blob: 1cdfe380d880de0933c43dbc2e5424559d75b6d7 [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkTypes.h"
#include "Test.h"
#include <array>
#include <vector>
#include "GrCaps.h"
#include "GrContext.h"
#include "GrContextPriv.h"
#include "GrGeometryProcessor.h"
#include "GrGpuCommandBuffer.h"
#include "GrOpFlushState.h"
#include "GrRenderTargetContext.h"
#include "GrRenderTargetContextPriv.h"
#include "GrResourceKey.h"
#include "GrResourceProvider.h"
#include "SkBitmap.h"
#include "SkMakeUnique.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLGeometryProcessor.h"
#include "glsl/GrGLSLVarying.h"
#include "glsl/GrGLSLVertexGeoBuilder.h"
GR_DECLARE_STATIC_UNIQUE_KEY(gIndexBufferKey);
static constexpr int kBoxSize = 2;
static constexpr int kBoxCountY = 8;
static constexpr int kBoxCountX = 8;
static constexpr int kBoxCount = kBoxCountY * kBoxCountX;
static constexpr int kImageWidth = kBoxCountY * kBoxSize;
static constexpr int kImageHeight = kBoxCountX * kBoxSize;
static constexpr int kIndexPatternRepeatCount = 3;
constexpr uint16_t kIndexPattern[6] = {0, 1, 2, 1, 2, 3};
class DrawMeshHelper {
public:
DrawMeshHelper(GrOpFlushState* state) : fState(state) {}
sk_sp<const GrBuffer> getIndexBuffer();
template<typename T> sk_sp<const GrBuffer> makeVertexBuffer(const SkTArray<T>& data) {
return this->makeVertexBuffer(data.begin(), data.count());
}
template<typename T> sk_sp<const GrBuffer> makeVertexBuffer(const std::vector<T>& data) {
return this->makeVertexBuffer(data.data(), data.size());
}
template<typename T> sk_sp<const GrBuffer> makeVertexBuffer(const T* data, int count);
void drawMesh(const GrMesh& mesh);
private:
GrOpFlushState* fState;
};
struct Box {
float fX, fY;
GrColor fColor;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* This is a GPU-backend specific test. It tries to test all possible usecases of GrMesh. The test
* works by drawing checkerboards of colored boxes, reading back the pixels, and comparing with
* expected results. The boxes are drawn on integer boundaries and the (opaque) colors are chosen
* from the set (r,g,b) = (0,255)^3, so the GPU renderings ought to produce exact matches.
*/
static void run_test(const char* testName, skiatest::Reporter*, const sk_sp<GrRenderTargetContext>&,
const SkBitmap& gold, std::function<void(DrawMeshHelper*)> testFn);
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(GrMeshTest, reporter, ctxInfo) {
GrContext* const context = ctxInfo.grContext();
sk_sp<GrRenderTargetContext> rtc(context->contextPriv().makeDeferredRenderTargetContext(
SkBackingFit::kExact, kImageWidth, kImageHeight,
kRGBA_8888_GrPixelConfig, nullptr));
if (!rtc) {
ERRORF(reporter, "could not create render target context.");
return;
}
SkTArray<Box> boxes;
SkTArray<std::array<Box, 4>> vertexData;
SkBitmap gold;
// ---- setup ----------
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
gold.allocN32Pixels(kImageWidth, kImageHeight);
SkCanvas goldCanvas(gold);
for (int y = 0; y < kBoxCountY; ++y) {
for (int x = 0; x < kBoxCountX; ++x) {
int c = y + x;
int rgb[3] = {-(c & 1) & 0xff, -((c >> 1) & 1) & 0xff, -((c >> 2) & 1) & 0xff};
const Box box = boxes.push_back() = {
float(x * kBoxSize),
float(y * kBoxSize),
GrColorPackRGBA(rgb[0], rgb[1], rgb[2], 255)
};
std::array<Box, 4>& boxVertices = vertexData.push_back();
for (int i = 0; i < 4; ++i) {
boxVertices[i] = {
box.fX + (i/2) * kBoxSize,
box.fY + (i%2) * kBoxSize,
box.fColor
};
}
paint.setARGB(255, rgb[0], rgb[1], rgb[2]);
goldCanvas.drawRect(SkRect::MakeXYWH(box.fX, box.fY, kBoxSize, kBoxSize), paint);
}
}
goldCanvas.flush();
// ---- tests ----------
#define VALIDATE(buff) \
if (!buff) { \
ERRORF(reporter, #buff " is null."); \
return; \
}
run_test("setNonIndexedNonInstanced", reporter, rtc, gold, [&](DrawMeshHelper* helper) {
SkTArray<Box> expandedVertexData;
for (int i = 0; i < kBoxCount; ++i) {
for (int j = 0; j < 6; ++j) {
expandedVertexData.push_back(vertexData[i][kIndexPattern[j]]);
}
}
// Draw boxes one line at a time to exercise base vertex.
auto vbuff = helper->makeVertexBuffer(expandedVertexData);
VALIDATE(vbuff);
for (int y = 0; y < kBoxCountY; ++y) {
GrMesh mesh(GrPrimitiveType::kTriangles);
mesh.setNonIndexedNonInstanced(kBoxCountX * 6);
mesh.setVertexData(vbuff.get(), y * kBoxCountX * 6);
helper->drawMesh(mesh);
}
});
run_test("setIndexed", reporter, rtc, gold, [&](DrawMeshHelper* helper) {
auto ibuff = helper->getIndexBuffer();
VALIDATE(ibuff);
auto vbuff = helper->makeVertexBuffer(vertexData);
VALIDATE(vbuff);
int baseRepetition = 0;
int i = 0;
// Start at various repetitions within the patterned index buffer to exercise base index.
while (i < kBoxCount) {
GR_STATIC_ASSERT(kIndexPatternRepeatCount >= 3);
int repetitionCount = SkTMin(3 - baseRepetition, kBoxCount - i);
GrMesh mesh(GrPrimitiveType::kTriangles);
mesh.setIndexed(ibuff.get(), repetitionCount * 6, baseRepetition * 6,
baseRepetition * 4, (baseRepetition + repetitionCount) * 4 - 1);
mesh.setVertexData(vbuff.get(), (i - baseRepetition) * 4);
helper->drawMesh(mesh);
baseRepetition = (baseRepetition + 1) % 3;
i += repetitionCount;
}
});
run_test("setIndexedPatterned", reporter, rtc, gold, [&](DrawMeshHelper* helper) {
auto ibuff = helper->getIndexBuffer();
VALIDATE(ibuff);
auto vbuff = helper->makeVertexBuffer(vertexData);
VALIDATE(vbuff);
// Draw boxes one line at a time to exercise base vertex. setIndexedPatterned does not
// support a base index.
for (int y = 0; y < kBoxCountY; ++y) {
GrMesh mesh(GrPrimitiveType::kTriangles);
mesh.setIndexedPatterned(ibuff.get(), 6, 4, kBoxCountX, kIndexPatternRepeatCount);
mesh.setVertexData(vbuff.get(), y * kBoxCountX * 4);
helper->drawMesh(mesh);
}
});
for (bool indexed : {false, true}) {
if (!context->contextPriv().caps()->instanceAttribSupport()) {
break;
}
run_test(indexed ? "setIndexedInstanced" : "setInstanced",
reporter, rtc, gold, [&](DrawMeshHelper* helper) {
auto idxbuff = indexed ? helper->getIndexBuffer() : nullptr;
auto instbuff = helper->makeVertexBuffer(boxes);
VALIDATE(instbuff);
auto vbuff = helper->makeVertexBuffer(std::vector<float>{0,0, 0,1, 1,0, 1,1});
VALIDATE(vbuff);
auto vbuff2 = helper->makeVertexBuffer( // for testing base vertex.
std::vector<float>{-1,-1, -1,-1, 0,0, 0,1, 1,0, 1,1});
VALIDATE(vbuff2);
// Draw boxes one line at a time to exercise base instance, base vertex, and null vertex
// buffer. setIndexedInstanced intentionally does not support a base index.
for (int y = 0; y < kBoxCountY; ++y) {
GrMesh mesh(indexed ? GrPrimitiveType::kTriangles
: GrPrimitiveType::kTriangleStrip);
if (indexed) {
VALIDATE(idxbuff);
mesh.setIndexedInstanced(idxbuff.get(), 6,
instbuff.get(), kBoxCountX, y * kBoxCountX);
} else {
mesh.setInstanced(instbuff.get(), kBoxCountX, y * kBoxCountX, 4);
}
switch (y % 3) {
case 0:
if (context->contextPriv().caps()->shaderCaps()->vertexIDSupport()) {
if (y % 2) {
// We don't need this call because it's the initial state of GrMesh.
mesh.setVertexData(nullptr);
}
break;
}
// Fallthru.
case 1:
mesh.setVertexData(vbuff.get());
break;
case 2:
mesh.setVertexData(vbuff2.get(), 2);
break;
}
helper->drawMesh(mesh);
}
});
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
class GrMeshTestOp : public GrDrawOp {
public:
DEFINE_OP_CLASS_ID
GrMeshTestOp(std::function<void(DrawMeshHelper*)> testFn)
: INHERITED(ClassID())
, fTestFn(testFn) {
this->setBounds(SkRect::MakeIWH(kImageWidth, kImageHeight),
HasAABloat::kNo, IsZeroArea::kNo);
}
private:
const char* name() const override { return "GrMeshTestOp"; }
FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; }
RequiresDstTexture finalize(const GrCaps&, const GrAppliedClip*,
GrPixelConfigIsClamped) override {
return RequiresDstTexture::kNo;
}
bool onCombineIfPossible(GrOp* other, const GrCaps& caps) override { return false; }
void onPrepare(GrOpFlushState*) override {}
void onExecute(GrOpFlushState* state) override {
DrawMeshHelper helper(state);
fTestFn(&helper);
}
std::function<void(DrawMeshHelper*)> fTestFn;
typedef GrDrawOp INHERITED;
};
class GrMeshTestProcessor : public GrGeometryProcessor {
public:
GrMeshTestProcessor(bool instanced, bool hasVertexBuffer)
: INHERITED(kGrMeshTestProcessor_ClassID)
, fInstanceLocation(nullptr)
, fVertex(nullptr)
, fColor(nullptr) {
if (instanced) {
fInstanceLocation = &this->addInstanceAttrib("location", kHalf2_GrVertexAttribType);
if (hasVertexBuffer) {
fVertex = &this->addVertexAttrib("vertex", kHalf2_GrVertexAttribType);
}
fColor = &this->addInstanceAttrib("color", kUByte4_norm_GrVertexAttribType);
} else {
fVertex = &this->addVertexAttrib("vertex", kHalf2_GrVertexAttribType);
fColor = &this->addVertexAttrib("color", kUByte4_norm_GrVertexAttribType);
}
}
const char* name() const override { return "GrMeshTest Processor"; }
void getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const final {
b->add32(SkToBool(fInstanceLocation));
b->add32(SkToBool(fVertex));
}
GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const final;
protected:
const Attribute* fInstanceLocation;
const Attribute* fVertex;
const Attribute* fColor;
friend class GLSLMeshTestProcessor;
typedef GrGeometryProcessor INHERITED;
};
class GLSLMeshTestProcessor : public GrGLSLGeometryProcessor {
void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor&,
FPCoordTransformIter&& transformIter) final {}
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) final {
const GrMeshTestProcessor& mp = args.fGP.cast<GrMeshTestProcessor>();
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
varyingHandler->emitAttributes(mp);
varyingHandler->addPassThroughAttribute(mp.fColor, args.fOutputColor);
GrGLSLVertexBuilder* v = args.fVertBuilder;
if (!mp.fInstanceLocation) {
v->codeAppendf("float2 vertex = %s;", mp.fVertex->name());
} else {
if (mp.fVertex) {
v->codeAppendf("float2 offset = %s;", mp.fVertex->name());
} else {
v->codeAppend ("float2 offset = float2(sk_VertexID / 2, sk_VertexID % 2);");
}
v->codeAppendf("float2 vertex = %s + offset * %i;", mp.fInstanceLocation->name(),
kBoxSize);
}
gpArgs->fPositionVar.set(kFloat2_GrSLType, "vertex");
GrGLSLFPFragmentBuilder* f = args.fFragBuilder;
f->codeAppendf("%s = half4(1);", args.fOutputCoverage);
}
};
GrGLSLPrimitiveProcessor* GrMeshTestProcessor::createGLSLInstance(const GrShaderCaps&) const {
return new GLSLMeshTestProcessor;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename T>
sk_sp<const GrBuffer> DrawMeshHelper::makeVertexBuffer(const T* data, int count) {
return sk_sp<const GrBuffer>(
fState->resourceProvider()->createBuffer(
count * sizeof(T), kVertex_GrBufferType, kDynamic_GrAccessPattern,
GrResourceProvider::kNoPendingIO_Flag |
GrResourceProvider::kRequireGpuMemory_Flag, data));
}
sk_sp<const GrBuffer> DrawMeshHelper::getIndexBuffer() {
GR_DEFINE_STATIC_UNIQUE_KEY(gIndexBufferKey);
return fState->resourceProvider()->findOrCreatePatternedIndexBuffer(
kIndexPattern, 6, kIndexPatternRepeatCount, 4, gIndexBufferKey);
}
void DrawMeshHelper::drawMesh(const GrMesh& mesh) {
GrRenderTargetProxy* proxy = fState->drawOpArgs().fProxy;
GrPipeline pipeline(proxy, GrPipeline::ScissorState::kDisabled, SkBlendMode::kSrc);
GrMeshTestProcessor mtp(mesh.isInstanced(), mesh.hasVertexData());
fState->rtCommandBuffer()->draw(pipeline, mtp, &mesh, nullptr, 1,
SkRect::MakeIWH(kImageWidth, kImageHeight));
}
static void run_test(const char* testName, skiatest::Reporter* reporter,
const sk_sp<GrRenderTargetContext>& rtc, const SkBitmap& gold,
std::function<void(DrawMeshHelper*)> testFn) {
const int w = gold.width(), h = gold.height(), rowBytes = gold.rowBytes();
const uint32_t* goldPx = reinterpret_cast<const uint32_t*>(gold.getPixels());
if (h != rtc->height() || w != rtc->width()) {
ERRORF(reporter, "[%s] expectation and rtc not compatible (?).", testName);
return;
}
if (sizeof(uint32_t) * kImageWidth != gold.rowBytes()) {
ERRORF(reporter, "unexpected row bytes in gold image.", testName);
return;
}
SkAutoSTMalloc<kImageHeight * kImageWidth, uint32_t> resultPx(h * rowBytes);
rtc->clear(nullptr, 0xbaaaaaad, GrRenderTargetContext::CanClearFullscreen::kYes);
rtc->priv().testingOnly_addDrawOp(skstd::make_unique<GrMeshTestOp>(testFn));
rtc->readPixels(gold.info(), resultPx, rowBytes, 0, 0, 0);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
uint32_t expected = goldPx[y * kImageWidth + x];
uint32_t actual = resultPx[y * kImageWidth + x];
if (expected != actual) {
ERRORF(reporter, "[%s] pixel (%i,%i): got 0x%x expected 0x%x",
testName, x, y, actual, expected);
return;
}
}
}
}