| |
| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| |
| #ifndef GrPaint_DEFINED |
| #define GrPaint_DEFINED |
| |
| #include "GrColor.h" |
| #include "GrXferProcessor.h" |
| #include "effects/GrPorterDuffXferProcessor.h" |
| #include "GrFragmentProcessor.h" |
| |
| #include "SkRegion.h" |
| #include "SkXfermode.h" |
| |
| /** |
| * The paint describes how color and coverage are computed at each pixel by GrContext draw |
| * functions and the how color is blended with the destination pixel. |
| * |
| * The paint allows installation of custom color and coverage stages. New types of stages are |
| * created by subclassing GrProcessor. |
| * |
| * The primitive color computation starts with the color specified by setColor(). This color is the |
| * input to the first color stage. Each color stage feeds its output to the next color stage. |
| * |
| * Fractional pixel coverage follows a similar flow. The coverage is initially the value specified |
| * by setCoverage(). This is input to the first coverage stage. Coverage stages are chained |
| * together in the same manner as color stages. The output of the last stage is modulated by any |
| * fractional coverage produced by anti-aliasing. This last step produces the final coverage, C. |
| * |
| * setXPFactory is used to control blending between the output color and dest. It also implements |
| * the application of fractional coverage from the coverage pipeline. |
| */ |
| class GrPaint { |
| public: |
| GrPaint(); |
| |
| GrPaint(const GrPaint& paint) { *this = paint; } |
| |
| ~GrPaint() { this->resetFragmentProcessors(); } |
| |
| /** |
| * The initial color of the drawn primitive. Defaults to solid white. |
| */ |
| void setColor(GrColor color) { fColor = color; } |
| GrColor getColor() const { return fColor; } |
| |
| /** |
| * Should primitives be anti-aliased or not. Defaults to false. |
| */ |
| void setAntiAlias(bool aa) { fAntiAlias = aa; } |
| bool isAntiAlias() const { return fAntiAlias; } |
| |
| const GrXPFactory* setXPFactory(const GrXPFactory* xpFactory) { |
| fXPFactory.reset(SkRef(xpFactory)); |
| return xpFactory; |
| } |
| |
| void setPorterDuffXPFactory(SkXfermode::Mode mode) { |
| fXPFactory.reset(GrPorterDuffXPFactory::Create(mode)); |
| } |
| |
| void setCoverageSetOpXPFactory(SkRegion::Op regionOp, bool invertCoverage = false); |
| |
| /** |
| * Appends an additional color processor to the color computation. |
| */ |
| const GrFragmentProcessor* addColorFragmentProcessor(const GrFragmentProcessor* fp) { |
| SkASSERT(fp); |
| fColorFragmentProcessors.push_back(SkRef(fp)); |
| return fp; |
| } |
| |
| /** |
| * Appends an additional coverage processor to the coverage computation. |
| */ |
| const GrFragmentProcessor* addCoverageFragmentProcessor(const GrFragmentProcessor* fp) { |
| SkASSERT(fp); |
| fCoverageFragmentProcessors.push_back(SkRef(fp)); |
| return fp; |
| } |
| |
| /** |
| * Helpers for adding color or coverage effects that sample a texture. The matrix is applied |
| * to the src space position to compute texture coordinates. |
| */ |
| void addColorTextureProcessor(GrTexture*, const SkMatrix&); |
| void addCoverageTextureProcessor(GrTexture*, const SkMatrix&); |
| void addColorTextureProcessor(GrTexture*, const SkMatrix&, const GrTextureParams&); |
| void addCoverageTextureProcessor(GrTexture*, const SkMatrix&, const GrTextureParams&); |
| |
| int numColorFragmentProcessors() const { return fColorFragmentProcessors.count(); } |
| int numCoverageFragmentProcessors() const { return fCoverageFragmentProcessors.count(); } |
| int numTotalFragmentProcessors() const { return this->numColorFragmentProcessors() + |
| this->numCoverageFragmentProcessors(); } |
| |
| const GrXPFactory* getXPFactory() const { |
| if (!fXPFactory) { |
| fXPFactory.reset(GrPorterDuffXPFactory::Create(SkXfermode::kSrc_Mode)); |
| } |
| return fXPFactory.get(); |
| } |
| |
| const GrFragmentProcessor* getColorFragmentProcessor(int i) const { |
| return fColorFragmentProcessors[i]; |
| } |
| const GrFragmentProcessor* getCoverageFragmentProcessor(int i) const { |
| return fCoverageFragmentProcessors[i]; |
| } |
| |
| GrPaint& operator=(const GrPaint& paint) { |
| fAntiAlias = paint.fAntiAlias; |
| |
| fColor = paint.fColor; |
| this->resetFragmentProcessors(); |
| fColorFragmentProcessors = paint.fColorFragmentProcessors; |
| fCoverageFragmentProcessors = paint.fCoverageFragmentProcessors; |
| for (int i = 0; i < fColorFragmentProcessors.count(); ++i) { |
| fColorFragmentProcessors[i]->ref(); |
| } |
| for (int i = 0; i < fCoverageFragmentProcessors.count(); ++i) { |
| fCoverageFragmentProcessors[i]->ref(); |
| } |
| |
| fXPFactory.reset(SkRef(paint.getXPFactory())); |
| |
| return *this; |
| } |
| |
| /** |
| * Returns true if the paint's output color will be constant after blending. If the result is |
| * true, constantColor will be updated to contain the constant color. Note that we can conflate |
| * coverage and color, so the actual values written to pixels with partial coverage may still |
| * not seem constant, even if this function returns true. |
| */ |
| bool isConstantBlendedColor(GrColor* constantColor) const; |
| |
| private: |
| void resetFragmentProcessors() { |
| for (int i = 0; i < fColorFragmentProcessors.count(); ++i) { |
| fColorFragmentProcessors[i]->unref(); |
| } |
| for (int i = 0; i < fCoverageFragmentProcessors.count(); ++i) { |
| fCoverageFragmentProcessors[i]->unref(); |
| } |
| fColorFragmentProcessors.reset(); |
| fCoverageFragmentProcessors.reset(); |
| } |
| |
| mutable SkAutoTUnref<const GrXPFactory> fXPFactory; |
| SkSTArray<4, const GrFragmentProcessor*, true> fColorFragmentProcessors; |
| SkSTArray<2, const GrFragmentProcessor*, true> fCoverageFragmentProcessors; |
| |
| bool fAntiAlias; |
| |
| GrColor fColor; |
| }; |
| |
| #endif |