading pixel data when mipped. |
| if (pixels && GrMipMapped::kYes == mipMapped) { |
| return GrBackendTexture(); // invalid |
| } |
| |
| int bpp = GrColorTypeBytesPerPixel(colorType); |
| const size_t trimRowBytes = w * bpp; |
| if (!rowBytes) { |
| rowBytes = trimRowBytes; |
| } |
| |
| GrGLTextureInfo info; |
| info.fTarget = GR_GL_TEXTURE_2D; |
| info.fID = 0; |
| GL_CALL(GenTextures(1, &info.fID)); |
| GL_CALL(ActiveTexture(GR_GL_TEXTURE0)); |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, 1)); |
| GL_CALL(BindTexture(info.fTarget, info.fID)); |
| fHWBoundTextureUniqueIDs[0].makeInvalid(); |
| GL_CALL(TexParameteri(info.fTarget, GR_GL_TEXTURE_MAG_FILTER, GR_GL_NEAREST)); |
| GL_CALL(TexParameteri(info.fTarget, GR_GL_TEXTURE_MIN_FILTER, GR_GL_NEAREST)); |
| GL_CALL(TexParameteri(info.fTarget, GR_GL_TEXTURE_WRAP_S, GR_GL_CLAMP_TO_EDGE)); |
| GL_CALL(TexParameteri(info.fTarget, GR_GL_TEXTURE_WRAP_T, GR_GL_CLAMP_TO_EDGE)); |
| |
| // we have to do something special for compressed textures |
| if (GrPixelConfigIsCompressed(config)) { |
| GrGLenum internalFormat; |
| const GrGLInterface* interface = this->glInterface(); |
| const GrGLCaps& caps = this->glCaps(); |
| if (!caps.getCompressedTexImageFormats(config, &internalFormat)) { |
| return GrBackendTexture(); |
| } |
| |
| GrMipLevel mipLevel = { pixels, rowBytes }; |
| if (!allocate_and_populate_compressed_texture(config, *interface, caps, info.fTarget, |
| internalFormat, &mipLevel, 1, |
| w, h)) { |
| return GrBackendTexture(); |
| } |
| } else { |
| bool restoreGLRowLength = false; |
| if (trimRowBytes != rowBytes && this->glCaps().unpackRowLengthSupport()) { |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowBytes / bpp)); |
| restoreGLRowLength = true; |
| } |
| |
| GrGLenum internalFormat; |
| GrGLenum externalFormat; |
| GrGLenum externalType; |
| |
| if (!this->glCaps().getTexImageFormats(config, config, &internalFormat, &externalFormat, |
| &externalType)) { |
| return GrBackendTexture(); // invalid |
| } |
| |
| info.fFormat = this->glCaps().configSizedInternalFormat(config); |
| |
| this->unbindCpuToGpuXferBuffer(); |
| |
| // Figure out the number of mip levels. |
| int mipLevels = 1; |
| if (GrMipMapped::kYes == mipMapped) { |
| mipLevels = SkMipMap::ComputeLevelCount(w, h) + 1; |
| } |
| |
| size_t baseLayerSize = bpp * w * h; |
| SkAutoMalloc defaultStorage(baseLayerSize); |
| if (!pixels) { |
| // Fill in the texture with all zeros so we don't have random garbage |
| pixels = defaultStorage.get(); |
| memset(defaultStorage.get(), 0, baseLayerSize); |
| } else if (trimRowBytes != rowBytes && !restoreGLRowLength) { |
| // We weren't able to use GR_GL_UNPACK_ROW_LENGTH so make a copy |
| char* copy = (char*)defaultStorage.get(); |
| for (int y = 0; y < h; ++y) { |
| memcpy(©[y*trimRowBytes], &((const char*)pixels)[y*rowBytes], trimRowBytes); |
| } |
| pixels = copy; |
| } |
| |
| int width = w; |
| int height = h; |
| for (int i = 0; i < mipLevels; ++i) { |
| GL_CALL(TexImage2D(info.fTarget, i, internalFormat, width, height, 0, externalFormat, |
| externalType, pixels)); |
| width = SkTMax(1, width / 2); |
| height = SkTMax(1, height / 2); |
| } |
| if (restoreGLRowLength) { |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); |
| } |
| } |
| |
| // unbind the texture from the texture unit to avoid asserts |
| GL_CALL(BindTexture(info.fTarget, 0)); |
| |
| GrBackendTexture beTex = GrBackendTexture(w, h, mipMapped, info); |
| // Lots of tests don't go through Skia's public interface which will set the config so for |
| // testing we make sure we set a config here. |
| beTex.setPixelConfig(config); |
| return beTex; |
| } |
| |
| bool GrGLGpu::isTestingOnlyBackendTexture(const GrBackendTexture& tex) const { |
| SkASSERT(GrBackendApi::kOpenGL == tex.backend()); |
| |
| GrGLTextureInfo info; |
| if (!tex.getGLTextureInfo(&info)) { |
| return false; |
| } |
| |
| GrGLboolean result; |
| GL_CALL_RET(result, IsTexture(info.fID)); |
| |
| return (GR_GL_TRUE == result); |
| } |
| |
| void GrGLGpu::deleteTestingOnlyBackendTexture(const GrBackendTexture& tex) { |
| SkASSERT(GrBackendApi::kOpenGL == tex.backend()); |
| |
| GrGLTextureInfo info; |
| if (tex.getGLTextureInfo(&info)) { |
| GL_CALL(DeleteTextures(1, &info.fID)); |
| } |
| } |
| |
| GrBackendRenderTarget GrGLGpu::createTestingOnlyBackendRenderTarget(int w, int h, |
| GrColorType colorType) { |
| if (w > this->caps()->maxRenderTargetSize() || h > this->caps()->maxRenderTargetSize()) { |
| return GrBackendRenderTarget(); // invalid |
| } |
| this->handleDirtyContext(); |
| auto config = GrColorTypeToPixelConfig(colorType, GrSRGBEncoded::kNo); |
| if (!this->glCaps().isConfigRenderable(config)) { |
| return {}; |
| } |
| bool useTexture = false; |
| GrGLenum colorBufferFormat; |
| GrGLenum externalFormat = 0, externalType = 0; |
| if (config == kBGRA_8888_GrPixelConfig && this->glCaps().bgraIsInternalFormat()) { |
| // BGRA render buffers are not supported. |
| this->glCaps().getTexImageFormats(config, config, &colorBufferFormat, &externalFormat, |
| &externalType); |
| useTexture = true; |
| } else { |
| this->glCaps().getRenderbufferFormat(config, &colorBufferFormat); |
| } |
| int sFormatIdx = this->getCompatibleStencilIndex(config); |
| if (sFormatIdx < 0) { |
| return {}; |
| } |
| GrGLuint colorID = 0; |
| GrGLuint stencilID = 0; |
| auto deleteIDs = [&] { |
| if (colorID) { |
| if (useTexture) { |
| GL_CALL(DeleteTextures(1, &colorID)); |
| } else { |
| GL_CALL(DeleteRenderbuffers(1, &colorID)); |
| } |
| } |
| if (stencilID) { |
| GL_CALL(DeleteRenderbuffers(1, &stencilID)); |
| } |
| }; |
| |
| if (useTexture) { |
| GL_CALL(GenTextures(1, &colorID)); |
| } else { |
| GL_CALL(GenRenderbuffers(1, &colorID)); |
| } |
| GL_CALL(GenRenderbuffers(1, &stencilID)); |
| if (!stencilID || !colorID) { |
| deleteIDs(); |
| return {}; |
| } |
| |
| GrGLFramebufferInfo info; |
| info.fFBOID = 0; |
| this->glCaps().getSizedInternalFormat(config, &info.fFormat); |
| GL_CALL(GenFramebuffers(1, &info.fFBOID)); |
| if (!info.fFBOID) { |
| deleteIDs(); |
| return {}; |
| } |
| |
| this->invalidateBoundRenderTarget(); |
| |
| this->bindFramebuffer(GR_GL_FRAMEBUFFER, info.fFBOID); |
| if (useTexture) { |
| this->setScratchTextureUnit(); |
| GL_CALL(BindTexture(GR_GL_TEXTURE_2D, colorID)); |
| GL_CALL(TexImage2D(GR_GL_TEXTURE_2D, 0, colorBufferFormat, w, h, 0, externalFormat, |
| externalType, nullptr)); |
| GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, GR_GL_TEXTURE_2D, |
| colorID, 0)); |
| } else { |
| GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, colorID)); |
| GL_ALLOC_CALL(this->glInterface(), |
| RenderbufferStorage(GR_GL_RENDERBUFFER, colorBufferFormat, w, h)); |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_RENDERBUFFER, colorID)); |
| } |
| GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, stencilID)); |
| auto stencilBufferFormat = this->glCaps().stencilFormats()[sFormatIdx].fInternalFormat; |
| GL_ALLOC_CALL(this->glInterface(), |
| RenderbufferStorage(GR_GL_RENDERBUFFER, stencilBufferFormat, w, h)); |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT, GR_GL_RENDERBUFFER, |
| stencilID)); |
| if (this->glCaps().stencilFormats()[sFormatIdx].fPacked) { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, stencilID)); |
| } |
| |
| // We don't want to have to recover the renderbuffer/texture IDs later to delete them. OpenGL |
| // has this rule that if a renderbuffer/texture is deleted and a FBO other than the current FBO |
| // has the RB attached then deletion is delayed. So we unbind the FBO here and delete the |
| // renderbuffers/texture. |
| this->bindFramebuffer(GR_GL_FRAMEBUFFER, 0); |
| deleteIDs(); |
| |
| this->bindFramebuffer(GR_GL_FRAMEBUFFER, info.fFBOID); |
| GrGLenum status; |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| if (GR_GL_FRAMEBUFFER_COMPLETE != status) { |
| this->deleteFramebuffer(info.fFBOID); |
| return {}; |
| } |
| auto stencilBits = SkToInt(this->glCaps().stencilFormats()[sFormatIdx].fStencilBits); |
| GrBackendRenderTarget beRT = GrBackendRenderTarget(w, h, 1, stencilBits, info); |
| // Lots of tests don't go through Skia's public interface which will set the config so for |
| // testing we make sure we set a config here. |
| beRT.setPixelConfig(config); |
| #ifdef SK_DEBUG |
| SkColorType skColorType = GrColorTypeToSkColorType(colorType); |
| if (skColorType != kUnknown_SkColorType) { |
| SkASSERT(this->caps()->validateBackendRenderTarget( |
| beRT, GrColorTypeToSkColorType(colorType)) != kUnknown_GrPixelConfig); |
| } |
| #endif |
| return beRT; |
| } |
| |
| void GrGLGpu::deleteTestingOnlyBackendRenderTarget(const GrBackendRenderTarget& backendRT) { |
| SkASSERT(GrBackendApi::kOpenGL == backendRT.backend()); |
| GrGLFramebufferInfo info; |
| if (backendRT.getGLFramebufferInfo(&info)) { |
| if (info.fFBOID) { |
| this->deleteFramebuffer(info.fFBOID); |
| } |
| } |
| } |
| |
| void GrGLGpu::testingOnly_flushGpuAndSync() { |
| GL_CALL(Finish()); |
| } |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| GrGLAttribArrayState* GrGLGpu::HWVertexArrayState::bindInternalVertexArray(GrGLGpu* gpu, |
| const GrBuffer* ibuf) { |
| GrGLAttribArrayState* attribState; |
| |
| if (gpu->glCaps().isCoreProfile()) { |
| if (!fCoreProfileVertexArray) { |
| GrGLuint arrayID; |
| GR_GL_CALL(gpu->glInterface(), GenVertexArrays(1, &arrayID)); |
| int attrCount = gpu->glCaps().maxVertexAttributes(); |
| fCoreProfileVertexArray = new GrGLVertexArray(arrayID, attrCount); |
| } |
| if (ibuf) { |
| attribState = fCoreProfileVertexArray->bindWithIndexBuffer(gpu, ibuf); |
| } else { |
| attribState = fCoreProfileVertexArray->bind(gpu); |
| } |
| } else { |
| if (ibuf) { |
| // bindBuffer implicitly binds VAO 0 when binding an index buffer. |
| gpu->bindBuffer(kIndex_GrBufferType, ibuf); |
| } else { |
| this->setVertexArrayID(gpu, 0); |
| } |
| int attrCount = gpu->glCaps().maxVertexAttributes(); |
| if (fDefaultVertexArrayAttribState.count() != attrCount) { |
| fDefaultVertexArrayAttribState.resize(attrCount); |
| } |
| attribState = &fDefaultVertexArrayAttribState; |
| } |
| return attribState; |
| } |
| |
| void GrGLGpu::onFinishFlush(bool insertedSemaphore) { |
| // If we inserted semaphores during the flush, we need to call GLFlush. |
| if (insertedSemaphore) { |
| GL_CALL(Flush()); |
| } |
| } |
| |
| void GrGLGpu::submit(GrGpuCommandBuffer* buffer) { |
| if (buffer->asRTCommandBuffer()) { |
| SkASSERT(fCachedRTCommandBuffer.get() == buffer); |
| fCachedRTCommandBuffer->reset(); |
| } else { |
| SkASSERT(fCachedTexCommandBuffer.get() == buffer); |
| fCachedTexCommandBuffer->reset(); |
| } |
| } |
| |
| GrFence SK_WARN_UNUSED_RESULT GrGLGpu::insertFence() { |
| SkASSERT(this->caps()->fenceSyncSupport()); |
| GrGLsync sync; |
| GL_CALL_RET(sync, FenceSync(GR_GL_SYNC_GPU_COMMANDS_COMPLETE, 0)); |
| GR_STATIC_ASSERT(sizeof(GrFence) >= sizeof(GrGLsync)); |
| return (GrFence)sync; |
| } |
| |
| bool GrGLGpu::waitFence(GrFence fence, uint64_t timeout) { |
| GrGLenum result; |
| GL_CALL_RET(result, ClientWaitSync((GrGLsync)fence, GR_GL_SYNC_FLUSH_COMMANDS_BIT, timeout)); |
| return (GR_GL_CONDITION_SATISFIED == result); |
| } |
| |
| void GrGLGpu::deleteFence(GrFence fence) const { |
| this->deleteSync((GrGLsync)fence); |
| } |
| |
| sk_sp<GrSemaphore> SK_WARN_UNUSED_RESULT GrGLGpu::makeSemaphore(bool isOwned) { |
| SkASSERT(this->caps()->fenceSyncSupport()); |
| return GrGLSemaphore::Make(this, isOwned); |
| } |
| |
| sk_sp<GrSemaphore> GrGLGpu::wrapBackendSemaphore(const GrBackendSemaphore& semaphore, |
| GrResourceProvider::SemaphoreWrapType wrapType, |
| GrWrapOwnership ownership) { |
| SkASSERT(this->caps()->fenceSyncSupport()); |
| return GrGLSemaphore::MakeWrapped(this, semaphore.glSync(), ownership); |
| } |
| |
| void GrGLGpu::insertSemaphore(sk_sp<GrSemaphore> semaphore) { |
| GrGLSemaphore* glSem = static_cast<GrGLSemaphore*>(semaphore.get()); |
| |
| GrGLsync sync; |
| GL_CALL_RET(sync, FenceSync(GR_GL_SYNC_GPU_COMMANDS_COMPLETE, 0)); |
| glSem->setSync(sync); |
| } |
| |
| void GrGLGpu::waitSemaphore(sk_sp<GrSemaphore> semaphore) { |
| GrGLSemaphore* glSem = static_cast<GrGLSemaphore*>(semaphore.get()); |
| |
| GL_CALL(WaitSync(glSem->sync(), 0, GR_GL_TIMEOUT_IGNORED)); |
| } |
| |
| void GrGLGpu::deleteSync(GrGLsync sync) const { |
| GL_CALL(DeleteSync(sync)); |
| } |
| |
| void GrGLGpu::insertEventMarker(const char* msg) { |
| GL_CALL(InsertEventMarker(strlen(msg), msg)); |
| } |
| |
| sk_sp<GrSemaphore> GrGLGpu::prepareTextureForCrossContextUsage(GrTexture* texture) { |
| // Set up a semaphore to be signaled once the data is ready, and flush GL |
| sk_sp<GrSemaphore> semaphore = this->makeSemaphore(true); |
| this->insertSemaphore(semaphore); |
| // We must call flush here to make sure the GrGLSync object gets created and sent to the gpu. |
| GL_CALL(Flush()); |
| |
| return semaphore; |
| } |
| |
| int GrGLGpu::TextureToCopyProgramIdx(GrTexture* texture) { |
| switch (GrSLCombinedSamplerTypeForTextureType(texture->texturePriv().textureType())) { |
| case kTexture2DSampler_GrSLType: |
| return 0; |
| case kTexture2DRectSampler_GrSLType: |
| return 1; |
| case kTextureExternalSampler_GrSLType: |
| return 2; |
| default: |
| SK_ABORT("Unexpected samper type"); |
| return 0; |
| } |
| } |
| |
| #ifdef SK_ENABLE_DUMP_GPU |
| #include "SkJSONWriter.h" |
| void GrGLGpu::onDumpJSON(SkJSONWriter* writer) const { |
| // We are called by the base class, which has already called beginObject(). We choose to nest |
| // all of our caps information in a named sub-object. |
| writer->beginObject("GL GPU"); |
| |
| const GrGLubyte* str; |
| GL_CALL_RET(str, GetString(GR_GL_VERSION)); |
| writer->appendString("GL_VERSION", (const char*)(str)); |
| GL_CALL_RET(str, GetString(GR_GL_RENDERER)); |
| writer->appendString("GL_RENDERER", (const char*)(str)); |
| GL_CALL_RET(str, GetString(GR_GL_VENDOR)); |
| writer->appendString("GL_VENDOR", (const char*)(str)); |
| GL_CALL_RET(str, GetString(GR_GL_SHADING_LANGUAGE_VERSION)); |
| writer->appendString("GL_SHADING_LANGUAGE_VERSION", (const char*)(str)); |
| |
| writer->appendName("extensions"); |
| glInterface()->fExtensions.dumpJSON(writer); |
| |
| writer->endObject(); |
| } |
| #endif |