blob: 4d2ee7e532c179e1f110ed053175b965a03d359a [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/glsl/GrGLSLGeometryProcessor.h"
#include "src/gpu/GrCoordTransform.h"
#include "src/gpu/GrPipeline.h"
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
#include "src/gpu/glsl/GrGLSLUniformHandler.h"
#include "src/gpu/glsl/GrGLSLVarying.h"
#include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h"
#include <unordered_map>
void GrGLSLGeometryProcessor::emitCode(EmitArgs& args) {
GrGPArgs gpArgs;
this->onEmitCode(args, &gpArgs);
// FIXME This must always be called at the moment, even when fLocalCoordVar is uninitialized
// and void because collectTransforms registers the uniforms for legacy coord transforms, which
// still need to be added even if the FPs are sampled explicitly. When they are gone, we only
// need to call this if the local coord isn't void (plus verify that FPs really don't need it).
this->collectTransforms(args.fVertBuilder, args.fVaryingHandler, args.fUniformHandler,
gpArgs.fLocalCoordVar, args.fFPCoordTransformHandler);
if (args.fGP.willUseTessellationShaders()) {
// Tessellation shaders are temporarily responsible for integrating their own code strings
// while we work out full support.
return;
}
GrGLSLVertexBuilder* vBuilder = args.fVertBuilder;
if (!args.fGP.willUseGeoShader()) {
// Emit the vertex position to the hardware in the normalized window coordinates it expects.
SkASSERT(kFloat2_GrSLType == gpArgs.fPositionVar.getType() ||
kFloat3_GrSLType == gpArgs.fPositionVar.getType());
vBuilder->emitNormalizedSkPosition(gpArgs.fPositionVar.c_str(), args.fRTAdjustName,
gpArgs.fPositionVar.getType());
if (kFloat2_GrSLType == gpArgs.fPositionVar.getType()) {
args.fVaryingHandler->setNoPerspective();
}
} else {
// Since we have a geometry shader, leave the vertex position in Skia device space for now.
// The geometry Shader will operate in device space, and then convert the final positions to
// normalized hardware window coordinates under the hood, once everything else has finished.
// The subclass must call setNoPerspective on the varying handler, if applicable.
vBuilder->codeAppendf("sk_Position = float4(%s", gpArgs.fPositionVar.c_str());
switch (gpArgs.fPositionVar.getType()) {
case kFloat_GrSLType:
vBuilder->codeAppend(", 0");
[[fallthrough]];
case kFloat2_GrSLType:
vBuilder->codeAppend(", 0");
[[fallthrough]];
case kFloat3_GrSLType:
vBuilder->codeAppend(", 1");
[[fallthrough]];
case kFloat4_GrSLType:
vBuilder->codeAppend(");");
break;
default:
SK_ABORT("Invalid position var type");
break;
}
}
}
void GrGLSLGeometryProcessor::collectTransforms(GrGLSLVertexBuilder* vb,
GrGLSLVaryingHandler* varyingHandler,
GrGLSLUniformHandler* uniformHandler,
const GrShaderVar& localCoordsVar,
FPCoordTransformHandler* handler) {
// We only require localCoordsVar to be valid if there is a coord transform that needs
// it. CTs on FPs called with explicit coords do not require a local coord.
auto getLocalCoords = [&localCoordsVar,
localCoords = SkString(),
localCoordLength = int()]() mutable {
if (localCoords.isEmpty()) {
localCoordLength = GrSLTypeVecLength(localCoordsVar.getType());
SkASSERT(GrSLTypeIsFloatType(localCoordsVar.getType()));
SkASSERT(localCoordLength == 2 || localCoordLength == 3);
if (localCoordLength == 3) {
localCoords = localCoordsVar.getName();
} else {
localCoords.printf("float3(%s, 1)", localCoordsVar.c_str());
}
}
return std::make_tuple(localCoords, localCoordLength);
};
GrShaderVar transformVar;
for (int i = 0; *handler; ++*handler, ++i) {
auto [coordTransform, fp] = handler->get();
// Add uniform for coord transform matrix.
SkString matrix;
if (!fp.isSampledWithExplicitCoords() || !coordTransform.isNoOp()) {
SkString strUniName;
strUniName.printf("CoordTransformMatrix_%d", i);
auto flag = fp.isSampledWithExplicitCoords() ? kFragment_GrShaderFlag
: kVertex_GrShaderFlag;
auto& uni = fInstalledTransforms.push_back();
if (fp.isSampledWithExplicitCoords() && coordTransform.matrix().isScaleTranslate()) {
uni.fType = kFloat4_GrSLType;
} else {
uni.fType = kFloat3x3_GrSLType;
}
const char* matrixName;
uni.fHandle =
uniformHandler->addUniform(&fp, flag, uni.fType, strUniName.c_str(),
&matrixName);
matrix = matrixName;
transformVar = uniformHandler->getUniformVariable(uni.fHandle);
} else {
// Install a coord transform that will be skipped.
fInstalledTransforms.push_back();
handler->omitCoordsForCurrCoordTransform();
continue;
}
GrShaderVar fsVar;
// Add varying if required and register varying and matrix uniform.
if (!fp.isSampledWithExplicitCoords()) {
auto [localCoordsStr, localCoordLength] = getLocalCoords();
GrGLSLVarying v(kFloat2_GrSLType);
if (coordTransform.matrix().hasPerspective() || localCoordLength == 3) {
v = GrGLSLVarying(kFloat3_GrSLType);
}
SkString strVaryingName;
strVaryingName.printf("TransformedCoords_%d", i);
varyingHandler->addVarying(strVaryingName.c_str(), &v);
SkASSERT(fInstalledTransforms.back().fType == kFloat3x3_GrSLType);
if (fp.sampleMatrix().fKind != SkSL::SampleMatrix::Kind::kConstantOrUniform) {
if (v.type() == kFloat2_GrSLType) {
vb->codeAppendf("%s = (%s * %s).xy;", v.vsOut(), matrix.c_str(),
localCoordsStr.c_str());
} else {
vb->codeAppendf("%s = %s * %s;", v.vsOut(), matrix.c_str(),
localCoordsStr.c_str());
}
}
fsVar = GrShaderVar(SkString(v.fsIn()), v.type(), GrShaderVar::TypeModifier::In);
fTransformInfos.push_back({ v.vsOut(), v.type(), matrix, localCoordsStr, &fp });
}
handler->specifyCoordsForCurrCoordTransform(transformVar, fsVar);
}
}
void GrGLSLGeometryProcessor::emitTransformCode(GrGLSLVertexBuilder* vb,
GrGLSLUniformHandler* uniformHandler) {
std::unordered_map<const GrFragmentProcessor*, const char*> localCoordsMap;
for (const auto& tr : fTransformInfos) {
switch (tr.fFP->sampleMatrix().fKind) {
case SkSL::SampleMatrix::Kind::kConstantOrUniform: {
SkString localCoords;
localCoordsMap.insert({ tr.fFP, tr.fName });
if (tr.fFP->sampleMatrix().fBase) {
SkASSERT(localCoordsMap[tr.fFP->sampleMatrix().fBase]);
localCoords = SkStringPrintf("float3(%s, 1)",
localCoordsMap[tr.fFP->sampleMatrix().fBase]);
} else {
localCoords = tr.fLocalCoords.c_str();
}
vb->codeAppend("{\n");
if (tr.fFP->sampleMatrix().fOwner) {
uniformHandler->writeUniformMappings(tr.fFP->sampleMatrix().fOwner, vb);
}
if (tr.fType == kFloat2_GrSLType) {
vb->codeAppendf("%s = (%s * %s * %s).xy", tr.fName,
tr.fFP->sampleMatrix().fExpression.c_str(), tr.fMatrix.c_str(),
localCoords.c_str());
} else {
SkASSERT(tr.fType == kFloat3_GrSLType);
vb->codeAppendf("%s = %s * %s * %s", tr.fName,
tr.fFP->sampleMatrix().fExpression.c_str(), tr.fMatrix.c_str(),
localCoords.c_str());
}
vb->codeAppend(";\n");
vb->codeAppend("}\n");
break;
}
default:
break;
}
}
}
void GrGLSLGeometryProcessor::setTransformDataHelper(const GrGLSLProgramDataManager& pdman,
const CoordTransformRange& transformRange) {
int i = 0;
for (auto [transform, fp] : transformRange) {
if (fInstalledTransforms[i].fHandle.isValid()) {
SkMatrix m = GetTransformMatrix(transform, SkMatrix::I());
if (!SkMatrixPriv::CheapEqual(fInstalledTransforms[i].fCurrentValue, m)) {
if (fInstalledTransforms[i].fType == kFloat4_GrSLType) {
float values[4] = {m.getScaleX(), m.getTranslateX(),
m.getScaleY(), m.getTranslateY()};
SkASSERT(m.isScaleTranslate());
pdman.set4fv(fInstalledTransforms[i].fHandle.toIndex(), 1, values);
} else {
SkASSERT(!m.isScaleTranslate() || !fp.isSampledWithExplicitCoords());
SkASSERT(fInstalledTransforms[i].fType == kFloat3x3_GrSLType);
pdman.setSkMatrix(fInstalledTransforms[i].fHandle.toIndex(), m);
}
fInstalledTransforms[i].fCurrentValue = m;
}
}
++i;
}
SkASSERT(i == fInstalledTransforms.count());
}
void GrGLSLGeometryProcessor::setTransform(const GrGLSLProgramDataManager& pdman,
const UniformHandle& uniform,
const SkMatrix& matrix,
SkMatrix* state) const {
if (!uniform.isValid() || (state && SkMatrixPriv::CheapEqual(*state, matrix))) {
// No update needed
return;
}
if (state) {
*state = matrix;
}
if (matrix.isScaleTranslate()) {
// ComputeMatrixKey and writeX() assume the uniform is a float4 (can't assert since nothing
// is exposed on a handle, but should be caught lower down).
float values[4] = {matrix.getScaleX(), matrix.getTranslateX(),
matrix.getScaleY(), matrix.getTranslateY()};
pdman.set4fv(uniform, 1, values);
} else {
pdman.setSkMatrix(uniform, matrix);
}
}
static void write_vertex_position(GrGLSLVertexBuilder* vertBuilder,
GrGLSLUniformHandler* uniformHandler,
const GrShaderVar& inPos,
const SkMatrix& matrix,
const char* matrixName,
GrShaderVar* outPos,
GrGLSLGeometryProcessor::UniformHandle* matrixUniform) {
SkASSERT(inPos.getType() == kFloat3_GrSLType || inPos.getType() == kFloat2_GrSLType);
SkString outName = vertBuilder->newTmpVarName(inPos.getName().c_str());
if (matrix.isIdentity()) {
// Direct assignment, we won't use a uniform for the matrix.
outPos->set(inPos.getType(), outName.c_str());
vertBuilder->codeAppendf("float%d %s = %s;", GrSLTypeVecLength(inPos.getType()),
outName.c_str(), inPos.getName().c_str());
} else {
SkASSERT(matrixUniform);
bool useCompactTransform = matrix.isScaleTranslate();
const char* mangledMatrixName;
*matrixUniform = uniformHandler->addUniform(nullptr,
kVertex_GrShaderFlag,
useCompactTransform ? kFloat4_GrSLType
: kFloat3x3_GrSLType,
matrixName,
&mangledMatrixName);
if (inPos.getType() == kFloat3_GrSLType) {
// A float3 stays a float3 whether or not the matrix adds perspective
if (useCompactTransform) {
vertBuilder->codeAppendf("float3 %s = %s.xz1 * %s + %s.yw0;\n",
outName.c_str(), mangledMatrixName,
inPos.getName().c_str(), mangledMatrixName);
} else {
vertBuilder->codeAppendf("float3 %s = %s * %s;\n", outName.c_str(),
mangledMatrixName, inPos.getName().c_str());
}
outPos->set(kFloat3_GrSLType, outName.c_str());
} else if (matrix.hasPerspective()) {
// A float2 is promoted to a float3 if we add perspective via the matrix
SkASSERT(!useCompactTransform);
vertBuilder->codeAppendf("float3 %s = (%s * %s.xy1);",
outName.c_str(), mangledMatrixName, inPos.getName().c_str());
outPos->set(kFloat3_GrSLType, outName.c_str());
} else {
if (useCompactTransform) {
vertBuilder->codeAppendf("float2 %s = %s.xz * %s + %s.yw;\n",
outName.c_str(), mangledMatrixName,
inPos.getName().c_str(), mangledMatrixName);
} else {
vertBuilder->codeAppendf("float2 %s = (%s * %s.xy1).xy;\n",
outName.c_str(), mangledMatrixName,
inPos.getName().c_str());
}
outPos->set(kFloat2_GrSLType, outName.c_str());
}
}
}
void GrGLSLGeometryProcessor::writeOutputPosition(GrGLSLVertexBuilder* vertBuilder,
GrGPArgs* gpArgs,
const char* posName) {
// writeOutputPosition assumes the incoming pos name points to a float2 variable
GrShaderVar inPos(posName, kFloat2_GrSLType);
write_vertex_position(vertBuilder, nullptr, inPos, SkMatrix::I(), "viewMatrix",
&gpArgs->fPositionVar, nullptr);
}
void GrGLSLGeometryProcessor::writeOutputPosition(GrGLSLVertexBuilder* vertBuilder,
GrGLSLUniformHandler* uniformHandler,
GrGPArgs* gpArgs,
const char* posName,
const SkMatrix& mat,
UniformHandle* viewMatrixUniform) {
GrShaderVar inPos(posName, kFloat2_GrSLType);
write_vertex_position(vertBuilder, uniformHandler, inPos, mat, "viewMatrix",
&gpArgs->fPositionVar, viewMatrixUniform);
}
void GrGLSLGeometryProcessor::writeLocalCoord(GrGLSLVertexBuilder* vertBuilder,
GrGLSLUniformHandler* uniformHandler,
GrGPArgs* gpArgs,
GrShaderVar localVar,
const SkMatrix& localMatrix,
UniformHandle* localMatrixUniform) {
write_vertex_position(vertBuilder, uniformHandler, localVar, localMatrix, "localMatrix",
&gpArgs->fLocalCoordVar, localMatrixUniform);
}