| |
| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| |
| #ifndef SkTemplates_DEFINED |
| #define SkTemplates_DEFINED |
| |
| #include "../private/SkTLogic.h" |
| #include "SkMath.h" |
| #include "SkTypes.h" |
| #include <limits.h> |
| #include <new> |
| |
| /** \file SkTemplates.h |
| |
| This file contains light-weight template classes for type-safe and exception-safe |
| resource management. |
| */ |
| |
| /** |
| * Marks a local variable as known to be unused (to avoid warnings). |
| * Note that this does *not* prevent the local variable from being optimized away. |
| */ |
| template<typename T> inline void sk_ignore_unused_variable(const T&) { } |
| |
| namespace skstd { |
| |
| template <typename T> inline remove_reference_t<T>&& move(T&& t) { |
| return static_cast<remove_reference_t<T>&&>(t); |
| } |
| |
| template <typename T> inline T&& forward(remove_reference_t<T>& t) /*noexcept*/ { |
| return static_cast<T&&>(t); |
| } |
| template <typename T> inline T&& forward(remove_reference_t<T>&& t) /*noexcept*/ { |
| static_assert(!is_lvalue_reference<T>::value, |
| "Forwarding an rvalue reference as an lvalue reference is not allowed."); |
| return static_cast<T&&>(t); |
| } |
| |
| template <typename T> add_rvalue_reference_t<T> declval(); |
| |
| } // namespace skstd |
| |
| /** |
| * Returns a pointer to a D which comes immediately after S[count]. |
| */ |
| template <typename D, typename S> static D* SkTAfter(S* ptr, size_t count = 1) { |
| return reinterpret_cast<D*>(ptr + count); |
| } |
| |
| /** |
| * Returns a pointer to a D which comes byteOffset bytes after S. |
| */ |
| template <typename D, typename S> static D* SkTAddOffset(S* ptr, size_t byteOffset) { |
| // The intermediate char* has the same cv-ness as D as this produces better error messages. |
| // This relies on the fact that reinterpret_cast can add constness, but cannot remove it. |
| return reinterpret_cast<D*>(reinterpret_cast<sknonstd::same_cv_t<char, D>*>(ptr) + byteOffset); |
| } |
| |
| /** \class SkAutoTCallVProc |
| |
| Call a function when this goes out of scope. The template uses two |
| parameters, the object, and a function that is to be called in the destructor. |
| If detach() is called, the object reference is set to null. If the object |
| reference is null when the destructor is called, we do not call the |
| function. |
| */ |
| template <typename T, void (*P)(T*)> class SkAutoTCallVProc : SkNoncopyable { |
| public: |
| SkAutoTCallVProc(T* obj): fObj(obj) {} |
| ~SkAutoTCallVProc() { if (fObj) P(fObj); } |
| |
| operator T*() const { return fObj; } |
| T* operator->() const { SkASSERT(fObj); return fObj; } |
| |
| T* detach() { T* obj = fObj; fObj = NULL; return obj; } |
| void reset(T* obj = NULL) { |
| if (fObj != obj) { |
| if (fObj) { |
| P(fObj); |
| } |
| fObj = obj; |
| } |
| } |
| private: |
| T* fObj; |
| }; |
| |
| /** \class SkAutoTCallIProc |
| |
| Call a function when this goes out of scope. The template uses two |
| parameters, the object, and a function that is to be called in the destructor. |
| If detach() is called, the object reference is set to null. If the object |
| reference is null when the destructor is called, we do not call the |
| function. |
| */ |
| template <typename T, int (*P)(T*)> class SkAutoTCallIProc : SkNoncopyable { |
| public: |
| SkAutoTCallIProc(T* obj): fObj(obj) {} |
| ~SkAutoTCallIProc() { if (fObj) P(fObj); } |
| |
| operator T*() const { return fObj; } |
| T* operator->() const { SkASSERT(fObj); return fObj; } |
| |
| T* detach() { T* obj = fObj; fObj = NULL; return obj; } |
| private: |
| T* fObj; |
| }; |
| |
| /** \class SkAutoTDelete |
| An SkAutoTDelete<T> is like a T*, except that the destructor of SkAutoTDelete<T> |
| automatically deletes the pointer it holds (if any). That is, SkAutoTDelete<T> |
| owns the T object that it points to. Like a T*, an SkAutoTDelete<T> may hold |
| either NULL or a pointer to a T object. Also like T*, SkAutoTDelete<T> is |
| thread-compatible, and once you dereference it, you get the threadsafety |
| guarantees of T. |
| |
| The size of a SkAutoTDelete is small: sizeof(SkAutoTDelete<T>) == sizeof(T*) |
| */ |
| template <typename T> class SkAutoTDelete : SkNoncopyable { |
| public: |
| SkAutoTDelete(T* obj = NULL) : fObj(obj) {} |
| ~SkAutoTDelete() { delete fObj; } |
| |
| T* get() const { return fObj; } |
| operator T*() const { return fObj; } |
| T& operator*() const { SkASSERT(fObj); return *fObj; } |
| T* operator->() const { SkASSERT(fObj); return fObj; } |
| |
| void reset(T* obj) { |
| if (fObj != obj) { |
| delete fObj; |
| fObj = obj; |
| } |
| } |
| |
| /** |
| * Delete the owned object, setting the internal pointer to NULL. |
| */ |
| void free() { |
| delete fObj; |
| fObj = NULL; |
| } |
| |
| /** |
| * Transfer ownership of the object to the caller, setting the internal |
| * pointer to NULL. Note that this differs from get(), which also returns |
| * the pointer, but it does not transfer ownership. |
| */ |
| T* detach() { |
| T* obj = fObj; |
| fObj = NULL; |
| return obj; |
| } |
| |
| void swap(SkAutoTDelete* that) { |
| SkTSwap(fObj, that->fObj); |
| } |
| |
| private: |
| T* fObj; |
| }; |
| |
| // Calls ~T() in the destructor. |
| template <typename T> class SkAutoTDestroy : SkNoncopyable { |
| public: |
| SkAutoTDestroy(T* obj = NULL) : fObj(obj) {} |
| ~SkAutoTDestroy() { |
| if (fObj) { |
| fObj->~T(); |
| } |
| } |
| |
| T* get() const { return fObj; } |
| T& operator*() const { SkASSERT(fObj); return *fObj; } |
| T* operator->() const { SkASSERT(fObj); return fObj; } |
| |
| private: |
| T* fObj; |
| }; |
| |
| template <typename T> class SkAutoTDeleteArray : SkNoncopyable { |
| public: |
| SkAutoTDeleteArray(T array[]) : fArray(array) {} |
| ~SkAutoTDeleteArray() { delete[] fArray; } |
| |
| T* get() const { return fArray; } |
| void free() { |
| delete[] fArray; |
| fArray = NULL; |
| } |
| T* detach() { T* array = fArray; fArray = NULL; return array; } |
| |
| void reset(T array[]) { |
| if (fArray != array) { |
| delete[] fArray; |
| fArray = array; |
| } |
| } |
| |
| private: |
| T* fArray; |
| }; |
| |
| /** Allocate an array of T elements, and free the array in the destructor |
| */ |
| template <typename T> class SkAutoTArray : SkNoncopyable { |
| public: |
| SkAutoTArray() { |
| fArray = NULL; |
| SkDEBUGCODE(fCount = 0;) |
| } |
| /** Allocate count number of T elements |
| */ |
| explicit SkAutoTArray(int count) { |
| SkASSERT(count >= 0); |
| fArray = NULL; |
| if (count) { |
| fArray = new T[count]; |
| } |
| SkDEBUGCODE(fCount = count;) |
| } |
| |
| /** Reallocates given a new count. Reallocation occurs even if new count equals old count. |
| */ |
| void reset(int count) { |
| delete[] fArray; |
| SkASSERT(count >= 0); |
| fArray = NULL; |
| if (count) { |
| fArray = new T[count]; |
| } |
| SkDEBUGCODE(fCount = count;) |
| } |
| |
| ~SkAutoTArray() { delete[] fArray; } |
| |
| /** Return the array of T elements. Will be NULL if count == 0 |
| */ |
| T* get() const { return fArray; } |
| |
| /** Return the nth element in the array |
| */ |
| T& operator[](int index) const { |
| SkASSERT((unsigned)index < (unsigned)fCount); |
| return fArray[index]; |
| } |
| |
| void swap(SkAutoTArray& other) { |
| SkTSwap(fArray, other.fArray); |
| SkDEBUGCODE(SkTSwap(fCount, other.fCount)); |
| } |
| |
| private: |
| T* fArray; |
| SkDEBUGCODE(int fCount;) |
| }; |
| |
| /** Wraps SkAutoTArray, with room for up to N elements preallocated |
| */ |
| template <int N, typename T> class SkAutoSTArray : SkNoncopyable { |
| public: |
| /** Initialize with no objects */ |
| SkAutoSTArray() { |
| fArray = NULL; |
| fCount = 0; |
| } |
| |
| /** Allocate count number of T elements |
| */ |
| SkAutoSTArray(int count) { |
| fArray = NULL; |
| fCount = 0; |
| this->reset(count); |
| } |
| |
| ~SkAutoSTArray() { |
| this->reset(0); |
| } |
| |
| /** Destroys previous objects in the array and default constructs count number of objects */ |
| void reset(int count) { |
| T* start = fArray; |
| T* iter = start + fCount; |
| while (iter > start) { |
| (--iter)->~T(); |
| } |
| |
| if (fCount != count) { |
| if (fCount > N) { |
| // 'fArray' was allocated last time so free it now |
| SkASSERT((T*) fStorage != fArray); |
| sk_free(fArray); |
| } |
| |
| if (count > N) { |
| const uint64_t size64 = sk_64_mul(count, sizeof(T)); |
| const size_t size = static_cast<size_t>(size64); |
| if (size != size64) { |
| sk_out_of_memory(); |
| } |
| fArray = (T*) sk_malloc_throw(size); |
| } else if (count > 0) { |
| fArray = (T*) fStorage; |
| } else { |
| fArray = NULL; |
| } |
| |
| fCount = count; |
| } |
| |
| iter = fArray; |
| T* stop = fArray + count; |
| while (iter < stop) { |
| new (iter++) T; |
| } |
| } |
| |
| /** Return the number of T elements in the array |
| */ |
| int count() const { return fCount; } |
| |
| /** Return the array of T elements. Will be NULL if count == 0 |
| */ |
| T* get() const { return fArray; } |
| |
| /** Return the nth element in the array |
| */ |
| T& operator[](int index) const { |
| SkASSERT(index < fCount); |
| return fArray[index]; |
| } |
| |
| private: |
| int fCount; |
| T* fArray; |
| // since we come right after fArray, fStorage should be properly aligned |
| char fStorage[N * sizeof(T)]; |
| }; |
| |
| /** Manages an array of T elements, freeing the array in the destructor. |
| * Does NOT call any constructors/destructors on T (T must be POD). |
| */ |
| template <typename T> class SkAutoTMalloc : SkNoncopyable { |
| public: |
| /** Takes ownership of the ptr. The ptr must be a value which can be passed to sk_free. */ |
| explicit SkAutoTMalloc(T* ptr = NULL) { |
| fPtr = ptr; |
| } |
| |
| /** Allocates space for 'count' Ts. */ |
| explicit SkAutoTMalloc(size_t count) { |
| fPtr = (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW); |
| } |
| |
| ~SkAutoTMalloc() { |
| sk_free(fPtr); |
| } |
| |
| /** Resize the memory area pointed to by the current ptr preserving contents. */ |
| void realloc(size_t count) { |
| fPtr = reinterpret_cast<T*>(sk_realloc_throw(fPtr, count * sizeof(T))); |
| } |
| |
| /** Resize the memory area pointed to by the current ptr without preserving contents. */ |
| void reset(size_t count) { |
| sk_free(fPtr); |
| fPtr = (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW); |
| } |
| |
| T* get() const { return fPtr; } |
| |
| operator T*() { |
| return fPtr; |
| } |
| |
| operator const T*() const { |
| return fPtr; |
| } |
| |
| T& operator[](int index) { |
| return fPtr[index]; |
| } |
| |
| const T& operator[](int index) const { |
| return fPtr[index]; |
| } |
| |
| /** |
| * Transfer ownership of the ptr to the caller, setting the internal |
| * pointer to NULL. Note that this differs from get(), which also returns |
| * the pointer, but it does not transfer ownership. |
| */ |
| T* detach() { |
| T* ptr = fPtr; |
| fPtr = NULL; |
| return ptr; |
| } |
| |
| private: |
| T* fPtr; |
| }; |
| |
| template <size_t N, typename T> class SkAutoSTMalloc : SkNoncopyable { |
| public: |
| SkAutoSTMalloc() : fPtr(fTStorage) {} |
| |
| SkAutoSTMalloc(size_t count) { |
| if (count > N) { |
| fPtr = (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW | SK_MALLOC_TEMP); |
| } else { |
| fPtr = fTStorage; |
| } |
| } |
| |
| ~SkAutoSTMalloc() { |
| if (fPtr != fTStorage) { |
| sk_free(fPtr); |
| } |
| } |
| |
| // doesn't preserve contents |
| T* reset(size_t count) { |
| if (fPtr != fTStorage) { |
| sk_free(fPtr); |
| } |
| if (count > N) { |
| fPtr = (T*)sk_malloc_throw(count * sizeof(T)); |
| } else { |
| fPtr = fTStorage; |
| } |
| return fPtr; |
| } |
| |
| T* get() const { return fPtr; } |
| |
| operator T*() { |
| return fPtr; |
| } |
| |
| operator const T*() const { |
| return fPtr; |
| } |
| |
| T& operator[](int index) { |
| return fPtr[index]; |
| } |
| |
| const T& operator[](int index) const { |
| return fPtr[index]; |
| } |
| |
| // Reallocs the array, can be used to shrink the allocation. Makes no attempt to be intelligent |
| void realloc(size_t count) { |
| if (count > N) { |
| if (fPtr == fTStorage) { |
| fPtr = (T*)sk_malloc_throw(count * sizeof(T)); |
| memcpy(fPtr, fTStorage, N * sizeof(T)); |
| } else { |
| fPtr = (T*)sk_realloc_throw(fPtr, count * sizeof(T)); |
| } |
| } else if (fPtr != fTStorage) { |
| fPtr = (T*)sk_realloc_throw(fPtr, count * sizeof(T)); |
| } |
| } |
| |
| private: |
| T* fPtr; |
| union { |
| uint32_t fStorage32[(N*sizeof(T) + 3) >> 2]; |
| T fTStorage[1]; // do NOT want to invoke T::T() |
| }; |
| }; |
| |
| ////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * Pass the object and the storage that was offered during SkInPlaceNewCheck, and this will |
| * safely destroy (and free if it was dynamically allocated) the object. |
| */ |
| template <typename T> void SkInPlaceDeleteCheck(T* obj, void* storage) { |
| if (storage == obj) { |
| obj->~T(); |
| } else { |
| delete obj; |
| } |
| } |
| |
| /** |
| * Allocates T, using storage if it is large enough, and allocating on the heap (via new) if |
| * storage is not large enough. |
| * |
| * obj = SkInPlaceNewCheck<Type>(storage, size); |
| * ... |
| * SkInPlaceDeleteCheck(obj, storage); |
| */ |
| template <typename T> T* SkInPlaceNewCheck(void* storage, size_t size) { |
| return (sizeof(T) <= size) ? new (storage) T : new T; |
| } |
| |
| template <typename T, typename A1, typename A2, typename A3> |
| T* SkInPlaceNewCheck(void* storage, size_t size, const A1& a1, const A2& a2, const A3& a3) { |
| return (sizeof(T) <= size) ? new (storage) T(a1, a2, a3) : new T(a1, a2, a3); |
| } |
| |
| /** |
| * Reserves memory that is aligned on double and pointer boundaries. |
| * Hopefully this is sufficient for all practical purposes. |
| */ |
| template <size_t N> class SkAlignedSStorage : SkNoncopyable { |
| public: |
| size_t size() const { return N; } |
| void* get() { return fData; } |
| const void* get() const { return fData; } |
| |
| private: |
| union { |
| void* fPtr; |
| double fDouble; |
| char fData[N]; |
| }; |
| }; |
| |
| /** |
| * Reserves memory that is aligned on double and pointer boundaries. |
| * Hopefully this is sufficient for all practical purposes. Otherwise, |
| * we have to do some arcane trickery to determine alignment of non-POD |
| * types. Lifetime of the memory is the lifetime of the object. |
| */ |
| template <int N, typename T> class SkAlignedSTStorage : SkNoncopyable { |
| public: |
| /** |
| * Returns void* because this object does not initialize the |
| * memory. Use placement new for types that require a cons. |
| */ |
| void* get() { return fStorage.get(); } |
| const void* get() const { return fStorage.get(); } |
| private: |
| SkAlignedSStorage<sizeof(T)*N> fStorage; |
| }; |
| |
| #endif |