| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| #include "SkIntersections.h" |
| #include "SkLineParameters.h" |
| #include "SkPathOpsConic.h" |
| #include "SkPathOpsCubic.h" |
| #include "SkPathOpsQuad.h" |
| |
| // cribbed from the float version in SkGeometry.cpp |
| static void conic_deriv_coeff(const double src[], |
| SkScalar w, |
| double coeff[3]) { |
| const double P20 = src[4] - src[0]; |
| const double P10 = src[2] - src[0]; |
| const double wP10 = w * P10; |
| coeff[0] = w * P20 - P20; |
| coeff[1] = P20 - 2 * wP10; |
| coeff[2] = wP10; |
| } |
| |
| static double conic_eval_tan(const double coord[], SkScalar w, double t) { |
| double coeff[3]; |
| conic_deriv_coeff(coord, w, coeff); |
| return t * (t * coeff[0] + coeff[1]) + coeff[2]; |
| } |
| |
| int SkDConic::FindExtrema(const double src[], SkScalar w, double t[1]) { |
| double coeff[3]; |
| conic_deriv_coeff(src, w, coeff); |
| |
| double tValues[2]; |
| int roots = SkDQuad::RootsValidT(coeff[0], coeff[1], coeff[2], tValues); |
| // In extreme cases, the number of roots returned can be 2. Pathops |
| // will fail later on, so there's no advantage to plumbing in an error |
| // return here. |
| // SkASSERT(0 == roots || 1 == roots); |
| |
| if (1 == roots) { |
| t[0] = tValues[0]; |
| return 1; |
| } |
| return 0; |
| } |
| |
| SkDVector SkDConic::dxdyAtT(double t) const { |
| SkDVector result = { |
| conic_eval_tan(&fPts[0].fX, fWeight, t), |
| conic_eval_tan(&fPts[0].fY, fWeight, t) |
| }; |
| if (result.fX == 0 && result.fY == 0) { |
| if (zero_or_one(t)) { |
| result = fPts[2] - fPts[0]; |
| } else { |
| // incomplete |
| SkDebugf("!k"); |
| } |
| } |
| return result; |
| } |
| |
| static double conic_eval_numerator(const double src[], SkScalar w, double t) { |
| SkASSERT(src); |
| SkASSERT(t >= 0 && t <= 1); |
| double src2w = src[2] * w; |
| double C = src[0]; |
| double A = src[4] - 2 * src2w + C; |
| double B = 2 * (src2w - C); |
| return (A * t + B) * t + C; |
| } |
| |
| |
| static double conic_eval_denominator(SkScalar w, double t) { |
| double B = 2 * (w - 1); |
| double C = 1; |
| double A = -B; |
| return (A * t + B) * t + C; |
| } |
| |
| bool SkDConic::hullIntersects(const SkDCubic& cubic, bool* isLinear) const { |
| return cubic.hullIntersects(*this, isLinear); |
| } |
| |
| SkDPoint SkDConic::ptAtT(double t) const { |
| if (t == 0) { |
| return fPts[0]; |
| } |
| if (t == 1) { |
| return fPts[2]; |
| } |
| double denominator = conic_eval_denominator(fWeight, t); |
| SkDPoint result = { |
| conic_eval_numerator(&fPts[0].fX, fWeight, t) / denominator, |
| conic_eval_numerator(&fPts[0].fY, fWeight, t) / denominator |
| }; |
| return result; |
| } |
| |
| /* see quad subdivide for point rationale */ |
| /* w rationale : the mid point between t1 and t2 could be determined from the computed a/b/c |
| values if the computed w was known. Since we know the mid point at (t1+t2)/2, we'll assume |
| that it is the same as the point on the new curve t==(0+1)/2. |
| |
| d / dz == conic_poly(dst, unknownW, .5) / conic_weight(unknownW, .5); |
| |
| conic_poly(dst, unknownW, .5) |
| = a / 4 + (b * unknownW) / 2 + c / 4 |
| = (a + c) / 4 + (bx * unknownW) / 2 |
| |
| conic_weight(unknownW, .5) |
| = unknownW / 2 + 1 / 2 |
| |
| d / dz == ((a + c) / 2 + b * unknownW) / (unknownW + 1) |
| d / dz * (unknownW + 1) == (a + c) / 2 + b * unknownW |
| unknownW = ((a + c) / 2 - d / dz) / (d / dz - b) |
| |
| Thus, w is the ratio of the distance from the mid of end points to the on-curve point, and the |
| distance of the on-curve point to the control point. |
| */ |
| SkDConic SkDConic::subDivide(double t1, double t2) const { |
| double ax, ay, az; |
| if (t1 == 0) { |
| ax = fPts[0].fX; |
| ay = fPts[0].fY; |
| az = 1; |
| } else if (t1 != 1) { |
| ax = conic_eval_numerator(&fPts[0].fX, fWeight, t1); |
| ay = conic_eval_numerator(&fPts[0].fY, fWeight, t1); |
| az = conic_eval_denominator(fWeight, t1); |
| } else { |
| ax = fPts[2].fX; |
| ay = fPts[2].fY; |
| az = 1; |
| } |
| double midT = (t1 + t2) / 2; |
| double dx = conic_eval_numerator(&fPts[0].fX, fWeight, midT); |
| double dy = conic_eval_numerator(&fPts[0].fY, fWeight, midT); |
| double dz = conic_eval_denominator(fWeight, midT); |
| double cx, cy, cz; |
| if (t2 == 1) { |
| cx = fPts[2].fX; |
| cy = fPts[2].fY; |
| cz = 1; |
| } else if (t2 != 0) { |
| cx = conic_eval_numerator(&fPts[0].fX, fWeight, t2); |
| cy = conic_eval_numerator(&fPts[0].fY, fWeight, t2); |
| cz = conic_eval_denominator(fWeight, t2); |
| } else { |
| cx = fPts[0].fX; |
| cy = fPts[0].fY; |
| cz = 1; |
| } |
| double bx = 2 * dx - (ax + cx) / 2; |
| double by = 2 * dy - (ay + cy) / 2; |
| double bz = 2 * dz - (az + cz) / 2; |
| SkDConic dst = {{{{ax / az, ay / az}, {bx / bz, by / bz}, {cx / cz, cy / cz}}}, |
| SkDoubleToScalar(bz / sqrt(az * cz)) }; |
| return dst; |
| } |
| |
| SkDPoint SkDConic::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2, |
| SkScalar* weight) const { |
| SkDConic chopped = this->subDivide(t1, t2); |
| *weight = chopped.fWeight; |
| return chopped[1]; |
| } |