blob: 7ea898d84cd7998093276817152afeb194de3b18 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrVkPipeline.h"
#include "GrGeometryProcessor.h"
#include "GrPipeline.h"
#include "GrStencilSettings.h"
#include "GrVkCommandBuffer.h"
#include "GrVkGpu.h"
#include "GrVkRenderTarget.h"
#include "GrVkUtil.h"
static inline VkFormat attrib_type_to_vkformat(GrVertexAttribType type) {
switch (type) {
case kFloat_GrVertexAttribType:
return VK_FORMAT_R32_SFLOAT;
case kFloat2_GrVertexAttribType:
return VK_FORMAT_R32G32_SFLOAT;
case kFloat3_GrVertexAttribType:
return VK_FORMAT_R32G32B32_SFLOAT;
case kFloat4_GrVertexAttribType:
return VK_FORMAT_R32G32B32A32_SFLOAT;
case kHalf_GrVertexAttribType:
return VK_FORMAT_R16_SFLOAT;
case kHalf2_GrVertexAttribType:
return VK_FORMAT_R16G16_SFLOAT;
case kHalf3_GrVertexAttribType:
return VK_FORMAT_R16G16B16_SFLOAT;
case kHalf4_GrVertexAttribType:
return VK_FORMAT_R16G16B16A16_SFLOAT;
case kInt2_GrVertexAttribType:
return VK_FORMAT_R32G32_SINT;
case kInt3_GrVertexAttribType:
return VK_FORMAT_R32G32B32_SINT;
case kInt4_GrVertexAttribType:
return VK_FORMAT_R32G32B32A32_SINT;
case kByte_GrVertexAttribType:
return VK_FORMAT_R8_SINT;
case kByte2_GrVertexAttribType:
return VK_FORMAT_R8G8_SINT;
case kByte3_GrVertexAttribType:
return VK_FORMAT_R8G8B8_SINT;
case kByte4_GrVertexAttribType:
return VK_FORMAT_R8G8B8A8_SINT;
case kUByte_GrVertexAttribType:
return VK_FORMAT_R8_UINT;
case kUByte2_GrVertexAttribType:
return VK_FORMAT_R8G8_UINT;
case kUByte3_GrVertexAttribType:
return VK_FORMAT_R8G8B8_UINT;
case kUByte4_GrVertexAttribType:
return VK_FORMAT_R8G8B8A8_UINT;
case kUByte_norm_GrVertexAttribType:
return VK_FORMAT_R8_UNORM;
case kUByte4_norm_GrVertexAttribType:
return VK_FORMAT_R8G8B8A8_UNORM;
case kShort2_GrVertexAttribType:
return VK_FORMAT_R16G16_SINT;
case kShort4_GrVertexAttribType:
return VK_FORMAT_R16G16B16A16_SINT;
case kUShort2_GrVertexAttribType:
return VK_FORMAT_R16G16_UINT;
case kUShort2_norm_GrVertexAttribType:
return VK_FORMAT_R16G16_UNORM;
case kInt_GrVertexAttribType:
return VK_FORMAT_R32_SINT;
case kUint_GrVertexAttribType:
return VK_FORMAT_R32_UINT;
}
SK_ABORT("Unknown vertex attrib type");
return VK_FORMAT_UNDEFINED;
}
static void setup_vertex_input_state(const GrPrimitiveProcessor& primProc,
VkPipelineVertexInputStateCreateInfo* vertexInputInfo,
SkSTArray<2, VkVertexInputBindingDescription, true>* bindingDescs,
VkVertexInputAttributeDescription* attributeDesc) {
uint32_t vertexBinding = 0, instanceBinding = 0;
int nextBinding = bindingDescs->count();
if (primProc.hasVertexAttributes()) {
vertexBinding = nextBinding++;
}
if (primProc.hasInstanceAttributes()) {
instanceBinding = nextBinding;
}
// setup attribute descriptions
int vaCount = primProc.numVertexAttributes();
int attribIndex = 0;
size_t vertexAttributeOffset = 0;
for (; attribIndex < vaCount; attribIndex++) {
const GrGeometryProcessor::Attribute& attrib = primProc.vertexAttribute(attribIndex);
VkVertexInputAttributeDescription& vkAttrib = attributeDesc[attribIndex];
vkAttrib.location = attribIndex; // for now assume location = attribIndex
vkAttrib.binding = vertexBinding;
vkAttrib.format = attrib_type_to_vkformat(attrib.cpuType());
vkAttrib.offset = vertexAttributeOffset;
SkASSERT(vkAttrib.offset == primProc.debugOnly_vertexAttributeOffset(attribIndex));
vertexAttributeOffset += attrib.sizeAlign4();
}
SkASSERT(vertexAttributeOffset == primProc.debugOnly_vertexStride());
int iaCount = primProc.numInstanceAttributes();
size_t instanceAttributeOffset = 0;
for (int iaIndex = 0; iaIndex < iaCount; ++iaIndex, ++attribIndex) {
const GrGeometryProcessor::Attribute& attrib = primProc.instanceAttribute(iaIndex);
VkVertexInputAttributeDescription& vkAttrib = attributeDesc[attribIndex];
vkAttrib.location = attribIndex; // for now assume location = attribIndex
vkAttrib.binding = instanceBinding;
vkAttrib.format = attrib_type_to_vkformat(attrib.cpuType());
vkAttrib.offset = instanceAttributeOffset;
SkASSERT(vkAttrib.offset == primProc.debugOnly_instanceAttributeOffset(iaIndex));
instanceAttributeOffset += attrib.sizeAlign4();
}
SkASSERT(instanceAttributeOffset == primProc.debugOnly_instanceStride());
if (primProc.hasVertexAttributes()) {
bindingDescs->push_back() = {
vertexBinding,
(uint32_t) vertexAttributeOffset,
VK_VERTEX_INPUT_RATE_VERTEX
};
}
if (primProc.hasInstanceAttributes()) {
bindingDescs->push_back() = {
instanceBinding,
(uint32_t) instanceAttributeOffset,
VK_VERTEX_INPUT_RATE_INSTANCE
};
}
memset(vertexInputInfo, 0, sizeof(VkPipelineVertexInputStateCreateInfo));
vertexInputInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vertexInputInfo->pNext = nullptr;
vertexInputInfo->flags = 0;
vertexInputInfo->vertexBindingDescriptionCount = bindingDescs->count();
vertexInputInfo->pVertexBindingDescriptions = bindingDescs->begin();
vertexInputInfo->vertexAttributeDescriptionCount = vaCount + iaCount;
vertexInputInfo->pVertexAttributeDescriptions = attributeDesc;
}
static VkPrimitiveTopology gr_primitive_type_to_vk_topology(GrPrimitiveType primitiveType) {
switch (primitiveType) {
case GrPrimitiveType::kTriangles:
return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
case GrPrimitiveType::kTriangleStrip:
return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP;
case GrPrimitiveType::kPoints:
return VK_PRIMITIVE_TOPOLOGY_POINT_LIST;
case GrPrimitiveType::kLines:
return VK_PRIMITIVE_TOPOLOGY_LINE_LIST;
case GrPrimitiveType::kLineStrip:
return VK_PRIMITIVE_TOPOLOGY_LINE_STRIP;
case GrPrimitiveType::kLinesAdjacency:
return VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY;
}
SK_ABORT("invalid GrPrimitiveType");
return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
}
static void setup_input_assembly_state(GrPrimitiveType primitiveType,
VkPipelineInputAssemblyStateCreateInfo* inputAssemblyInfo) {
memset(inputAssemblyInfo, 0, sizeof(VkPipelineInputAssemblyStateCreateInfo));
inputAssemblyInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
inputAssemblyInfo->pNext = nullptr;
inputAssemblyInfo->flags = 0;
inputAssemblyInfo->primitiveRestartEnable = false;
inputAssemblyInfo->topology = gr_primitive_type_to_vk_topology(primitiveType);
}
static VkStencilOp stencil_op_to_vk_stencil_op(GrStencilOp op) {
static const VkStencilOp gTable[] = {
VK_STENCIL_OP_KEEP, // kKeep
VK_STENCIL_OP_ZERO, // kZero
VK_STENCIL_OP_REPLACE, // kReplace
VK_STENCIL_OP_INVERT, // kInvert
VK_STENCIL_OP_INCREMENT_AND_WRAP, // kIncWrap
VK_STENCIL_OP_DECREMENT_AND_WRAP, // kDecWrap
VK_STENCIL_OP_INCREMENT_AND_CLAMP, // kIncClamp
VK_STENCIL_OP_DECREMENT_AND_CLAMP, // kDecClamp
};
GR_STATIC_ASSERT(SK_ARRAY_COUNT(gTable) == kGrStencilOpCount);
GR_STATIC_ASSERT(0 == (int)GrStencilOp::kKeep);
GR_STATIC_ASSERT(1 == (int)GrStencilOp::kZero);
GR_STATIC_ASSERT(2 == (int)GrStencilOp::kReplace);
GR_STATIC_ASSERT(3 == (int)GrStencilOp::kInvert);
GR_STATIC_ASSERT(4 == (int)GrStencilOp::kIncWrap);
GR_STATIC_ASSERT(5 == (int)GrStencilOp::kDecWrap);
GR_STATIC_ASSERT(6 == (int)GrStencilOp::kIncClamp);
GR_STATIC_ASSERT(7 == (int)GrStencilOp::kDecClamp);
SkASSERT(op < (GrStencilOp)kGrStencilOpCount);
return gTable[(int)op];
}
static VkCompareOp stencil_func_to_vk_compare_op(GrStencilTest test) {
static const VkCompareOp gTable[] = {
VK_COMPARE_OP_ALWAYS, // kAlways
VK_COMPARE_OP_NEVER, // kNever
VK_COMPARE_OP_GREATER, // kGreater
VK_COMPARE_OP_GREATER_OR_EQUAL, // kGEqual
VK_COMPARE_OP_LESS, // kLess
VK_COMPARE_OP_LESS_OR_EQUAL, // kLEqual
VK_COMPARE_OP_EQUAL, // kEqual
VK_COMPARE_OP_NOT_EQUAL, // kNotEqual
};
GR_STATIC_ASSERT(SK_ARRAY_COUNT(gTable) == kGrStencilTestCount);
GR_STATIC_ASSERT(0 == (int)GrStencilTest::kAlways);
GR_STATIC_ASSERT(1 == (int)GrStencilTest::kNever);
GR_STATIC_ASSERT(2 == (int)GrStencilTest::kGreater);
GR_STATIC_ASSERT(3 == (int)GrStencilTest::kGEqual);
GR_STATIC_ASSERT(4 == (int)GrStencilTest::kLess);
GR_STATIC_ASSERT(5 == (int)GrStencilTest::kLEqual);
GR_STATIC_ASSERT(6 == (int)GrStencilTest::kEqual);
GR_STATIC_ASSERT(7 == (int)GrStencilTest::kNotEqual);
SkASSERT(test < (GrStencilTest)kGrStencilTestCount);
return gTable[(int)test];
}
static void setup_depth_stencil_state(const GrStencilSettings& stencilSettings,
VkPipelineDepthStencilStateCreateInfo* stencilInfo) {
memset(stencilInfo, 0, sizeof(VkPipelineDepthStencilStateCreateInfo));
stencilInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
stencilInfo->pNext = nullptr;
stencilInfo->flags = 0;
// set depth testing defaults
stencilInfo->depthTestEnable = VK_FALSE;
stencilInfo->depthWriteEnable = VK_FALSE;
stencilInfo->depthCompareOp = VK_COMPARE_OP_ALWAYS;
stencilInfo->depthBoundsTestEnable = VK_FALSE;
stencilInfo->stencilTestEnable = !stencilSettings.isDisabled();
if (!stencilSettings.isDisabled()) {
// Set front face
const GrStencilSettings::Face& front = stencilSettings.front();
stencilInfo->front.failOp = stencil_op_to_vk_stencil_op(front.fFailOp);
stencilInfo->front.passOp = stencil_op_to_vk_stencil_op(front.fPassOp);
stencilInfo->front.depthFailOp = stencilInfo->front.failOp;
stencilInfo->front.compareOp = stencil_func_to_vk_compare_op(front.fTest);
stencilInfo->front.compareMask = front.fTestMask;
stencilInfo->front.writeMask = front.fWriteMask;
stencilInfo->front.reference = front.fRef;
// Set back face
if (!stencilSettings.isTwoSided()) {
stencilInfo->back = stencilInfo->front;
} else {
const GrStencilSettings::Face& back = stencilSettings.back();
stencilInfo->back.failOp = stencil_op_to_vk_stencil_op(back.fFailOp);
stencilInfo->back.passOp = stencil_op_to_vk_stencil_op(back.fPassOp);
stencilInfo->back.depthFailOp = stencilInfo->front.failOp;
stencilInfo->back.compareOp = stencil_func_to_vk_compare_op(back.fTest);
stencilInfo->back.compareMask = back.fTestMask;
stencilInfo->back.writeMask = back.fWriteMask;
stencilInfo->back.reference = back.fRef;
}
}
stencilInfo->minDepthBounds = 0.0f;
stencilInfo->maxDepthBounds = 1.0f;
}
static void setup_viewport_scissor_state(VkPipelineViewportStateCreateInfo* viewportInfo) {
memset(viewportInfo, 0, sizeof(VkPipelineViewportStateCreateInfo));
viewportInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
viewportInfo->pNext = nullptr;
viewportInfo->flags = 0;
viewportInfo->viewportCount = 1;
viewportInfo->pViewports = nullptr; // This is set dynamically
viewportInfo->scissorCount = 1;
viewportInfo->pScissors = nullptr; // This is set dynamically
SkASSERT(viewportInfo->viewportCount == viewportInfo->scissorCount);
}
static void setup_multisample_state(const GrPrimitiveProcessor& primProc,
const GrPipeline& pipeline,
const GrCaps* caps,
VkPipelineMultisampleStateCreateInfo* multisampleInfo) {
memset(multisampleInfo, 0, sizeof(VkPipelineMultisampleStateCreateInfo));
multisampleInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
multisampleInfo->pNext = nullptr;
multisampleInfo->flags = 0;
int numSamples = pipeline.proxy()->numColorSamples();
SkAssertResult(GrSampleCountToVkSampleCount(numSamples,
&multisampleInfo->rasterizationSamples));
float sampleShading = primProc.getSampleShading();
SkASSERT(sampleShading == 0.0f || caps->sampleShadingSupport());
multisampleInfo->sampleShadingEnable = sampleShading > 0.0f;
multisampleInfo->minSampleShading = sampleShading;
multisampleInfo->pSampleMask = nullptr;
multisampleInfo->alphaToCoverageEnable = VK_FALSE;
multisampleInfo->alphaToOneEnable = VK_FALSE;
}
static VkBlendFactor blend_coeff_to_vk_blend(GrBlendCoeff coeff) {
static const VkBlendFactor gTable[] = {
VK_BLEND_FACTOR_ZERO, // kZero_GrBlendCoeff
VK_BLEND_FACTOR_ONE, // kOne_GrBlendCoeff
VK_BLEND_FACTOR_SRC_COLOR, // kSC_GrBlendCoeff
VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR, // kISC_GrBlendCoeff
VK_BLEND_FACTOR_DST_COLOR, // kDC_GrBlendCoeff
VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR, // kIDC_GrBlendCoeff
VK_BLEND_FACTOR_SRC_ALPHA, // kSA_GrBlendCoeff
VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA, // kISA_GrBlendCoeff
VK_BLEND_FACTOR_DST_ALPHA, // kDA_GrBlendCoeff
VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA, // kIDA_GrBlendCoeff
VK_BLEND_FACTOR_CONSTANT_COLOR, // kConstC_GrBlendCoeff
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR, // kIConstC_GrBlendCoeff
VK_BLEND_FACTOR_CONSTANT_ALPHA, // kConstA_GrBlendCoeff
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA, // kIConstA_GrBlendCoeff
VK_BLEND_FACTOR_SRC1_COLOR, // kS2C_GrBlendCoeff
VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR, // kIS2C_GrBlendCoeff
VK_BLEND_FACTOR_SRC1_ALPHA, // kS2A_GrBlendCoeff
VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA, // kIS2A_GrBlendCoeff
};
GR_STATIC_ASSERT(SK_ARRAY_COUNT(gTable) == kGrBlendCoeffCnt);
GR_STATIC_ASSERT(0 == kZero_GrBlendCoeff);
GR_STATIC_ASSERT(1 == kOne_GrBlendCoeff);
GR_STATIC_ASSERT(2 == kSC_GrBlendCoeff);
GR_STATIC_ASSERT(3 == kISC_GrBlendCoeff);
GR_STATIC_ASSERT(4 == kDC_GrBlendCoeff);
GR_STATIC_ASSERT(5 == kIDC_GrBlendCoeff);
GR_STATIC_ASSERT(6 == kSA_GrBlendCoeff);
GR_STATIC_ASSERT(7 == kISA_GrBlendCoeff);
GR_STATIC_ASSERT(8 == kDA_GrBlendCoeff);
GR_STATIC_ASSERT(9 == kIDA_GrBlendCoeff);
GR_STATIC_ASSERT(10 == kConstC_GrBlendCoeff);
GR_STATIC_ASSERT(11 == kIConstC_GrBlendCoeff);
GR_STATIC_ASSERT(12 == kConstA_GrBlendCoeff);
GR_STATIC_ASSERT(13 == kIConstA_GrBlendCoeff);
GR_STATIC_ASSERT(14 == kS2C_GrBlendCoeff);
GR_STATIC_ASSERT(15 == kIS2C_GrBlendCoeff);
GR_STATIC_ASSERT(16 == kS2A_GrBlendCoeff);
GR_STATIC_ASSERT(17 == kIS2A_GrBlendCoeff);
SkASSERT((unsigned)coeff < kGrBlendCoeffCnt);
return gTable[coeff];
}
static VkBlendOp blend_equation_to_vk_blend_op(GrBlendEquation equation) {
static const VkBlendOp gTable[] = {
// Basic blend ops
VK_BLEND_OP_ADD,
VK_BLEND_OP_SUBTRACT,
VK_BLEND_OP_REVERSE_SUBTRACT,
// Advanced blend ops
VK_BLEND_OP_SCREEN_EXT,
VK_BLEND_OP_OVERLAY_EXT,
VK_BLEND_OP_DARKEN_EXT,
VK_BLEND_OP_LIGHTEN_EXT,
VK_BLEND_OP_COLORDODGE_EXT,
VK_BLEND_OP_COLORBURN_EXT,
VK_BLEND_OP_HARDLIGHT_EXT,
VK_BLEND_OP_SOFTLIGHT_EXT,
VK_BLEND_OP_DIFFERENCE_EXT,
VK_BLEND_OP_EXCLUSION_EXT,
VK_BLEND_OP_MULTIPLY_EXT,
VK_BLEND_OP_HSL_HUE_EXT,
VK_BLEND_OP_HSL_SATURATION_EXT,
VK_BLEND_OP_HSL_COLOR_EXT,
VK_BLEND_OP_HSL_LUMINOSITY_EXT
};
GR_STATIC_ASSERT(0 == kAdd_GrBlendEquation);
GR_STATIC_ASSERT(1 == kSubtract_GrBlendEquation);
GR_STATIC_ASSERT(2 == kReverseSubtract_GrBlendEquation);
GR_STATIC_ASSERT(3 == kScreen_GrBlendEquation);
GR_STATIC_ASSERT(4 == kOverlay_GrBlendEquation);
GR_STATIC_ASSERT(5 == kDarken_GrBlendEquation);
GR_STATIC_ASSERT(6 == kLighten_GrBlendEquation);
GR_STATIC_ASSERT(7 == kColorDodge_GrBlendEquation);
GR_STATIC_ASSERT(8 == kColorBurn_GrBlendEquation);
GR_STATIC_ASSERT(9 == kHardLight_GrBlendEquation);
GR_STATIC_ASSERT(10 == kSoftLight_GrBlendEquation);
GR_STATIC_ASSERT(11 == kDifference_GrBlendEquation);
GR_STATIC_ASSERT(12 == kExclusion_GrBlendEquation);
GR_STATIC_ASSERT(13 == kMultiply_GrBlendEquation);
GR_STATIC_ASSERT(14 == kHSLHue_GrBlendEquation);
GR_STATIC_ASSERT(15 == kHSLSaturation_GrBlendEquation);
GR_STATIC_ASSERT(16 == kHSLColor_GrBlendEquation);
GR_STATIC_ASSERT(17 == kHSLLuminosity_GrBlendEquation);
GR_STATIC_ASSERT(SK_ARRAY_COUNT(gTable) == kGrBlendEquationCnt);
SkASSERT((unsigned)equation < kGrBlendCoeffCnt);
return gTable[equation];
}
static bool blend_coeff_refs_constant(GrBlendCoeff coeff) {
static const bool gCoeffReferencesBlendConst[] = {
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
true,
true,
true,
true,
// extended blend coeffs
false,
false,
false,
false,
};
return gCoeffReferencesBlendConst[coeff];
GR_STATIC_ASSERT(kGrBlendCoeffCnt == SK_ARRAY_COUNT(gCoeffReferencesBlendConst));
// Individual enum asserts already made in blend_coeff_to_vk_blend
}
static void setup_color_blend_state(const GrPipeline& pipeline,
VkPipelineColorBlendStateCreateInfo* colorBlendInfo,
VkPipelineColorBlendAttachmentState* attachmentState) {
GrXferProcessor::BlendInfo blendInfo;
pipeline.getXferProcessor().getBlendInfo(&blendInfo);
GrBlendEquation equation = blendInfo.fEquation;
GrBlendCoeff srcCoeff = blendInfo.fSrcBlend;
GrBlendCoeff dstCoeff = blendInfo.fDstBlend;
bool blendOff = (kAdd_GrBlendEquation == equation || kSubtract_GrBlendEquation == equation) &&
kOne_GrBlendCoeff == srcCoeff && kZero_GrBlendCoeff == dstCoeff;
memset(attachmentState, 0, sizeof(VkPipelineColorBlendAttachmentState));
attachmentState->blendEnable = !blendOff;
if (!blendOff) {
attachmentState->srcColorBlendFactor = blend_coeff_to_vk_blend(srcCoeff);
attachmentState->dstColorBlendFactor = blend_coeff_to_vk_blend(dstCoeff);
attachmentState->colorBlendOp = blend_equation_to_vk_blend_op(equation);
attachmentState->srcAlphaBlendFactor = blend_coeff_to_vk_blend(srcCoeff);
attachmentState->dstAlphaBlendFactor = blend_coeff_to_vk_blend(dstCoeff);
attachmentState->alphaBlendOp = blend_equation_to_vk_blend_op(equation);
}
if (!blendInfo.fWriteColor) {
attachmentState->colorWriteMask = 0;
} else {
attachmentState->colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT |
VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
}
memset(colorBlendInfo, 0, sizeof(VkPipelineColorBlendStateCreateInfo));
colorBlendInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
colorBlendInfo->pNext = nullptr;
colorBlendInfo->flags = 0;
colorBlendInfo->logicOpEnable = VK_FALSE;
colorBlendInfo->attachmentCount = 1;
colorBlendInfo->pAttachments = attachmentState;
// colorBlendInfo->blendConstants is set dynamically
}
static void setup_raster_state(const GrPipeline& pipeline,
const GrCaps* caps,
VkPipelineRasterizationStateCreateInfo* rasterInfo) {
memset(rasterInfo, 0, sizeof(VkPipelineRasterizationStateCreateInfo));
rasterInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rasterInfo->pNext = nullptr;
rasterInfo->flags = 0;
rasterInfo->depthClampEnable = VK_FALSE;
rasterInfo->rasterizerDiscardEnable = VK_FALSE;
rasterInfo->polygonMode = caps->wireframeMode() ? VK_POLYGON_MODE_LINE
: VK_POLYGON_MODE_FILL;
rasterInfo->cullMode = VK_CULL_MODE_NONE;
rasterInfo->frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
rasterInfo->depthBiasEnable = VK_FALSE;
rasterInfo->depthBiasConstantFactor = 0.0f;
rasterInfo->depthBiasClamp = 0.0f;
rasterInfo->depthBiasSlopeFactor = 0.0f;
rasterInfo->lineWidth = 1.0f;
}
static void setup_dynamic_state(VkPipelineDynamicStateCreateInfo* dynamicInfo,
VkDynamicState* dynamicStates) {
memset(dynamicInfo, 0, sizeof(VkPipelineDynamicStateCreateInfo));
dynamicInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamicInfo->pNext = VK_NULL_HANDLE;
dynamicInfo->flags = 0;
dynamicStates[0] = VK_DYNAMIC_STATE_VIEWPORT;
dynamicStates[1] = VK_DYNAMIC_STATE_SCISSOR;
dynamicStates[2] = VK_DYNAMIC_STATE_BLEND_CONSTANTS;
dynamicInfo->dynamicStateCount = 3;
dynamicInfo->pDynamicStates = dynamicStates;
}
GrVkPipeline* GrVkPipeline::Create(GrVkGpu* gpu, const GrPrimitiveProcessor& primProc,
const GrPipeline& pipeline, const GrStencilSettings& stencil,
VkPipelineShaderStageCreateInfo* shaderStageInfo,
int shaderStageCount, GrPrimitiveType primitiveType,
const GrVkRenderPass& renderPass, VkPipelineLayout layout,
VkPipelineCache cache) {
VkPipelineVertexInputStateCreateInfo vertexInputInfo;
SkSTArray<2, VkVertexInputBindingDescription, true> bindingDescs;
SkSTArray<16, VkVertexInputAttributeDescription> attributeDesc;
int totalAttributeCnt = primProc.numVertexAttributes() + primProc.numInstanceAttributes();
SkASSERT(totalAttributeCnt <= gpu->vkCaps().maxVertexAttributes());
VkVertexInputAttributeDescription* pAttribs = attributeDesc.push_back_n(totalAttributeCnt);
setup_vertex_input_state(primProc, &vertexInputInfo, &bindingDescs, pAttribs);
VkPipelineInputAssemblyStateCreateInfo inputAssemblyInfo;
setup_input_assembly_state(primitiveType, &inputAssemblyInfo);
VkPipelineDepthStencilStateCreateInfo depthStencilInfo;
setup_depth_stencil_state(stencil, &depthStencilInfo);
VkPipelineViewportStateCreateInfo viewportInfo;
setup_viewport_scissor_state(&viewportInfo);
VkPipelineMultisampleStateCreateInfo multisampleInfo;
setup_multisample_state(primProc, pipeline, gpu->caps(), &multisampleInfo);
// We will only have one color attachment per pipeline.
VkPipelineColorBlendAttachmentState attachmentStates[1];
VkPipelineColorBlendStateCreateInfo colorBlendInfo;
setup_color_blend_state(pipeline, &colorBlendInfo, attachmentStates);
VkPipelineRasterizationStateCreateInfo rasterInfo;
setup_raster_state(pipeline, gpu->caps(), &rasterInfo);
VkDynamicState dynamicStates[3];
VkPipelineDynamicStateCreateInfo dynamicInfo;
setup_dynamic_state(&dynamicInfo, dynamicStates);
VkGraphicsPipelineCreateInfo pipelineCreateInfo;
memset(&pipelineCreateInfo, 0, sizeof(VkGraphicsPipelineCreateInfo));
pipelineCreateInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipelineCreateInfo.pNext = nullptr;
pipelineCreateInfo.flags = 0;
pipelineCreateInfo.stageCount = shaderStageCount;
pipelineCreateInfo.pStages = shaderStageInfo;
pipelineCreateInfo.pVertexInputState = &vertexInputInfo;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyInfo;
pipelineCreateInfo.pTessellationState = nullptr;
pipelineCreateInfo.pViewportState = &viewportInfo;
pipelineCreateInfo.pRasterizationState = &rasterInfo;
pipelineCreateInfo.pMultisampleState = &multisampleInfo;
pipelineCreateInfo.pDepthStencilState = &depthStencilInfo;
pipelineCreateInfo.pColorBlendState = &colorBlendInfo;
pipelineCreateInfo.pDynamicState = &dynamicInfo;
pipelineCreateInfo.layout = layout;
pipelineCreateInfo.renderPass = renderPass.vkRenderPass();
pipelineCreateInfo.subpass = 0;
pipelineCreateInfo.basePipelineHandle = VK_NULL_HANDLE;
pipelineCreateInfo.basePipelineIndex = -1;
VkPipeline vkPipeline;
VkResult err = GR_VK_CALL(gpu->vkInterface(), CreateGraphicsPipelines(gpu->device(),
cache, 1,
&pipelineCreateInfo,
nullptr, &vkPipeline));
if (err) {
SkDebugf("Failed to create pipeline. Error: %d\n", err);
return nullptr;
}
return new GrVkPipeline(vkPipeline);
}
void GrVkPipeline::freeGPUData(const GrVkGpu* gpu) const {
GR_VK_CALL(gpu->vkInterface(), DestroyPipeline(gpu->device(), fPipeline, nullptr));
}
void GrVkPipeline::SetDynamicScissorRectState(GrVkGpu* gpu,
GrVkCommandBuffer* cmdBuffer,
const GrRenderTarget* renderTarget,
GrSurfaceOrigin rtOrigin,
SkIRect scissorRect) {
if (!scissorRect.intersect(SkIRect::MakeWH(renderTarget->width(), renderTarget->height()))) {
scissorRect.setEmpty();
}
VkRect2D scissor;
scissor.offset.x = scissorRect.fLeft;
scissor.extent.width = scissorRect.width();
if (kTopLeft_GrSurfaceOrigin == rtOrigin) {
scissor.offset.y = scissorRect.fTop;
} else {
SkASSERT(kBottomLeft_GrSurfaceOrigin == rtOrigin);
scissor.offset.y = renderTarget->height() - scissorRect.fBottom;
}
scissor.extent.height = scissorRect.height();
SkASSERT(scissor.offset.x >= 0);
SkASSERT(scissor.offset.y >= 0);
cmdBuffer->setScissor(gpu, 0, 1, &scissor);
}
void GrVkPipeline::SetDynamicViewportState(GrVkGpu* gpu,
GrVkCommandBuffer* cmdBuffer,
const GrRenderTarget* renderTarget) {
// We always use one viewport the size of the RT
VkViewport viewport;
viewport.x = 0.0f;
viewport.y = 0.0f;
viewport.width = SkIntToScalar(renderTarget->width());
viewport.height = SkIntToScalar(renderTarget->height());
viewport.minDepth = 0.0f;
viewport.maxDepth = 1.0f;
cmdBuffer->setViewport(gpu, 0, 1, &viewport);
}
void GrVkPipeline::SetDynamicBlendConstantState(GrVkGpu* gpu,
GrVkCommandBuffer* cmdBuffer,
GrPixelConfig pixelConfig,
const GrXferProcessor& xferProcessor) {
GrXferProcessor::BlendInfo blendInfo;
xferProcessor.getBlendInfo(&blendInfo);
GrBlendCoeff srcCoeff = blendInfo.fSrcBlend;
GrBlendCoeff dstCoeff = blendInfo.fDstBlend;
float floatColors[4];
if (blend_coeff_refs_constant(srcCoeff) || blend_coeff_refs_constant(dstCoeff)) {
// Swizzle the blend to match what the shader will output.
const GrSwizzle& swizzle = gpu->caps()->shaderCaps()->configOutputSwizzle(pixelConfig);
GrColor blendConst = swizzle.applyTo(blendInfo.fBlendConstant);
GrColorToRGBAFloat(blendConst, floatColors);
} else {
memset(floatColors, 0, 4 * sizeof(float));
}
cmdBuffer->setBlendConstants(gpu, floatColors);
}