| /* |
| * Copyright 2017 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkShadowTessellator.h" |
| #include "SkColorData.h" |
| #include "SkDrawShadowInfo.h" |
| #include "SkGeometry.h" |
| #include "SkPolyUtils.h" |
| #include "SkPath.h" |
| #include "SkPoint3.h" |
| #include "SkPointPriv.h" |
| #include "SkVertices.h" |
| |
| #if SK_SUPPORT_GPU |
| #include "GrPathUtils.h" |
| #endif |
| |
| |
| /** |
| * Base class |
| */ |
| class SkBaseShadowTessellator { |
| public: |
| SkBaseShadowTessellator(const SkPoint3& zPlaneParams, bool transparent); |
| virtual ~SkBaseShadowTessellator() {} |
| |
| sk_sp<SkVertices> releaseVertices() { |
| if (!fSucceeded) { |
| return nullptr; |
| } |
| return SkVertices::MakeCopy(SkVertices::kTriangles_VertexMode, this->vertexCount(), |
| fPositions.begin(), nullptr, fColors.begin(), |
| this->indexCount(), fIndices.begin()); |
| } |
| |
| protected: |
| static constexpr auto kMinHeight = 0.1f; |
| static constexpr auto kPenumbraColor = SK_ColorTRANSPARENT; |
| static constexpr auto kUmbraColor = SK_ColorBLACK; |
| |
| int vertexCount() const { return fPositions.count(); } |
| int indexCount() const { return fIndices.count(); } |
| |
| // initialization methods |
| bool accumulateCentroid(const SkPoint& c, const SkPoint& n); |
| bool checkConvexity(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2); |
| void finishPathPolygon(); |
| |
| // convex shadow methods |
| bool computeConvexShadow(SkScalar inset, SkScalar outset, bool doClip); |
| void computeClipVectorsAndTestCentroid(); |
| bool clipUmbraPoint(const SkPoint& umbraPoint, const SkPoint& centroid, SkPoint* clipPoint); |
| void addEdge(const SkVector& nextPoint, const SkVector& nextNormal, SkColor umbraColor, |
| const SkTDArray<SkPoint>& umbraPolygon, bool lastEdge, bool doClip); |
| bool addInnerPoint(const SkPoint& pathPoint, SkColor umbraColor, |
| const SkTDArray<SkPoint>& umbraPolygon, int* currUmbraIndex); |
| int getClosestUmbraIndex(const SkPoint& point, const SkTDArray<SkPoint>& umbraPolygon); |
| |
| // concave shadow methods |
| bool computeConcaveShadow(SkScalar inset, SkScalar outset); |
| void stitchConcaveRings(const SkTDArray<SkPoint>& umbraPolygon, |
| SkTDArray<int>* umbraIndices, |
| const SkTDArray<SkPoint>& penumbraPolygon, |
| SkTDArray<int>* penumbraIndices); |
| |
| void handleLine(const SkPoint& p); |
| void handleLine(const SkMatrix& m, SkPoint* p); |
| |
| void handleQuad(const SkPoint pts[3]); |
| void handleQuad(const SkMatrix& m, SkPoint pts[3]); |
| |
| void handleCubic(const SkMatrix& m, SkPoint pts[4]); |
| |
| void handleConic(const SkMatrix& m, SkPoint pts[3], SkScalar w); |
| |
| bool addArc(const SkVector& nextNormal, SkScalar offset, bool finishArc); |
| |
| void appendTriangle(uint16_t index0, uint16_t index1, uint16_t index2); |
| void appendQuad(uint16_t index0, uint16_t index1, uint16_t index2, uint16_t index3); |
| |
| SkScalar heightFunc(SkScalar x, SkScalar y) { |
| return fZPlaneParams.fX*x + fZPlaneParams.fY*y + fZPlaneParams.fZ; |
| } |
| |
| SkPoint3 fZPlaneParams; |
| |
| // temporary buffer |
| SkTDArray<SkPoint> fPointBuffer; |
| |
| SkTDArray<SkPoint> fPositions; |
| SkTDArray<SkColor> fColors; |
| SkTDArray<uint16_t> fIndices; |
| |
| SkTDArray<SkPoint> fPathPolygon; |
| SkTDArray<SkPoint> fClipPolygon; |
| SkTDArray<SkVector> fClipVectors; |
| |
| SkPoint fCentroid; |
| SkScalar fArea; |
| SkScalar fLastArea; |
| SkScalar fLastCross; |
| |
| int fFirstVertexIndex; |
| SkVector fFirstOutset; |
| SkPoint fFirstPoint; |
| |
| bool fSucceeded; |
| bool fTransparent; |
| bool fIsConvex; |
| bool fValidUmbra; |
| |
| SkScalar fDirection; |
| int fPrevUmbraIndex; |
| int fCurrUmbraIndex; |
| int fCurrClipIndex; |
| bool fPrevUmbraOutside; |
| bool fFirstUmbraOutside; |
| SkVector fPrevOutset; |
| SkPoint fPrevPoint; |
| }; |
| |
| // make external linkage happy |
| constexpr SkColor SkBaseShadowTessellator::kUmbraColor; |
| constexpr SkColor SkBaseShadowTessellator::kPenumbraColor; |
| |
| static bool compute_normal(const SkPoint& p0, const SkPoint& p1, SkScalar dir, |
| SkVector* newNormal) { |
| SkVector normal; |
| // compute perpendicular |
| normal.fX = p0.fY - p1.fY; |
| normal.fY = p1.fX - p0.fX; |
| normal *= dir; |
| if (!normal.normalize()) { |
| return false; |
| } |
| *newNormal = normal; |
| return true; |
| } |
| |
| static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) { |
| static constexpr SkScalar kClose = (SK_Scalar1 / 16); |
| static constexpr SkScalar kCloseSqd = kClose * kClose; |
| |
| SkScalar distSq = SkPointPriv::DistanceToSqd(p0, p1); |
| return distSq < kCloseSqd; |
| } |
| |
| static SkScalar perp_dot(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) { |
| SkVector v0 = p1 - p0; |
| SkVector v1 = p2 - p1; |
| return v0.cross(v1); |
| } |
| |
| SkBaseShadowTessellator::SkBaseShadowTessellator(const SkPoint3& zPlaneParams, bool transparent) |
| : fZPlaneParams(zPlaneParams) |
| , fCentroid({0, 0}) |
| , fArea(0) |
| , fLastArea(0) |
| , fLastCross(0) |
| , fFirstVertexIndex(-1) |
| , fSucceeded(false) |
| , fTransparent(transparent) |
| , fIsConvex(true) |
| , fValidUmbra(true) |
| , fDirection(1) |
| , fPrevUmbraIndex(-1) |
| , fCurrUmbraIndex(0) |
| , fCurrClipIndex(0) |
| , fPrevUmbraOutside(false) |
| , fFirstUmbraOutside(false) { |
| // child classes will set reserve for positions, colors and indices |
| } |
| |
| bool SkBaseShadowTessellator::accumulateCentroid(const SkPoint& curr, const SkPoint& next) { |
| if (duplicate_pt(curr, next)) { |
| return false; |
| } |
| |
| SkASSERT(fPathPolygon.count() > 0); |
| SkVector v0 = curr - fPathPolygon[0]; |
| SkVector v1 = next - fPathPolygon[0]; |
| SkScalar quadArea = v0.cross(v1); |
| fCentroid.fX += (v0.fX + v1.fX) * quadArea; |
| fCentroid.fY += (v0.fY + v1.fY) * quadArea; |
| fArea += quadArea; |
| // convexity check |
| if (quadArea*fLastArea < 0) { |
| fIsConvex = false; |
| } |
| if (0 != quadArea) { |
| fLastArea = quadArea; |
| } |
| |
| return true; |
| } |
| |
| bool SkBaseShadowTessellator::checkConvexity(const SkPoint& p0, |
| const SkPoint& p1, |
| const SkPoint& p2) { |
| SkScalar cross = perp_dot(p0, p1, p2); |
| // skip collinear point |
| if (SkScalarNearlyZero(cross)) { |
| return false; |
| } |
| |
| // check for convexity |
| if (fLastCross*cross < 0) { |
| fIsConvex = false; |
| } |
| if (0 != cross) { |
| fLastCross = cross; |
| } |
| |
| return true; |
| } |
| |
| void SkBaseShadowTessellator::finishPathPolygon() { |
| if (fPathPolygon.count() > 1) { |
| if (!this->accumulateCentroid(fPathPolygon[fPathPolygon.count() - 1], fPathPolygon[0])) { |
| // remove coincident point |
| fPathPolygon.pop(); |
| } |
| } |
| |
| if (fPathPolygon.count() > 2) { |
| // do this before the final convexity check, so we use the correct fPathPolygon[0] |
| fCentroid *= sk_ieee_float_divide(1, 3 * fArea); |
| fCentroid += fPathPolygon[0]; |
| if (!checkConvexity(fPathPolygon[fPathPolygon.count() - 2], |
| fPathPolygon[fPathPolygon.count() - 1], |
| fPathPolygon[0])) { |
| // remove collinear point |
| fPathPolygon[0] = fPathPolygon[fPathPolygon.count() - 1]; |
| fPathPolygon.pop(); |
| } |
| } |
| |
| // if area is positive, winding is ccw |
| fDirection = fArea > 0 ? -1 : 1; |
| } |
| |
| bool SkBaseShadowTessellator::computeConvexShadow(SkScalar inset, SkScalar outset, bool doClip) { |
| if (doClip) { |
| this->computeClipVectorsAndTestCentroid(); |
| } |
| |
| // adjust inset distance and umbra color if necessary |
| auto umbraColor = kUmbraColor; |
| SkScalar minDistSq = SkPointPriv::DistanceToLineSegmentBetweenSqd(fCentroid, |
| fPathPolygon[0], |
| fPathPolygon[1]); |
| SkRect bounds; |
| bounds.setBounds(&fPathPolygon[0], fPathPolygon.count()); |
| for (int i = 1; i < fPathPolygon.count(); ++i) { |
| int j = i + 1; |
| if (i == fPathPolygon.count() - 1) { |
| j = 0; |
| } |
| SkPoint currPoint = fPathPolygon[i]; |
| SkPoint nextPoint = fPathPolygon[j]; |
| SkScalar distSq = SkPointPriv::DistanceToLineSegmentBetweenSqd(fCentroid, currPoint, |
| nextPoint); |
| if (distSq < minDistSq) { |
| minDistSq = distSq; |
| } |
| } |
| |
| SkTDArray<SkPoint> insetPolygon; |
| if (inset > SK_ScalarNearlyZero) { |
| static constexpr auto kTolerance = 1.0e-2f; |
| if (minDistSq < (inset + kTolerance)*(inset + kTolerance)) { |
| // if the umbra would collapse, we back off a bit on inner blur and adjust the alpha |
| auto newInset = SkScalarSqrt(minDistSq) - kTolerance; |
| auto ratio = 128 * (newInset / inset + 1); |
| SkASSERT(SkScalarIsFinite(ratio)); |
| // they aren't PMColors, but the interpolation algorithm is the same |
| umbraColor = SkPMLerp(kUmbraColor, kPenumbraColor, (unsigned)ratio); |
| inset = newInset; |
| } |
| |
| // generate inner ring |
| if (!SkInsetConvexPolygon(&fPathPolygon[0], fPathPolygon.count(), inset, |
| &insetPolygon)) { |
| // not ideal, but in this case we'll inset using the centroid |
| fValidUmbra = false; |
| } |
| } |
| const SkTDArray<SkPoint>& umbraPolygon = (inset > SK_ScalarNearlyZero) ? insetPolygon |
| : fPathPolygon; |
| |
| // walk around the path polygon, generate outer ring and connect to inner ring |
| if (fTransparent) { |
| fPositions.push_back(fCentroid); |
| fColors.push_back(umbraColor); |
| } |
| fCurrUmbraIndex = 0; |
| |
| // initial setup |
| // add first quad |
| int polyCount = fPathPolygon.count(); |
| if (!compute_normal(fPathPolygon[polyCount - 1], fPathPolygon[0], fDirection, &fFirstOutset)) { |
| // polygon should be sanitized by this point, so this is unrecoverable |
| return false; |
| } |
| |
| fFirstOutset *= outset; |
| fFirstPoint = fPathPolygon[polyCount - 1]; |
| fFirstVertexIndex = fPositions.count(); |
| fPrevOutset = fFirstOutset; |
| fPrevPoint = fFirstPoint; |
| fPrevUmbraIndex = -1; |
| |
| this->addInnerPoint(fFirstPoint, umbraColor, umbraPolygon, &fPrevUmbraIndex); |
| |
| if (!fTransparent && doClip) { |
| SkPoint clipPoint; |
| bool isOutside = this->clipUmbraPoint(fPositions[fFirstVertexIndex], |
| fCentroid, &clipPoint); |
| if (isOutside) { |
| fPositions.push_back(clipPoint); |
| fColors.push_back(umbraColor); |
| } |
| fPrevUmbraOutside = isOutside; |
| fFirstUmbraOutside = isOutside; |
| } |
| |
| SkPoint newPoint = fFirstPoint + fFirstOutset; |
| fPositions.push_back(newPoint); |
| fColors.push_back(kPenumbraColor); |
| this->addEdge(fPathPolygon[0], fFirstOutset, umbraColor, umbraPolygon, false, doClip); |
| |
| for (int i = 1; i < polyCount; ++i) { |
| SkVector normal; |
| if (!compute_normal(fPrevPoint, fPathPolygon[i], fDirection, &normal)) { |
| return false; |
| } |
| normal *= outset; |
| this->addArc(normal, outset, true); |
| this->addEdge(fPathPolygon[i], normal, umbraColor, umbraPolygon, |
| i == polyCount - 1, doClip); |
| } |
| SkASSERT(this->indexCount()); |
| |
| // final fan |
| SkASSERT(fPositions.count() >= 3); |
| if (this->addArc(fFirstOutset, outset, false)) { |
| if (fFirstUmbraOutside) { |
| this->appendTriangle(fFirstVertexIndex, fPositions.count() - 1, |
| fFirstVertexIndex + 2); |
| } else { |
| this->appendTriangle(fFirstVertexIndex, fPositions.count() - 1, |
| fFirstVertexIndex + 1); |
| } |
| } else { |
| // no arc added, fix up by setting first penumbra point position to last one |
| if (fFirstUmbraOutside) { |
| fPositions[fFirstVertexIndex + 2] = fPositions[fPositions.count() - 1]; |
| } else { |
| fPositions[fFirstVertexIndex + 1] = fPositions[fPositions.count() - 1]; |
| } |
| } |
| |
| return true; |
| } |
| |
| void SkBaseShadowTessellator::computeClipVectorsAndTestCentroid() { |
| SkASSERT(fClipPolygon.count() >= 3); |
| fCurrClipIndex = fClipPolygon.count() - 1; |
| |
| // init clip vectors |
| SkVector v0 = fClipPolygon[1] - fClipPolygon[0]; |
| SkVector v1 = fClipPolygon[2] - fClipPolygon[0]; |
| fClipVectors.push_back(v0); |
| |
| // init centroid check |
| bool hiddenCentroid = true; |
| v1 = fCentroid - fClipPolygon[0]; |
| SkScalar initCross = v0.cross(v1); |
| |
| for (int p = 1; p < fClipPolygon.count(); ++p) { |
| // add to clip vectors |
| v0 = fClipPolygon[(p + 1) % fClipPolygon.count()] - fClipPolygon[p]; |
| fClipVectors.push_back(v0); |
| // Determine if transformed centroid is inside clipPolygon. |
| v1 = fCentroid - fClipPolygon[p]; |
| if (initCross*v0.cross(v1) <= 0) { |
| hiddenCentroid = false; |
| } |
| } |
| SkASSERT(fClipVectors.count() == fClipPolygon.count()); |
| |
| fTransparent = fTransparent || !hiddenCentroid; |
| } |
| |
| void SkBaseShadowTessellator::addEdge(const SkPoint& nextPoint, const SkVector& nextNormal, |
| SkColor umbraColor, const SkTDArray<SkPoint>& umbraPolygon, |
| bool lastEdge, bool doClip) { |
| // add next umbra point |
| int currUmbraIndex; |
| bool duplicate; |
| if (lastEdge) { |
| duplicate = false; |
| currUmbraIndex = fFirstVertexIndex; |
| fPrevPoint = nextPoint; |
| } else { |
| duplicate = this->addInnerPoint(nextPoint, umbraColor, umbraPolygon, &currUmbraIndex); |
| } |
| int prevPenumbraIndex = duplicate || (currUmbraIndex == fFirstVertexIndex) |
| ? fPositions.count() - 1 |
| : fPositions.count() - 2; |
| if (!duplicate) { |
| // add to center fan if transparent or centroid showing |
| if (fTransparent) { |
| this->appendTriangle(0, fPrevUmbraIndex, currUmbraIndex); |
| // otherwise add to clip ring |
| } else if (doClip) { |
| SkPoint clipPoint; |
| bool isOutside = lastEdge ? fFirstUmbraOutside |
| : this->clipUmbraPoint(fPositions[currUmbraIndex], fCentroid, |
| &clipPoint); |
| if (isOutside) { |
| if (!lastEdge) { |
| fPositions.push_back(clipPoint); |
| fColors.push_back(umbraColor); |
| } |
| this->appendTriangle(fPrevUmbraIndex, currUmbraIndex, currUmbraIndex + 1); |
| if (fPrevUmbraOutside) { |
| // fill out quad |
| this->appendTriangle(fPrevUmbraIndex, currUmbraIndex + 1, |
| fPrevUmbraIndex + 1); |
| } |
| } else if (fPrevUmbraOutside) { |
| // add tri |
| this->appendTriangle(fPrevUmbraIndex, currUmbraIndex, fPrevUmbraIndex + 1); |
| } |
| |
| fPrevUmbraOutside = isOutside; |
| } |
| } |
| |
| // add next penumbra point and quad |
| SkPoint newPoint = nextPoint + nextNormal; |
| fPositions.push_back(newPoint); |
| fColors.push_back(kPenumbraColor); |
| |
| if (!duplicate) { |
| this->appendTriangle(fPrevUmbraIndex, prevPenumbraIndex, currUmbraIndex); |
| } |
| this->appendTriangle(prevPenumbraIndex, fPositions.count() - 1, currUmbraIndex); |
| |
| fPrevUmbraIndex = currUmbraIndex; |
| fPrevOutset = nextNormal; |
| } |
| |
| bool SkBaseShadowTessellator::clipUmbraPoint(const SkPoint& umbraPoint, const SkPoint& centroid, |
| SkPoint* clipPoint) { |
| SkVector segmentVector = centroid - umbraPoint; |
| |
| int startClipPoint = fCurrClipIndex; |
| do { |
| SkVector dp = umbraPoint - fClipPolygon[fCurrClipIndex]; |
| SkScalar denom = fClipVectors[fCurrClipIndex].cross(segmentVector); |
| SkScalar t_num = dp.cross(segmentVector); |
| // if line segments are nearly parallel |
| if (SkScalarNearlyZero(denom)) { |
| // and collinear |
| if (SkScalarNearlyZero(t_num)) { |
| return false; |
| } |
| // otherwise are separate, will try the next poly segment |
| // else if crossing lies within poly segment |
| } else if (t_num >= 0 && t_num <= denom) { |
| SkScalar s_num = dp.cross(fClipVectors[fCurrClipIndex]); |
| // if umbra point is inside the clip polygon |
| if (s_num >= 0 && s_num <= denom) { |
| segmentVector *= s_num / denom; |
| *clipPoint = umbraPoint + segmentVector; |
| return true; |
| } |
| } |
| fCurrClipIndex = (fCurrClipIndex + 1) % fClipPolygon.count(); |
| } while (fCurrClipIndex != startClipPoint); |
| |
| return false; |
| } |
| |
| bool SkBaseShadowTessellator::addInnerPoint(const SkPoint& pathPoint, SkColor umbraColor, |
| const SkTDArray<SkPoint>& umbraPolygon, |
| int* currUmbraIndex) { |
| SkPoint umbraPoint; |
| if (!fValidUmbra) { |
| SkVector v = fCentroid - pathPoint; |
| v *= 0.95f; |
| umbraPoint = pathPoint + v; |
| } else { |
| umbraPoint = umbraPolygon[this->getClosestUmbraIndex(pathPoint, umbraPolygon)]; |
| } |
| |
| fPrevPoint = pathPoint; |
| |
| // merge "close" points |
| if (fPrevUmbraIndex == -1 || |
| !duplicate_pt(umbraPoint, fPositions[fPrevUmbraIndex])) { |
| // if we've wrapped around, don't add a new point |
| if (fPrevUmbraIndex >= 0 && duplicate_pt(umbraPoint, fPositions[fFirstVertexIndex])) { |
| *currUmbraIndex = fFirstVertexIndex; |
| } else { |
| *currUmbraIndex = fPositions.count(); |
| fPositions.push_back(umbraPoint); |
| fColors.push_back(umbraColor); |
| } |
| return false; |
| } else { |
| *currUmbraIndex = fPrevUmbraIndex; |
| return true; |
| } |
| } |
| |
| int SkBaseShadowTessellator::getClosestUmbraIndex(const SkPoint& p, |
| const SkTDArray<SkPoint>& umbraPolygon) { |
| SkScalar minDistance = SkPointPriv::DistanceToSqd(p, umbraPolygon[fCurrUmbraIndex]); |
| int index = fCurrUmbraIndex; |
| int dir = 1; |
| int next = (index + dir) % umbraPolygon.count(); |
| |
| // init travel direction |
| SkScalar distance = SkPointPriv::DistanceToSqd(p, umbraPolygon[next]); |
| if (distance < minDistance) { |
| index = next; |
| minDistance = distance; |
| } else { |
| dir = umbraPolygon.count() - 1; |
| } |
| |
| // iterate until we find a point that increases the distance |
| next = (index + dir) % umbraPolygon.count(); |
| distance = SkPointPriv::DistanceToSqd(p, umbraPolygon[next]); |
| while (distance < minDistance) { |
| index = next; |
| minDistance = distance; |
| next = (index + dir) % umbraPolygon.count(); |
| distance = SkPointPriv::DistanceToSqd(p, umbraPolygon[next]); |
| } |
| |
| fCurrUmbraIndex = index; |
| return index; |
| } |
| |
| bool SkBaseShadowTessellator::computeConcaveShadow(SkScalar inset, SkScalar outset) { |
| if (!SkIsSimplePolygon(&fPathPolygon[0], fPathPolygon.count())) { |
| return false; |
| } |
| |
| // generate inner ring |
| SkTDArray<SkPoint> umbraPolygon; |
| SkTDArray<int> umbraIndices; |
| umbraIndices.setReserve(fPathPolygon.count()); |
| if (!SkOffsetSimplePolygon(&fPathPolygon[0], fPathPolygon.count(), inset, |
| &umbraPolygon, &umbraIndices)) { |
| // TODO: figure out how to handle this case |
| return false; |
| } |
| |
| // generate outer ring |
| SkTDArray<SkPoint> penumbraPolygon; |
| SkTDArray<int> penumbraIndices; |
| penumbraPolygon.setReserve(umbraPolygon.count()); |
| penumbraIndices.setReserve(umbraPolygon.count()); |
| if (!SkOffsetSimplePolygon(&fPathPolygon[0], fPathPolygon.count(), -outset, |
| &penumbraPolygon, &penumbraIndices)) { |
| // TODO: figure out how to handle this case |
| return false; |
| } |
| |
| if (!umbraPolygon.count() || !penumbraPolygon.count()) { |
| return false; |
| } |
| |
| // attach the rings together |
| this->stitchConcaveRings(umbraPolygon, &umbraIndices, penumbraPolygon, &penumbraIndices); |
| |
| return true; |
| } |
| |
| void SkBaseShadowTessellator::stitchConcaveRings(const SkTDArray<SkPoint>& umbraPolygon, |
| SkTDArray<int>* umbraIndices, |
| const SkTDArray<SkPoint>& penumbraPolygon, |
| SkTDArray<int>* penumbraIndices) { |
| // TODO: only create and fill indexMap when fTransparent is true? |
| SkAutoSTMalloc<64, uint16_t> indexMap(umbraPolygon.count()); |
| |
| // find minimum indices |
| int minIndex = 0; |
| int min = (*penumbraIndices)[0]; |
| for (int i = 1; i < (*penumbraIndices).count(); ++i) { |
| if ((*penumbraIndices)[i] < min) { |
| min = (*penumbraIndices)[i]; |
| minIndex = i; |
| } |
| } |
| int currPenumbra = minIndex; |
| |
| minIndex = 0; |
| min = (*umbraIndices)[0]; |
| for (int i = 1; i < (*umbraIndices).count(); ++i) { |
| if ((*umbraIndices)[i] < min) { |
| min = (*umbraIndices)[i]; |
| minIndex = i; |
| } |
| } |
| int currUmbra = minIndex; |
| |
| // now find a case where the indices are equal (there should be at least one) |
| int maxPenumbraIndex = fPathPolygon.count() - 1; |
| int maxUmbraIndex = fPathPolygon.count() - 1; |
| while ((*penumbraIndices)[currPenumbra] != (*umbraIndices)[currUmbra]) { |
| if ((*penumbraIndices)[currPenumbra] < (*umbraIndices)[currUmbra]) { |
| (*penumbraIndices)[currPenumbra] += fPathPolygon.count(); |
| maxPenumbraIndex = (*penumbraIndices)[currPenumbra]; |
| currPenumbra = (currPenumbra + 1) % penumbraPolygon.count(); |
| } else { |
| (*umbraIndices)[currUmbra] += fPathPolygon.count(); |
| maxUmbraIndex = (*umbraIndices)[currUmbra]; |
| currUmbra = (currUmbra + 1) % umbraPolygon.count(); |
| } |
| } |
| |
| fPositions.push_back(penumbraPolygon[currPenumbra]); |
| fColors.push_back(kPenumbraColor); |
| int prevPenumbraIndex = 0; |
| fPositions.push_back(umbraPolygon[currUmbra]); |
| fColors.push_back(kUmbraColor); |
| fPrevUmbraIndex = 1; |
| indexMap[currUmbra] = 1; |
| |
| int nextPenumbra = (currPenumbra + 1) % penumbraPolygon.count(); |
| int nextUmbra = (currUmbra + 1) % umbraPolygon.count(); |
| while ((*penumbraIndices)[nextPenumbra] <= maxPenumbraIndex || |
| (*umbraIndices)[nextUmbra] <= maxUmbraIndex) { |
| |
| if ((*umbraIndices)[nextUmbra] == (*penumbraIndices)[nextPenumbra]) { |
| // advance both one step |
| fPositions.push_back(penumbraPolygon[nextPenumbra]); |
| fColors.push_back(kPenumbraColor); |
| int currPenumbraIndex = fPositions.count() - 1; |
| |
| fPositions.push_back(umbraPolygon[nextUmbra]); |
| fColors.push_back(kUmbraColor); |
| int currUmbraIndex = fPositions.count() - 1; |
| indexMap[nextUmbra] = currUmbraIndex; |
| |
| this->appendQuad(prevPenumbraIndex, currPenumbraIndex, |
| fPrevUmbraIndex, currUmbraIndex); |
| |
| prevPenumbraIndex = currPenumbraIndex; |
| (*penumbraIndices)[currPenumbra] += fPathPolygon.count(); |
| currPenumbra = nextPenumbra; |
| nextPenumbra = (currPenumbra + 1) % penumbraPolygon.count(); |
| |
| fPrevUmbraIndex = currUmbraIndex; |
| (*umbraIndices)[currUmbra] += fPathPolygon.count(); |
| currUmbra = nextUmbra; |
| nextUmbra = (currUmbra + 1) % umbraPolygon.count(); |
| } |
| |
| while ((*penumbraIndices)[nextPenumbra] < (*umbraIndices)[nextUmbra] && |
| (*penumbraIndices)[nextPenumbra] <= maxPenumbraIndex) { |
| // fill out penumbra arc |
| fPositions.push_back(penumbraPolygon[nextPenumbra]); |
| fColors.push_back(kPenumbraColor); |
| int currPenumbraIndex = fPositions.count() - 1; |
| |
| this->appendTriangle(prevPenumbraIndex, currPenumbraIndex, fPrevUmbraIndex); |
| |
| prevPenumbraIndex = currPenumbraIndex; |
| // this ensures the ordering when we wrap around |
| (*penumbraIndices)[currPenumbra] += fPathPolygon.count(); |
| currPenumbra = nextPenumbra; |
| nextPenumbra = (currPenumbra + 1) % penumbraPolygon.count(); |
| } |
| |
| while ((*umbraIndices)[nextUmbra] < (*penumbraIndices)[nextPenumbra] && |
| (*umbraIndices)[nextUmbra] <= maxUmbraIndex) { |
| // fill out umbra arc |
| fPositions.push_back(umbraPolygon[nextUmbra]); |
| fColors.push_back(kUmbraColor); |
| int currUmbraIndex = fPositions.count() - 1; |
| indexMap[nextUmbra] = currUmbraIndex; |
| |
| this->appendTriangle(fPrevUmbraIndex, prevPenumbraIndex, currUmbraIndex); |
| |
| fPrevUmbraIndex = currUmbraIndex; |
| // this ensures the ordering when we wrap around |
| (*umbraIndices)[currUmbra] += fPathPolygon.count(); |
| currUmbra = nextUmbra; |
| nextUmbra = (currUmbra + 1) % umbraPolygon.count(); |
| } |
| } |
| // finish up by advancing both one step |
| fPositions.push_back(penumbraPolygon[nextPenumbra]); |
| fColors.push_back(kPenumbraColor); |
| int currPenumbraIndex = fPositions.count() - 1; |
| |
| fPositions.push_back(umbraPolygon[nextUmbra]); |
| fColors.push_back(kUmbraColor); |
| int currUmbraIndex = fPositions.count() - 1; |
| indexMap[nextUmbra] = currUmbraIndex; |
| |
| this->appendQuad(prevPenumbraIndex, currPenumbraIndex, |
| fPrevUmbraIndex, currUmbraIndex); |
| |
| if (fTransparent) { |
| SkTriangulateSimplePolygon(umbraPolygon.begin(), indexMap, umbraPolygon.count(), |
| &fIndices); |
| } |
| } |
| |
| |
| // tesselation tolerance values, in device space pixels |
| #if SK_SUPPORT_GPU |
| static const SkScalar kQuadTolerance = 0.2f; |
| static const SkScalar kCubicTolerance = 0.2f; |
| #endif |
| static const SkScalar kConicTolerance = 0.25f; |
| |
| // clamps the point to the nearest 16th of a pixel |
| static void sanitize_point(const SkPoint& in, SkPoint* out) { |
| out->fX = SkScalarRoundToScalar(16.f*in.fX)*0.0625f; |
| out->fY = SkScalarRoundToScalar(16.f*in.fY)*0.0625f; |
| } |
| |
| void SkBaseShadowTessellator::handleLine(const SkPoint& p) { |
| SkPoint pSanitized; |
| sanitize_point(p, &pSanitized); |
| |
| if (fPathPolygon.count() > 0) { |
| if (!this->accumulateCentroid(fPathPolygon[fPathPolygon.count() - 1], pSanitized)) { |
| // skip coincident point |
| return; |
| } |
| } |
| |
| if (fPathPolygon.count() > 1) { |
| if (!checkConvexity(fPathPolygon[fPathPolygon.count() - 2], |
| fPathPolygon[fPathPolygon.count() - 1], |
| pSanitized)) { |
| // remove collinear point |
| fPathPolygon.pop(); |
| // it's possible that the previous point is coincident with the new one now |
| if (duplicate_pt(fPathPolygon[fPathPolygon.count() - 1], pSanitized)) { |
| fPathPolygon.pop(); |
| } |
| } |
| } |
| |
| fPathPolygon.push_back(pSanitized); |
| } |
| |
| void SkBaseShadowTessellator::handleLine(const SkMatrix& m, SkPoint* p) { |
| m.mapPoints(p, 1); |
| |
| this->handleLine(*p); |
| } |
| |
| void SkBaseShadowTessellator::handleQuad(const SkPoint pts[3]) { |
| #if SK_SUPPORT_GPU |
| // check for degeneracy |
| SkVector v0 = pts[1] - pts[0]; |
| SkVector v1 = pts[2] - pts[0]; |
| if (SkScalarNearlyZero(v0.cross(v1))) { |
| return; |
| } |
| // TODO: Pull PathUtils out of Ganesh? |
| int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance); |
| fPointBuffer.setCount(maxCount); |
| SkPoint* target = fPointBuffer.begin(); |
| int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2], |
| kQuadTolerance, &target, maxCount); |
| fPointBuffer.setCount(count); |
| for (int i = 0; i < count; i++) { |
| this->handleLine(fPointBuffer[i]); |
| } |
| #else |
| // for now, just to draw something |
| this->handleLine(pts[1]); |
| this->handleLine(pts[2]); |
| #endif |
| } |
| |
| void SkBaseShadowTessellator::handleQuad(const SkMatrix& m, SkPoint pts[3]) { |
| m.mapPoints(pts, 3); |
| this->handleQuad(pts); |
| } |
| |
| void SkBaseShadowTessellator::handleCubic(const SkMatrix& m, SkPoint pts[4]) { |
| m.mapPoints(pts, 4); |
| #if SK_SUPPORT_GPU |
| // TODO: Pull PathUtils out of Ganesh? |
| int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance); |
| fPointBuffer.setCount(maxCount); |
| SkPoint* target = fPointBuffer.begin(); |
| int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3], |
| kCubicTolerance, &target, maxCount); |
| fPointBuffer.setCount(count); |
| for (int i = 0; i < count; i++) { |
| this->handleLine(fPointBuffer[i]); |
| } |
| #else |
| // for now, just to draw something |
| this->handleLine(pts[1]); |
| this->handleLine(pts[2]); |
| this->handleLine(pts[3]); |
| #endif |
| } |
| |
| void SkBaseShadowTessellator::handleConic(const SkMatrix& m, SkPoint pts[3], SkScalar w) { |
| if (m.hasPerspective()) { |
| w = SkConic::TransformW(pts, w, m); |
| } |
| m.mapPoints(pts, 3); |
| SkAutoConicToQuads quadder; |
| const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance); |
| SkPoint lastPoint = *(quads++); |
| int count = quadder.countQuads(); |
| for (int i = 0; i < count; ++i) { |
| SkPoint quadPts[3]; |
| quadPts[0] = lastPoint; |
| quadPts[1] = quads[0]; |
| quadPts[2] = i == count - 1 ? pts[2] : quads[1]; |
| this->handleQuad(quadPts); |
| lastPoint = quadPts[2]; |
| quads += 2; |
| } |
| } |
| |
| bool SkBaseShadowTessellator::addArc(const SkVector& nextNormal, SkScalar offset, bool finishArc) { |
| // fill in fan from previous quad |
| SkScalar rotSin, rotCos; |
| int numSteps; |
| if (!SkComputeRadialSteps(fPrevOutset, nextNormal, offset, &rotSin, &rotCos, &numSteps)) { |
| // recover as best we can |
| numSteps = 0; |
| } |
| SkVector prevNormal = fPrevOutset; |
| for (int i = 0; i < numSteps-1; ++i) { |
| SkVector currNormal; |
| currNormal.fX = prevNormal.fX*rotCos - prevNormal.fY*rotSin; |
| currNormal.fY = prevNormal.fY*rotCos + prevNormal.fX*rotSin; |
| fPositions.push_back(fPrevPoint + currNormal); |
| fColors.push_back(kPenumbraColor); |
| this->appendTriangle(fPrevUmbraIndex, fPositions.count() - 1, fPositions.count() - 2); |
| |
| prevNormal = currNormal; |
| } |
| if (finishArc && numSteps) { |
| fPositions.push_back(fPrevPoint + nextNormal); |
| fColors.push_back(kPenumbraColor); |
| this->appendTriangle(fPrevUmbraIndex, fPositions.count() - 1, fPositions.count() - 2); |
| } |
| fPrevOutset = nextNormal; |
| |
| return (numSteps > 0); |
| } |
| |
| void SkBaseShadowTessellator::appendTriangle(uint16_t index0, uint16_t index1, uint16_t index2) { |
| auto indices = fIndices.append(3); |
| |
| indices[0] = index0; |
| indices[1] = index1; |
| indices[2] = index2; |
| } |
| |
| void SkBaseShadowTessellator::appendQuad(uint16_t index0, uint16_t index1, |
| uint16_t index2, uint16_t index3) { |
| auto indices = fIndices.append(6); |
| |
| indices[0] = index0; |
| indices[1] = index1; |
| indices[2] = index2; |
| |
| indices[3] = index2; |
| indices[4] = index1; |
| indices[5] = index3; |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| class SkAmbientShadowTessellator : public SkBaseShadowTessellator { |
| public: |
| SkAmbientShadowTessellator(const SkPath& path, const SkMatrix& ctm, |
| const SkPoint3& zPlaneParams, bool transparent); |
| |
| private: |
| bool computePathPolygon(const SkPath& path, const SkMatrix& ctm); |
| |
| typedef SkBaseShadowTessellator INHERITED; |
| }; |
| |
| SkAmbientShadowTessellator::SkAmbientShadowTessellator(const SkPath& path, |
| const SkMatrix& ctm, |
| const SkPoint3& zPlaneParams, |
| bool transparent) |
| : INHERITED(zPlaneParams, transparent) { |
| // Set base colors |
| auto baseZ = heightFunc(path.getBounds().centerX(), path.getBounds().centerY()); |
| // umbraColor is the interior value, penumbraColor the exterior value. |
| auto outset = SkDrawShadowMetrics::AmbientBlurRadius(baseZ); |
| auto inset = outset * SkDrawShadowMetrics::AmbientRecipAlpha(baseZ) - outset; |
| |
| if (!this->computePathPolygon(path, ctm)) { |
| return; |
| } |
| if (fPathPolygon.count() < 3 || !SkScalarIsFinite(fArea)) { |
| fSucceeded = true; // We don't want to try to blur these cases, so we will |
| // return an empty SkVertices instead. |
| return; |
| } |
| |
| // Outer ring: 3*numPts |
| // Middle ring: numPts |
| fPositions.setReserve(4 * path.countPoints()); |
| fColors.setReserve(4 * path.countPoints()); |
| // Outer ring: 12*numPts |
| // Middle ring: 0 |
| fIndices.setReserve(12 * path.countPoints()); |
| |
| if (fIsConvex) { |
| fSucceeded = this->computeConvexShadow(inset, outset, false); |
| } else { |
| fSucceeded = this->computeConcaveShadow(inset, outset); |
| } |
| } |
| |
| bool SkAmbientShadowTessellator::computePathPolygon(const SkPath& path, const SkMatrix& ctm) { |
| fPathPolygon.setReserve(path.countPoints()); |
| |
| // walk around the path, tessellate and generate outer ring |
| // if original path is transparent, will accumulate sum of points for centroid |
| SkPath::Iter iter(path, true); |
| SkPoint pts[4]; |
| SkPath::Verb verb; |
| bool verbSeen = false; |
| bool closeSeen = false; |
| while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { |
| if (closeSeen) { |
| return false; |
| } |
| switch (verb) { |
| case SkPath::kLine_Verb: |
| this->handleLine(ctm, &pts[1]); |
| break; |
| case SkPath::kQuad_Verb: |
| this->handleQuad(ctm, pts); |
| break; |
| case SkPath::kCubic_Verb: |
| this->handleCubic(ctm, pts); |
| break; |
| case SkPath::kConic_Verb: |
| this->handleConic(ctm, pts, iter.conicWeight()); |
| break; |
| case SkPath::kMove_Verb: |
| if (verbSeen) { |
| return false; |
| } |
| break; |
| case SkPath::kClose_Verb: |
| case SkPath::kDone_Verb: |
| closeSeen = true; |
| break; |
| } |
| verbSeen = true; |
| } |
| |
| this->finishPathPolygon(); |
| return true; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| class SkSpotShadowTessellator : public SkBaseShadowTessellator { |
| public: |
| SkSpotShadowTessellator(const SkPath& path, const SkMatrix& ctm, |
| const SkPoint3& zPlaneParams, const SkPoint3& lightPos, |
| SkScalar lightRadius, bool transparent); |
| |
| private: |
| bool computeClipAndPathPolygons(const SkPath& path, const SkMatrix& ctm, |
| const SkMatrix& shadowTransform); |
| void addToClip(const SkVector& nextPoint); |
| |
| typedef SkBaseShadowTessellator INHERITED; |
| }; |
| |
| SkSpotShadowTessellator::SkSpotShadowTessellator(const SkPath& path, const SkMatrix& ctm, |
| const SkPoint3& zPlaneParams, |
| const SkPoint3& lightPos, SkScalar lightRadius, |
| bool transparent) |
| : INHERITED(zPlaneParams, transparent) { |
| |
| // Compute the blur radius, scale and translation for the spot shadow. |
| SkMatrix shadowTransform; |
| SkScalar outset; |
| if (!SkDrawShadowMetrics::GetSpotShadowTransform(lightPos, lightRadius, |
| ctm, zPlaneParams, path.getBounds(), |
| &shadowTransform, &outset)) { |
| return; |
| } |
| SkScalar inset = outset; |
| |
| // compute rough clip bounds for umbra, plus offset polygon, plus centroid |
| if (!this->computeClipAndPathPolygons(path, ctm, shadowTransform)) { |
| return; |
| } |
| if (fClipPolygon.count() < 3 || fPathPolygon.count() < 3 || !SkScalarIsFinite(fArea)) { |
| fSucceeded = true; // We don't want to try to blur these cases, so we will |
| // return an empty SkVertices instead. |
| return; |
| } |
| |
| // TODO: calculate these reserves better |
| // Penumbra ring: 3*numPts |
| // Umbra ring: numPts |
| // Inner ring: numPts |
| fPositions.setReserve(5 * path.countPoints()); |
| fColors.setReserve(5 * path.countPoints()); |
| // Penumbra ring: 12*numPts |
| // Umbra ring: 3*numPts |
| fIndices.setReserve(15 * path.countPoints()); |
| |
| if (fIsConvex) { |
| fSucceeded = this->computeConvexShadow(inset, outset, true); |
| } else { |
| fSucceeded = this->computeConcaveShadow(inset, outset); |
| } |
| |
| if (!fSucceeded) { |
| return; |
| } |
| |
| fSucceeded = true; |
| } |
| |
| bool SkSpotShadowTessellator::computeClipAndPathPolygons(const SkPath& path, const SkMatrix& ctm, |
| const SkMatrix& shadowTransform) { |
| |
| fPathPolygon.setReserve(path.countPoints()); |
| fClipPolygon.setReserve(path.countPoints()); |
| |
| // Walk around the path and compute clip polygon and path polygon. |
| // Will also accumulate sum of areas for centroid. |
| // For Bezier curves, we compute additional interior points on curve. |
| SkPath::Iter iter(path, true); |
| SkPoint pts[4]; |
| SkPoint clipPts[4]; |
| SkPath::Verb verb; |
| |
| // coefficients to compute cubic Bezier at t = 5/16 |
| static constexpr SkScalar kA = 0.32495117187f; |
| static constexpr SkScalar kB = 0.44311523437f; |
| static constexpr SkScalar kC = 0.20141601562f; |
| static constexpr SkScalar kD = 0.03051757812f; |
| |
| SkPoint curvePoint; |
| SkScalar w; |
| bool closeSeen = false; |
| bool verbSeen = false; |
| while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { |
| if (closeSeen) { |
| return false; |
| } |
| switch (verb) { |
| case SkPath::kLine_Verb: |
| ctm.mapPoints(clipPts, &pts[1], 1); |
| this->addToClip(clipPts[0]); |
| this->handleLine(shadowTransform, &pts[1]); |
| break; |
| case SkPath::kQuad_Verb: |
| ctm.mapPoints(clipPts, pts, 3); |
| // point at t = 1/2 |
| curvePoint.fX = 0.25f*clipPts[0].fX + 0.5f*clipPts[1].fX + 0.25f*clipPts[2].fX; |
| curvePoint.fY = 0.25f*clipPts[0].fY + 0.5f*clipPts[1].fY + 0.25f*clipPts[2].fY; |
| this->addToClip(curvePoint); |
| this->addToClip(clipPts[2]); |
| this->handleQuad(shadowTransform, pts); |
| break; |
| case SkPath::kConic_Verb: |
| ctm.mapPoints(clipPts, pts, 3); |
| w = iter.conicWeight(); |
| // point at t = 1/2 |
| curvePoint.fX = 0.25f*clipPts[0].fX + w*0.5f*clipPts[1].fX + 0.25f*clipPts[2].fX; |
| curvePoint.fY = 0.25f*clipPts[0].fY + w*0.5f*clipPts[1].fY + 0.25f*clipPts[2].fY; |
| curvePoint *= SkScalarInvert(0.5f + 0.5f*w); |
| this->addToClip(curvePoint); |
| this->addToClip(clipPts[2]); |
| this->handleConic(shadowTransform, pts, w); |
| break; |
| case SkPath::kCubic_Verb: |
| ctm.mapPoints(clipPts, pts, 4); |
| // point at t = 5/16 |
| curvePoint.fX = kA*clipPts[0].fX + kB*clipPts[1].fX |
| + kC*clipPts[2].fX + kD*clipPts[3].fX; |
| curvePoint.fY = kA*clipPts[0].fY + kB*clipPts[1].fY |
| + kC*clipPts[2].fY + kD*clipPts[3].fY; |
| this->addToClip(curvePoint); |
| // point at t = 11/16 |
| curvePoint.fX = kD*clipPts[0].fX + kC*clipPts[1].fX |
| + kB*clipPts[2].fX + kA*clipPts[3].fX; |
| curvePoint.fY = kD*clipPts[0].fY + kC*clipPts[1].fY |
| + kB*clipPts[2].fY + kA*clipPts[3].fY; |
| this->addToClip(curvePoint); |
| this->addToClip(clipPts[3]); |
| this->handleCubic(shadowTransform, pts); |
| break; |
| case SkPath::kMove_Verb: |
| if (verbSeen) { |
| return false; |
| } |
| break; |
| case SkPath::kClose_Verb: |
| case SkPath::kDone_Verb: |
| closeSeen = true; |
| break; |
| default: |
| SkDEBUGFAIL("unknown verb"); |
| } |
| verbSeen = true; |
| } |
| |
| this->finishPathPolygon(); |
| return true; |
| } |
| |
| void SkSpotShadowTessellator::addToClip(const SkPoint& point) { |
| if (fClipPolygon.isEmpty() || !duplicate_pt(point, fClipPolygon[fClipPolygon.count() - 1])) { |
| fClipPolygon.push_back(point); |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| sk_sp<SkVertices> SkShadowTessellator::MakeAmbient(const SkPath& path, const SkMatrix& ctm, |
| const SkPoint3& zPlane, bool transparent) { |
| if (!ctm.mapRect(path.getBounds()).isFinite() || !zPlane.isFinite()) { |
| return nullptr; |
| } |
| SkAmbientShadowTessellator ambientTess(path, ctm, zPlane, transparent); |
| return ambientTess.releaseVertices(); |
| } |
| |
| sk_sp<SkVertices> SkShadowTessellator::MakeSpot(const SkPath& path, const SkMatrix& ctm, |
| const SkPoint3& zPlane, const SkPoint3& lightPos, |
| SkScalar lightRadius, bool transparent) { |
| if (!ctm.mapRect(path.getBounds()).isFinite() || !zPlane.isFinite() || |
| !lightPos.isFinite() || !(lightPos.fZ >= SK_ScalarNearlyZero) || |
| !SkScalarIsFinite(lightRadius) || !(lightRadius >= SK_ScalarNearlyZero)) { |
| return nullptr; |
| } |
| SkSpotShadowTessellator spotTess(path, ctm, zPlane, lightPos, lightRadius, transparent); |
| return spotTess.releaseVertices(); |
| } |