blob: ebb4c52a3484e9b282d75ffd6a78231f82fb9ff3 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkSLIRGenerator.h"
#include "limits.h"
#include "SkSLCompiler.h"
#include "ast/SkSLASTBoolLiteral.h"
#include "ast/SkSLASTFieldSuffix.h"
#include "ast/SkSLASTFloatLiteral.h"
#include "ast/SkSLASTIndexSuffix.h"
#include "ast/SkSLASTIntLiteral.h"
#include "ir/SkSLBinaryExpression.h"
#include "ir/SkSLBoolLiteral.h"
#include "ir/SkSLBreakStatement.h"
#include "ir/SkSLConstructor.h"
#include "ir/SkSLContinueStatement.h"
#include "ir/SkSLDiscardStatement.h"
#include "ir/SkSLDoStatement.h"
#include "ir/SkSLExpressionStatement.h"
#include "ir/SkSLField.h"
#include "ir/SkSLFieldAccess.h"
#include "ir/SkSLFloatLiteral.h"
#include "ir/SkSLForStatement.h"
#include "ir/SkSLFunctionCall.h"
#include "ir/SkSLFunctionDeclaration.h"
#include "ir/SkSLFunctionDefinition.h"
#include "ir/SkSLFunctionReference.h"
#include "ir/SkSLIfStatement.h"
#include "ir/SkSLIndexExpression.h"
#include "ir/SkSLInterfaceBlock.h"
#include "ir/SkSLIntLiteral.h"
#include "ir/SkSLLayout.h"
#include "ir/SkSLPostfixExpression.h"
#include "ir/SkSLPrefixExpression.h"
#include "ir/SkSLReturnStatement.h"
#include "ir/SkSLSwizzle.h"
#include "ir/SkSLTernaryExpression.h"
#include "ir/SkSLUnresolvedFunction.h"
#include "ir/SkSLVariable.h"
#include "ir/SkSLVarDeclarations.h"
#include "ir/SkSLVarDeclarationsStatement.h"
#include "ir/SkSLVariableReference.h"
#include "ir/SkSLWhileStatement.h"
namespace SkSL {
class AutoSymbolTable {
public:
AutoSymbolTable(IRGenerator* ir)
: fIR(ir)
, fPrevious(fIR->fSymbolTable) {
fIR->pushSymbolTable();
}
~AutoSymbolTable() {
fIR->popSymbolTable();
ASSERT(fPrevious == fIR->fSymbolTable);
}
IRGenerator* fIR;
std::shared_ptr<SymbolTable> fPrevious;
};
class AutoLoopLevel {
public:
AutoLoopLevel(IRGenerator* ir)
: fIR(ir) {
fIR->fLoopLevel++;
}
~AutoLoopLevel() {
fIR->fLoopLevel--;
}
IRGenerator* fIR;
};
IRGenerator::IRGenerator(const Context* context, std::shared_ptr<SymbolTable> symbolTable,
ErrorReporter& errorReporter)
: fContext(*context)
, fCurrentFunction(nullptr)
, fSymbolTable(std::move(symbolTable))
, fLoopLevel(0)
, fErrors(errorReporter) {}
void IRGenerator::pushSymbolTable() {
fSymbolTable.reset(new SymbolTable(std::move(fSymbolTable), fErrors));
}
void IRGenerator::popSymbolTable() {
fSymbolTable = fSymbolTable->fParent;
}
static void fill_caps(const GrShaderCaps& caps, std::unordered_map<SkString, CapValue>* capsMap) {
#define CAP(name) capsMap->insert(std::make_pair(SkString(#name), CapValue(caps.name())));
CAP(fbFetchSupport);
CAP(fbFetchNeedsCustomOutput);
CAP(bindlessTextureSupport);
CAP(dropsTileOnZeroDivide);
CAP(flatInterpolationSupport);
CAP(noperspectiveInterpolationSupport);
CAP(multisampleInterpolationSupport);
CAP(sampleVariablesSupport);
CAP(sampleMaskOverrideCoverageSupport);
CAP(externalTextureSupport);
CAP(texelFetchSupport);
CAP(imageLoadStoreSupport);
CAP(mustEnableAdvBlendEqs);
CAP(mustEnableSpecificAdvBlendEqs);
CAP(mustDeclareFragmentShaderOutput);
CAP(canUseAnyFunctionInShader);
#undef CAP
}
void IRGenerator::start(const Program::Settings* settings) {
fSettings = settings;
fCapsMap.clear();
if (settings->fCaps) {
fill_caps(*settings->fCaps, &fCapsMap);
}
this->pushSymbolTable();
fInputs.reset();
}
void IRGenerator::finish() {
this->popSymbolTable();
fSettings = nullptr;
}
std::unique_ptr<Extension> IRGenerator::convertExtension(const ASTExtension& extension) {
return std::unique_ptr<Extension>(new Extension(extension.fPosition, extension.fName));
}
std::unique_ptr<Statement> IRGenerator::convertStatement(const ASTStatement& statement) {
switch (statement.fKind) {
case ASTStatement::kBlock_Kind:
return this->convertBlock((ASTBlock&) statement);
case ASTStatement::kVarDeclaration_Kind:
return this->convertVarDeclarationStatement((ASTVarDeclarationStatement&) statement);
case ASTStatement::kExpression_Kind:
return this->convertExpressionStatement((ASTExpressionStatement&) statement);
case ASTStatement::kIf_Kind:
return this->convertIf((ASTIfStatement&) statement);
case ASTStatement::kFor_Kind:
return this->convertFor((ASTForStatement&) statement);
case ASTStatement::kWhile_Kind:
return this->convertWhile((ASTWhileStatement&) statement);
case ASTStatement::kDo_Kind:
return this->convertDo((ASTDoStatement&) statement);
case ASTStatement::kReturn_Kind:
return this->convertReturn((ASTReturnStatement&) statement);
case ASTStatement::kBreak_Kind:
return this->convertBreak((ASTBreakStatement&) statement);
case ASTStatement::kContinue_Kind:
return this->convertContinue((ASTContinueStatement&) statement);
case ASTStatement::kDiscard_Kind:
return this->convertDiscard((ASTDiscardStatement&) statement);
default:
ABORT("unsupported statement type: %d\n", statement.fKind);
}
}
std::unique_ptr<Block> IRGenerator::convertBlock(const ASTBlock& block) {
AutoSymbolTable table(this);
std::vector<std::unique_ptr<Statement>> statements;
for (size_t i = 0; i < block.fStatements.size(); i++) {
std::unique_ptr<Statement> statement = this->convertStatement(*block.fStatements[i]);
if (!statement) {
return nullptr;
}
statements.push_back(std::move(statement));
}
return std::unique_ptr<Block>(new Block(block.fPosition, std::move(statements), fSymbolTable));
}
std::unique_ptr<Statement> IRGenerator::convertVarDeclarationStatement(
const ASTVarDeclarationStatement& s) {
auto decl = this->convertVarDeclarations(*s.fDeclarations, Variable::kLocal_Storage);
if (!decl) {
return nullptr;
}
return std::unique_ptr<Statement>(new VarDeclarationsStatement(std::move(decl)));
}
std::unique_ptr<VarDeclarations> IRGenerator::convertVarDeclarations(const ASTVarDeclarations& decl,
Variable::Storage storage) {
std::vector<VarDeclaration> variables;
const Type* baseType = this->convertType(*decl.fType);
if (!baseType) {
return nullptr;
}
for (const auto& varDecl : decl.fVars) {
const Type* type = baseType;
ASSERT(type->kind() != Type::kArray_Kind);
std::vector<std::unique_ptr<Expression>> sizes;
for (const auto& rawSize : varDecl.fSizes) {
if (rawSize) {
auto size = this->coerce(this->convertExpression(*rawSize), *fContext.fInt_Type);
if (!size) {
return nullptr;
}
SkString name = type->fName;
uint64_t count;
if (size->fKind == Expression::kIntLiteral_Kind) {
count = ((IntLiteral&) *size).fValue;
if (count <= 0) {
fErrors.error(size->fPosition, "array size must be positive");
}
name += "[" + to_string(count) + "]";
} else {
count = -1;
name += "[]";
}
type = new Type(name, Type::kArray_Kind, *type, (int) count);
fSymbolTable->takeOwnership((Type*) type);
sizes.push_back(std::move(size));
} else {
type = new Type(type->fName + "[]", Type::kArray_Kind, *type, -1);
fSymbolTable->takeOwnership((Type*) type);
sizes.push_back(nullptr);
}
}
auto var = std::unique_ptr<Variable>(new Variable(decl.fPosition, decl.fModifiers,
varDecl.fName, *type, storage));
std::unique_ptr<Expression> value;
if (varDecl.fValue) {
value = this->convertExpression(*varDecl.fValue);
if (!value) {
return nullptr;
}
value = this->coerce(std::move(value), *type);
}
if (storage == Variable::kGlobal_Storage && varDecl.fName == SkString("sk_FragColor") &&
(*fSymbolTable)[varDecl.fName]) {
// already defined, ignore
} else if (storage == Variable::kGlobal_Storage && (*fSymbolTable)[varDecl.fName] &&
(*fSymbolTable)[varDecl.fName]->fKind == Symbol::kVariable_Kind &&
((Variable*) (*fSymbolTable)[varDecl.fName])->fModifiers.fLayout.fBuiltin >= 0) {
// already defined, just update the modifiers
Variable* old = (Variable*) (*fSymbolTable)[varDecl.fName];
old->fModifiers = var->fModifiers;
} else {
variables.emplace_back(var.get(), std::move(sizes), std::move(value));
fSymbolTable->add(varDecl.fName, std::move(var));
}
}
return std::unique_ptr<VarDeclarations>(new VarDeclarations(decl.fPosition,
baseType,
std::move(variables)));
}
std::unique_ptr<ModifiersDeclaration> IRGenerator::convertModifiersDeclaration(
const ASTModifiersDeclaration& m) {
return std::unique_ptr<ModifiersDeclaration>(new ModifiersDeclaration(m.fModifiers));
}
std::unique_ptr<Statement> IRGenerator::convertIf(const ASTIfStatement& s) {
std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*s.fTest),
*fContext.fBool_Type);
if (!test) {
return nullptr;
}
std::unique_ptr<Statement> ifTrue = this->convertStatement(*s.fIfTrue);
if (!ifTrue) {
return nullptr;
}
std::unique_ptr<Statement> ifFalse;
if (s.fIfFalse) {
ifFalse = this->convertStatement(*s.fIfFalse);
if (!ifFalse) {
return nullptr;
}
}
if (test->fKind == Expression::kBoolLiteral_Kind) {
// static boolean value, fold down to a single branch
if (((BoolLiteral&) *test).fValue) {
return ifTrue;
} else if (s.fIfFalse) {
return ifFalse;
} else {
// False & no else clause. Not an error, so don't return null!
std::vector<std::unique_ptr<Statement>> empty;
return std::unique_ptr<Statement>(new Block(s.fPosition, std::move(empty),
fSymbolTable));
}
}
return std::unique_ptr<Statement>(new IfStatement(s.fPosition, std::move(test),
std::move(ifTrue), std::move(ifFalse)));
}
std::unique_ptr<Statement> IRGenerator::convertFor(const ASTForStatement& f) {
AutoLoopLevel level(this);
AutoSymbolTable table(this);
std::unique_ptr<Statement> initializer;
if (f.fInitializer) {
initializer = this->convertStatement(*f.fInitializer);
if (!initializer) {
return nullptr;
}
}
std::unique_ptr<Expression> test;
if (f.fTest) {
test = this->coerce(this->convertExpression(*f.fTest), *fContext.fBool_Type);
if (!test) {
return nullptr;
}
}
std::unique_ptr<Expression> next;
if (f.fNext) {
next = this->convertExpression(*f.fNext);
if (!next) {
return nullptr;
}
this->checkValid(*next);
}
std::unique_ptr<Statement> statement = this->convertStatement(*f.fStatement);
if (!statement) {
return nullptr;
}
return std::unique_ptr<Statement>(new ForStatement(f.fPosition, std::move(initializer),
std::move(test), std::move(next),
std::move(statement), fSymbolTable));
}
std::unique_ptr<Statement> IRGenerator::convertWhile(const ASTWhileStatement& w) {
AutoLoopLevel level(this);
std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*w.fTest),
*fContext.fBool_Type);
if (!test) {
return nullptr;
}
std::unique_ptr<Statement> statement = this->convertStatement(*w.fStatement);
if (!statement) {
return nullptr;
}
return std::unique_ptr<Statement>(new WhileStatement(w.fPosition, std::move(test),
std::move(statement)));
}
std::unique_ptr<Statement> IRGenerator::convertDo(const ASTDoStatement& d) {
AutoLoopLevel level(this);
std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*d.fTest),
*fContext.fBool_Type);
if (!test) {
return nullptr;
}
std::unique_ptr<Statement> statement = this->convertStatement(*d.fStatement);
if (!statement) {
return nullptr;
}
return std::unique_ptr<Statement>(new DoStatement(d.fPosition, std::move(statement),
std::move(test)));
}
std::unique_ptr<Statement> IRGenerator::convertExpressionStatement(
const ASTExpressionStatement& s) {
std::unique_ptr<Expression> e = this->convertExpression(*s.fExpression);
if (!e) {
return nullptr;
}
this->checkValid(*e);
return std::unique_ptr<Statement>(new ExpressionStatement(std::move(e)));
}
std::unique_ptr<Statement> IRGenerator::convertReturn(const ASTReturnStatement& r) {
ASSERT(fCurrentFunction);
if (r.fExpression) {
std::unique_ptr<Expression> result = this->convertExpression(*r.fExpression);
if (!result) {
return nullptr;
}
if (fCurrentFunction->fReturnType == *fContext.fVoid_Type) {
fErrors.error(result->fPosition, "may not return a value from a void function");
} else {
result = this->coerce(std::move(result), fCurrentFunction->fReturnType);
if (!result) {
return nullptr;
}
}
return std::unique_ptr<Statement>(new ReturnStatement(std::move(result)));
} else {
if (fCurrentFunction->fReturnType != *fContext.fVoid_Type) {
fErrors.error(r.fPosition, "expected function to return '" +
fCurrentFunction->fReturnType.description() + "'");
}
return std::unique_ptr<Statement>(new ReturnStatement(r.fPosition));
}
}
std::unique_ptr<Statement> IRGenerator::convertBreak(const ASTBreakStatement& b) {
if (fLoopLevel > 0) {
return std::unique_ptr<Statement>(new BreakStatement(b.fPosition));
} else {
fErrors.error(b.fPosition, "break statement must be inside a loop");
return nullptr;
}
}
std::unique_ptr<Statement> IRGenerator::convertContinue(const ASTContinueStatement& c) {
if (fLoopLevel > 0) {
return std::unique_ptr<Statement>(new ContinueStatement(c.fPosition));
} else {
fErrors.error(c.fPosition, "continue statement must be inside a loop");
return nullptr;
}
}
std::unique_ptr<Statement> IRGenerator::convertDiscard(const ASTDiscardStatement& d) {
return std::unique_ptr<Statement>(new DiscardStatement(d.fPosition));
}
std::unique_ptr<FunctionDefinition> IRGenerator::convertFunction(const ASTFunction& f) {
const Type* returnType = this->convertType(*f.fReturnType);
if (!returnType) {
return nullptr;
}
std::vector<const Variable*> parameters;
for (const auto& param : f.fParameters) {
const Type* type = this->convertType(*param->fType);
if (!type) {
return nullptr;
}
for (int j = (int) param->fSizes.size() - 1; j >= 0; j--) {
int size = param->fSizes[j];
SkString name = type->name() + "[" + to_string(size) + "]";
Type* newType = new Type(std::move(name), Type::kArray_Kind, *type, size);
fSymbolTable->takeOwnership(newType);
type = newType;
}
SkString name = param->fName;
Position pos = param->fPosition;
Variable* var = new Variable(pos, param->fModifiers, std::move(name), *type,
Variable::kParameter_Storage);
fSymbolTable->takeOwnership(var);
parameters.push_back(var);
}
// find existing declaration
const FunctionDeclaration* decl = nullptr;
auto entry = (*fSymbolTable)[f.fName];
if (entry) {
std::vector<const FunctionDeclaration*> functions;
switch (entry->fKind) {
case Symbol::kUnresolvedFunction_Kind:
functions = ((UnresolvedFunction*) entry)->fFunctions;
break;
case Symbol::kFunctionDeclaration_Kind:
functions.push_back((FunctionDeclaration*) entry);
break;
default:
fErrors.error(f.fPosition, "symbol '" + f.fName + "' was already defined");
return nullptr;
}
for (const auto& other : functions) {
ASSERT(other->fName == f.fName);
if (parameters.size() == other->fParameters.size()) {
bool match = true;
for (size_t i = 0; i < parameters.size(); i++) {
if (parameters[i]->fType != other->fParameters[i]->fType) {
match = false;
break;
}
}
if (match) {
if (*returnType != other->fReturnType) {
FunctionDeclaration newDecl(f.fPosition, f.fName, parameters, *returnType);
fErrors.error(f.fPosition, "functions '" + newDecl.description() +
"' and '" + other->description() +
"' differ only in return type");
return nullptr;
}
decl = other;
for (size_t i = 0; i < parameters.size(); i++) {
if (parameters[i]->fModifiers != other->fParameters[i]->fModifiers) {
fErrors.error(f.fPosition, "modifiers on parameter " +
to_string((uint64_t) i + 1) +
" differ between declaration and "
"definition");
return nullptr;
}
}
if (other->fDefined) {
fErrors.error(f.fPosition, "duplicate definition of " +
other->description());
}
break;
}
}
}
}
if (!decl) {
// couldn't find an existing declaration
auto newDecl = std::unique_ptr<FunctionDeclaration>(new FunctionDeclaration(f.fPosition,
f.fName,
parameters,
*returnType));
decl = newDecl.get();
fSymbolTable->add(decl->fName, std::move(newDecl));
}
if (f.fBody) {
ASSERT(!fCurrentFunction);
fCurrentFunction = decl;
decl->fDefined = true;
std::shared_ptr<SymbolTable> old = fSymbolTable;
AutoSymbolTable table(this);
for (size_t i = 0; i < parameters.size(); i++) {
fSymbolTable->addWithoutOwnership(parameters[i]->fName, decl->fParameters[i]);
}
std::unique_ptr<Block> body = this->convertBlock(*f.fBody);
fCurrentFunction = nullptr;
if (!body) {
return nullptr;
}
return std::unique_ptr<FunctionDefinition>(new FunctionDefinition(f.fPosition, *decl,
std::move(body)));
}
return nullptr;
}
std::unique_ptr<InterfaceBlock> IRGenerator::convertInterfaceBlock(const ASTInterfaceBlock& intf) {
std::shared_ptr<SymbolTable> old = fSymbolTable;
AutoSymbolTable table(this);
std::vector<Type::Field> fields;
for (size_t i = 0; i < intf.fDeclarations.size(); i++) {
std::unique_ptr<VarDeclarations> decl = this->convertVarDeclarations(
*intf.fDeclarations[i],
Variable::kGlobal_Storage);
if (!decl) {
return nullptr;
}
for (const auto& var : decl->fVars) {
fields.push_back(Type::Field(var.fVar->fModifiers, var.fVar->fName,
&var.fVar->fType));
if (var.fValue) {
fErrors.error(decl->fPosition,
"initializers are not permitted on interface block fields");
}
if (var.fVar->fModifiers.fFlags & (Modifiers::kIn_Flag |
Modifiers::kOut_Flag |
Modifiers::kUniform_Flag |
Modifiers::kConst_Flag)) {
fErrors.error(decl->fPosition,
"interface block fields may not have storage qualifiers");
}
}
}
Type* type = new Type(intf.fPosition, intf.fInterfaceName, fields);
old->takeOwnership(type);
SkString name = intf.fValueName.size() > 0 ? intf.fValueName : intf.fInterfaceName;
Variable* var = new Variable(intf.fPosition, intf.fModifiers, name, *type,
Variable::kGlobal_Storage);
old->takeOwnership(var);
if (intf.fValueName.size()) {
old->addWithoutOwnership(intf.fValueName, var);
} else {
for (size_t i = 0; i < fields.size(); i++) {
old->add(fields[i].fName, std::unique_ptr<Field>(new Field(intf.fPosition, *var,
(int) i)));
}
}
return std::unique_ptr<InterfaceBlock>(new InterfaceBlock(intf.fPosition, *var, fSymbolTable));
}
const Type* IRGenerator::convertType(const ASTType& type) {
const Symbol* result = (*fSymbolTable)[type.fName];
if (result && result->fKind == Symbol::kType_Kind) {
return (const Type*) result;
}
fErrors.error(type.fPosition, "unknown type '" + type.fName + "'");
return nullptr;
}
std::unique_ptr<Expression> IRGenerator::convertExpression(const ASTExpression& expr) {
switch (expr.fKind) {
case ASTExpression::kIdentifier_Kind:
return this->convertIdentifier((ASTIdentifier&) expr);
case ASTExpression::kBool_Kind:
return std::unique_ptr<Expression>(new BoolLiteral(fContext, expr.fPosition,
((ASTBoolLiteral&) expr).fValue));
case ASTExpression::kInt_Kind:
return std::unique_ptr<Expression>(new IntLiteral(fContext, expr.fPosition,
((ASTIntLiteral&) expr).fValue));
case ASTExpression::kFloat_Kind:
return std::unique_ptr<Expression>(new FloatLiteral(fContext, expr.fPosition,
((ASTFloatLiteral&) expr).fValue));
case ASTExpression::kBinary_Kind:
return this->convertBinaryExpression((ASTBinaryExpression&) expr);
case ASTExpression::kPrefix_Kind:
return this->convertPrefixExpression((ASTPrefixExpression&) expr);
case ASTExpression::kSuffix_Kind:
return this->convertSuffixExpression((ASTSuffixExpression&) expr);
case ASTExpression::kTernary_Kind:
return this->convertTernaryExpression((ASTTernaryExpression&) expr);
default:
ABORT("unsupported expression type: %d\n", expr.fKind);
}
}
std::unique_ptr<Expression> IRGenerator::convertIdentifier(const ASTIdentifier& identifier) {
const Symbol* result = (*fSymbolTable)[identifier.fText];
if (!result) {
fErrors.error(identifier.fPosition, "unknown identifier '" + identifier.fText + "'");
return nullptr;
}
switch (result->fKind) {
case Symbol::kFunctionDeclaration_Kind: {
std::vector<const FunctionDeclaration*> f = {
(const FunctionDeclaration*) result
};
return std::unique_ptr<FunctionReference>(new FunctionReference(fContext,
identifier.fPosition,
f));
}
case Symbol::kUnresolvedFunction_Kind: {
const UnresolvedFunction* f = (const UnresolvedFunction*) result;
return std::unique_ptr<FunctionReference>(new FunctionReference(fContext,
identifier.fPosition,
f->fFunctions));
}
case Symbol::kVariable_Kind: {
const Variable* var = (const Variable*) result;
if (var->fModifiers.fLayout.fBuiltin == SK_FRAGCOORD_BUILTIN) {
fInputs.fFlipY = true;
if (fSettings->fFlipY &&
(!fSettings->fCaps ||
!fSettings->fCaps->fragCoordConventionsExtensionString())) {
fInputs.fRTHeight = true;
}
}
// default to kRead_RefKind; this will be corrected later if the variable is written to
return std::unique_ptr<VariableReference>(new VariableReference(
identifier.fPosition,
*var,
VariableReference::kRead_RefKind));
}
case Symbol::kField_Kind: {
const Field* field = (const Field*) result;
VariableReference* base = new VariableReference(identifier.fPosition, field->fOwner,
VariableReference::kRead_RefKind);
return std::unique_ptr<Expression>(new FieldAccess(
std::unique_ptr<Expression>(base),
field->fFieldIndex,
FieldAccess::kAnonymousInterfaceBlock_OwnerKind));
}
case Symbol::kType_Kind: {
const Type* t = (const Type*) result;
return std::unique_ptr<TypeReference>(new TypeReference(fContext, identifier.fPosition,
*t));
}
default:
ABORT("unsupported symbol type %d\n", result->fKind);
}
}
std::unique_ptr<Expression> IRGenerator::coerce(std::unique_ptr<Expression> expr,
const Type& type) {
if (!expr) {
return nullptr;
}
if (expr->fType == type) {
return expr;
}
this->checkValid(*expr);
if (expr->fType == *fContext.fInvalid_Type) {
return nullptr;
}
if (!expr->fType.canCoerceTo(type)) {
fErrors.error(expr->fPosition, "expected '" + type.description() + "', but found '" +
expr->fType.description() + "'");
return nullptr;
}
if (type.kind() == Type::kScalar_Kind) {
std::vector<std::unique_ptr<Expression>> args;
args.push_back(std::move(expr));
ASTIdentifier id(Position(), type.description());
std::unique_ptr<Expression> ctor = this->convertIdentifier(id);
ASSERT(ctor);
return this->call(Position(), std::move(ctor), std::move(args));
}
std::vector<std::unique_ptr<Expression>> args;
args.push_back(std::move(expr));
return std::unique_ptr<Expression>(new Constructor(Position(), type, std::move(args)));
}
static bool is_matrix_multiply(const Type& left, const Type& right) {
if (left.kind() == Type::kMatrix_Kind) {
return right.kind() == Type::kMatrix_Kind || right.kind() == Type::kVector_Kind;
}
return left.kind() == Type::kVector_Kind && right.kind() == Type::kMatrix_Kind;
}
/**
* Determines the operand and result types of a binary expression. Returns true if the expression is
* legal, false otherwise. If false, the values of the out parameters are undefined.
*/
static bool determine_binary_type(const Context& context,
Token::Kind op,
const Type& left,
const Type& right,
const Type** outLeftType,
const Type** outRightType,
const Type** outResultType,
bool tryFlipped) {
bool isLogical;
bool validMatrixOrVectorOp;
switch (op) {
case Token::EQ:
*outLeftType = &left;
*outRightType = &left;
*outResultType = &left;
return right.canCoerceTo(left);
case Token::EQEQ: // fall through
case Token::NEQ:
isLogical = true;
validMatrixOrVectorOp = true;
break;
case Token::LT: // fall through
case Token::GT: // fall through
case Token::LTEQ: // fall through
case Token::GTEQ:
isLogical = true;
validMatrixOrVectorOp = false;
break;
case Token::LOGICALOR: // fall through
case Token::LOGICALAND: // fall through
case Token::LOGICALXOR: // fall through
case Token::LOGICALOREQ: // fall through
case Token::LOGICALANDEQ: // fall through
case Token::LOGICALXOREQ:
*outLeftType = context.fBool_Type.get();
*outRightType = context.fBool_Type.get();
*outResultType = context.fBool_Type.get();
return left.canCoerceTo(*context.fBool_Type) &&
right.canCoerceTo(*context.fBool_Type);
case Token::STAR: // fall through
case Token::STAREQ:
if (is_matrix_multiply(left, right)) {
// determine final component type
if (determine_binary_type(context, Token::STAR, left.componentType(),
right.componentType(), outLeftType, outRightType,
outResultType, false)) {
*outLeftType = &(*outResultType)->toCompound(context, left.columns(),
left.rows());;
*outRightType = &(*outResultType)->toCompound(context, right.columns(),
right.rows());;
int leftColumns = left.columns();
int leftRows = left.rows();
int rightColumns;
int rightRows;
if (right.kind() == Type::kVector_Kind) {
// matrix * vector treats the vector as a column vector, so we need to
// transpose it
rightColumns = right.rows();
rightRows = right.columns();
ASSERT(rightColumns == 1);
} else {
rightColumns = right.columns();
rightRows = right.rows();
}
if (rightColumns > 1) {
*outResultType = &(*outResultType)->toCompound(context, rightColumns,
leftRows);
} else {
// result was a column vector, transpose it back to a row
*outResultType = &(*outResultType)->toCompound(context, leftRows,
rightColumns);
}
return leftColumns == rightRows;
} else {
return false;
}
}
isLogical = false;
validMatrixOrVectorOp = true;
break;
case Token::PLUS: // fall through
case Token::PLUSEQ: // fall through
case Token::MINUS: // fall through
case Token::MINUSEQ: // fall through
case Token::SLASH: // fall through
case Token::SLASHEQ:
isLogical = false;
validMatrixOrVectorOp = true;
break;
default:
isLogical = false;
validMatrixOrVectorOp = false;
}
bool isVectorOrMatrix = left.kind() == Type::kVector_Kind || left.kind() == Type::kMatrix_Kind;
// FIXME: incorrect for shift
if (right.canCoerceTo(left) && (left.kind() == Type::kScalar_Kind ||
(isVectorOrMatrix && validMatrixOrVectorOp))) {
*outLeftType = &left;
*outRightType = &left;
if (isLogical) {
*outResultType = context.fBool_Type.get();
} else {
*outResultType = &left;
}
return true;
}
if ((left.kind() == Type::kVector_Kind || left.kind() == Type::kMatrix_Kind) &&
(right.kind() == Type::kScalar_Kind)) {
if (determine_binary_type(context, op, left.componentType(), right, outLeftType,
outRightType, outResultType, false)) {
*outLeftType = &(*outLeftType)->toCompound(context, left.columns(), left.rows());
if (!isLogical) {
*outResultType = &(*outResultType)->toCompound(context, left.columns(),
left.rows());
}
return true;
}
return false;
}
if (tryFlipped) {
return determine_binary_type(context, op, right, left, outRightType, outLeftType,
outResultType, false);
}
return false;
}
std::unique_ptr<Expression> IRGenerator::constantFold(const Expression& left,
Token::Kind op,
const Expression& right) const {
// Note that we expressly do not worry about precision and overflow here -- we use the maximum
// precision to calculate the results and hope the result makes sense. The plan is to move the
// Skia caps into SkSL, so we have access to all of them including the precisions of the various
// types, which will let us be more intelligent about this.
if (left.fKind == Expression::kBoolLiteral_Kind &&
right.fKind == Expression::kBoolLiteral_Kind) {
bool leftVal = ((BoolLiteral&) left).fValue;
bool rightVal = ((BoolLiteral&) right).fValue;
bool result;
switch (op) {
case Token::LOGICALAND: result = leftVal && rightVal; break;
case Token::LOGICALOR: result = leftVal || rightVal; break;
case Token::LOGICALXOR: result = leftVal ^ rightVal; break;
default: return nullptr;
}
return std::unique_ptr<Expression>(new BoolLiteral(fContext, left.fPosition, result));
}
#define RESULT(t, op) std::unique_ptr<Expression>(new t ## Literal(fContext, left.fPosition, \
leftVal op rightVal))
if (left.fKind == Expression::kIntLiteral_Kind && right.fKind == Expression::kIntLiteral_Kind) {
int64_t leftVal = ((IntLiteral&) left).fValue;
int64_t rightVal = ((IntLiteral&) right).fValue;
switch (op) {
case Token::PLUS: return RESULT(Int, +);
case Token::MINUS: return RESULT(Int, -);
case Token::STAR: return RESULT(Int, *);
case Token::SLASH:
if (rightVal) {
return RESULT(Int, /);
}
fErrors.error(right.fPosition, "division by zero");
return nullptr;
case Token::PERCENT:
if (rightVal) {
return RESULT(Int, %);
}
fErrors.error(right.fPosition, "division by zero");
return nullptr;
case Token::BITWISEAND: return RESULT(Int, &);
case Token::BITWISEOR: return RESULT(Int, |);
case Token::BITWISEXOR: return RESULT(Int, ^);
case Token::SHL: return RESULT(Int, <<);
case Token::SHR: return RESULT(Int, >>);
case Token::EQEQ: return RESULT(Bool, ==);
case Token::NEQ: return RESULT(Bool, !=);
case Token::GT: return RESULT(Bool, >);
case Token::GTEQ: return RESULT(Bool, >=);
case Token::LT: return RESULT(Bool, <);
case Token::LTEQ: return RESULT(Bool, <=);
default: return nullptr;
}
}
if (left.fKind == Expression::kFloatLiteral_Kind &&
right.fKind == Expression::kFloatLiteral_Kind) {
double leftVal = ((FloatLiteral&) left).fValue;
double rightVal = ((FloatLiteral&) right).fValue;
switch (op) {
case Token::PLUS: return RESULT(Float, +);
case Token::MINUS: return RESULT(Float, -);
case Token::STAR: return RESULT(Float, *);
case Token::SLASH:
if (rightVal) {
return RESULT(Float, /);
}
fErrors.error(right.fPosition, "division by zero");
return nullptr;
case Token::EQEQ: return RESULT(Bool, ==);
case Token::NEQ: return RESULT(Bool, !=);
case Token::GT: return RESULT(Bool, >);
case Token::GTEQ: return RESULT(Bool, >=);
case Token::LT: return RESULT(Bool, <);
case Token::LTEQ: return RESULT(Bool, <=);
default: return nullptr;
}
}
#undef RESULT
return nullptr;
}
std::unique_ptr<Expression> IRGenerator::convertBinaryExpression(
const ASTBinaryExpression& expression) {
std::unique_ptr<Expression> left = this->convertExpression(*expression.fLeft);
if (!left) {
return nullptr;
}
std::unique_ptr<Expression> right = this->convertExpression(*expression.fRight);
if (!right) {
return nullptr;
}
const Type* leftType;
const Type* rightType;
const Type* resultType;
if (!determine_binary_type(fContext, expression.fOperator, left->fType, right->fType, &leftType,
&rightType, &resultType,
!Token::IsAssignment(expression.fOperator))) {
fErrors.error(expression.fPosition, "type mismatch: '" +
Token::OperatorName(expression.fOperator) +
"' cannot operate on '" + left->fType.fName +
"', '" + right->fType.fName + "'");
return nullptr;
}
if (Token::IsAssignment(expression.fOperator)) {
this->markWrittenTo(*left, expression.fOperator != Token::EQ);
}
left = this->coerce(std::move(left), *leftType);
right = this->coerce(std::move(right), *rightType);
if (!left || !right) {
return nullptr;
}
std::unique_ptr<Expression> result = this->constantFold(*left.get(), expression.fOperator,
*right.get());
if (!result) {
result = std::unique_ptr<Expression>(new BinaryExpression(expression.fPosition,
std::move(left),
expression.fOperator,
std::move(right),
*resultType));
}
return result;
}
std::unique_ptr<Expression> IRGenerator::convertTernaryExpression(
const ASTTernaryExpression& expression) {
std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*expression.fTest),
*fContext.fBool_Type);
if (!test) {
return nullptr;
}
std::unique_ptr<Expression> ifTrue = this->convertExpression(*expression.fIfTrue);
if (!ifTrue) {
return nullptr;
}
std::unique_ptr<Expression> ifFalse = this->convertExpression(*expression.fIfFalse);
if (!ifFalse) {
return nullptr;
}
const Type* trueType;
const Type* falseType;
const Type* resultType;
if (!determine_binary_type(fContext, Token::EQEQ, ifTrue->fType, ifFalse->fType, &trueType,
&falseType, &resultType, true) || trueType != falseType) {
fErrors.error(expression.fPosition, "ternary operator result mismatch: '" +
ifTrue->fType.fName + "', '" +
ifFalse->fType.fName + "'");
return nullptr;
}
ifTrue = this->coerce(std::move(ifTrue), *trueType);
if (!ifTrue) {
return nullptr;
}
ifFalse = this->coerce(std::move(ifFalse), *falseType);
if (!ifFalse) {
return nullptr;
}
if (test->fKind == Expression::kBoolLiteral_Kind) {
// static boolean test, just return one of the branches
if (((BoolLiteral&) *test).fValue) {
return ifTrue;
} else {
return ifFalse;
}
}
return std::unique_ptr<Expression>(new TernaryExpression(expression.fPosition,
std::move(test),
std::move(ifTrue),
std::move(ifFalse)));
}
std::unique_ptr<Expression> IRGenerator::call(Position position,
const FunctionDeclaration& function,
std::vector<std::unique_ptr<Expression>> arguments) {
if (function.fParameters.size() != arguments.size()) {
SkString msg = "call to '" + function.fName + "' expected " +
to_string((uint64_t) function.fParameters.size()) +
" argument";
if (function.fParameters.size() != 1) {
msg += "s";
}
msg += ", but found " + to_string((uint64_t) arguments.size());
fErrors.error(position, msg);
return nullptr;
}
std::vector<const Type*> types;
const Type* returnType;
if (!function.determineFinalTypes(arguments, &types, &returnType)) {
SkString msg = "no match for " + function.fName + "(";
SkString separator;
for (size_t i = 0; i < arguments.size(); i++) {
msg += separator;
separator = ", ";
msg += arguments[i]->fType.description();
}
msg += ")";
fErrors.error(position, msg);
return nullptr;
}
for (size_t i = 0; i < arguments.size(); i++) {
arguments[i] = this->coerce(std::move(arguments[i]), *types[i]);
if (!arguments[i]) {
return nullptr;
}
if (arguments[i] && (function.fParameters[i]->fModifiers.fFlags & Modifiers::kOut_Flag)) {
this->markWrittenTo(*arguments[i], true);
}
}
return std::unique_ptr<FunctionCall>(new FunctionCall(position, *returnType, function,
std::move(arguments)));
}
/**
* Determines the cost of coercing the arguments of a function to the required types. Returns true
* if the cost could be computed, false if the call is not valid. Cost has no particular meaning
* other than "lower costs are preferred".
*/
bool IRGenerator::determineCallCost(const FunctionDeclaration& function,
const std::vector<std::unique_ptr<Expression>>& arguments,
int* outCost) {
if (function.fParameters.size() != arguments.size()) {
return false;
}
int total = 0;
std::vector<const Type*> types;
const Type* ignored;
if (!function.determineFinalTypes(arguments, &types, &ignored)) {
return false;
}
for (size_t i = 0; i < arguments.size(); i++) {
int cost;
if (arguments[i]->fType.determineCoercionCost(*types[i], &cost)) {
total += cost;
} else {
return false;
}
}
*outCost = total;
return true;
}
std::unique_ptr<Expression> IRGenerator::call(Position position,
std::unique_ptr<Expression> functionValue,
std::vector<std::unique_ptr<Expression>> arguments) {
if (functionValue->fKind == Expression::kTypeReference_Kind) {
return this->convertConstructor(position,
((TypeReference&) *functionValue).fValue,
std::move(arguments));
}
if (functionValue->fKind != Expression::kFunctionReference_Kind) {
fErrors.error(position, "'" + functionValue->description() + "' is not a function");
return nullptr;
}
FunctionReference* ref = (FunctionReference*) functionValue.get();
int bestCost = INT_MAX;
const FunctionDeclaration* best = nullptr;
if (ref->fFunctions.size() > 1) {
for (const auto& f : ref->fFunctions) {
int cost;
if (this->determineCallCost(*f, arguments, &cost) && cost < bestCost) {
bestCost = cost;
best = f;
}
}
if (best) {
return this->call(position, *best, std::move(arguments));
}
SkString msg = "no match for " + ref->fFunctions[0]->fName + "(";
SkString separator;
for (size_t i = 0; i < arguments.size(); i++) {
msg += separator;
separator = ", ";
msg += arguments[i]->fType.description();
}
msg += ")";
fErrors.error(position, msg);
return nullptr;
}
return this->call(position, *ref->fFunctions[0], std::move(arguments));
}
std::unique_ptr<Expression> IRGenerator::convertConstructor(
Position position,
const Type& type,
std::vector<std::unique_ptr<Expression>> args) {
// FIXME: add support for structs and arrays
Type::Kind kind = type.kind();
if (!type.isNumber() && kind != Type::kVector_Kind && kind != Type::kMatrix_Kind &&
kind != Type::kArray_Kind) {
fErrors.error(position, "cannot construct '" + type.description() + "'");
return nullptr;
}
if (type == *fContext.fFloat_Type && args.size() == 1 &&
args[0]->fKind == Expression::kIntLiteral_Kind) {
int64_t value = ((IntLiteral&) *args[0]).fValue;
return std::unique_ptr<Expression>(new FloatLiteral(fContext, position, (double) value));
}
if (args.size() == 1 && args[0]->fType == type) {
// argument is already the right type, just return it
return std::move(args[0]);
}
if (type.isNumber()) {
if (args.size() != 1) {
fErrors.error(position, "invalid arguments to '" + type.description() +
"' constructor, (expected exactly 1 argument, but found " +
to_string((uint64_t) args.size()) + ")");
return nullptr;
}
if (args[0]->fType == *fContext.fBool_Type) {
std::unique_ptr<IntLiteral> zero(new IntLiteral(fContext, position, 0));
std::unique_ptr<IntLiteral> one(new IntLiteral(fContext, position, 1));
return std::unique_ptr<Expression>(
new TernaryExpression(position, std::move(args[0]),
this->coerce(std::move(one), type),
this->coerce(std::move(zero),
type)));
} else if (!args[0]->fType.isNumber()) {
fErrors.error(position, "invalid argument to '" + type.description() +
"' constructor (expected a number or bool, but found '" +
args[0]->fType.description() + "')");
}
if (args[0]->fKind == Expression::kIntLiteral_Kind && (type == *fContext.fInt_Type ||
type == *fContext.fUInt_Type)) {
return std::unique_ptr<Expression>(new IntLiteral(fContext,
position,
((IntLiteral&) *args[0]).fValue,
&type));
}
} else if (kind == Type::kArray_Kind) {
const Type& base = type.componentType();
for (size_t i = 0; i < args.size(); i++) {
args[i] = this->coerce(std::move(args[i]), base);
if (!args[i]) {
return nullptr;
}
}
} else {
ASSERT(kind == Type::kVector_Kind || kind == Type::kMatrix_Kind);
int actual = 0;
for (size_t i = 0; i < args.size(); i++) {
if (args[i]->fType.kind() == Type::kVector_Kind ||
args[i]->fType.kind() == Type::kMatrix_Kind) {
if (type.componentType().isNumber() !=
args[i]->fType.componentType().isNumber()) {
fErrors.error(position, "'" + args[i]->fType.description() + "' is not a valid "
"parameter to '" + type.description() +
"' constructor");
return nullptr;
}
actual += args[i]->fType.rows() * args[i]->fType.columns();
} else if (args[i]->fType.kind() == Type::kScalar_Kind) {
actual += 1;
if (type.kind() != Type::kScalar_Kind) {
args[i] = this->coerce(std::move(args[i]), type.componentType());
if (!args[i]) {
return nullptr;
}
}
} else {
fErrors.error(position, "'" + args[i]->fType.description() + "' is not a valid "
"parameter to '" + type.description() + "' constructor");
return nullptr;
}
}
int min = type.rows() * type.columns();
int max = type.columns() > 1 ? INT_MAX : min;
if ((actual < min || actual > max) &&
!((kind == Type::kVector_Kind || kind == Type::kMatrix_Kind) && (actual == 1))) {
fErrors.error(position, "invalid arguments to '" + type.description() +
"' constructor (expected " + to_string(min) + " scalar" +
(min == 1 ? "" : "s") + ", but found " + to_string(actual) +
")");
return nullptr;
}
}
return std::unique_ptr<Expression>(new Constructor(position, std::move(type), std::move(args)));
}
std::unique_ptr<Expression> IRGenerator::convertPrefixExpression(
const ASTPrefixExpression& expression) {
std::unique_ptr<Expression> base = this->convertExpression(*expression.fOperand);
if (!base) {
return nullptr;
}
switch (expression.fOperator) {
case Token::PLUS:
if (!base->fType.isNumber() && base->fType.kind() != Type::kVector_Kind) {
fErrors.error(expression.fPosition,
"'+' cannot operate on '" + base->fType.description() + "'");
return nullptr;
}
return base;
case Token::MINUS:
if (!base->fType.isNumber() && base->fType.kind() != Type::kVector_Kind) {
fErrors.error(expression.fPosition,
"'-' cannot operate on '" + base->fType.description() + "'");
return nullptr;
}
if (base->fKind == Expression::kIntLiteral_Kind) {
return std::unique_ptr<Expression>(new IntLiteral(fContext, base->fPosition,
-((IntLiteral&) *base).fValue));
}
if (base->fKind == Expression::kFloatLiteral_Kind) {
double value = -((FloatLiteral&) *base).fValue;
return std::unique_ptr<Expression>(new FloatLiteral(fContext, base->fPosition,
value));
}
return std::unique_ptr<Expression>(new PrefixExpression(Token::MINUS, std::move(base)));
case Token::PLUSPLUS:
if (!base->fType.isNumber()) {
fErrors.error(expression.fPosition,
"'" + Token::OperatorName(expression.fOperator) +
"' cannot operate on '" + base->fType.description() + "'");
return nullptr;
}
this->markWrittenTo(*base, true);
break;
case Token::MINUSMINUS:
if (!base->fType.isNumber()) {
fErrors.error(expression.fPosition,
"'" + Token::OperatorName(expression.fOperator) +
"' cannot operate on '" + base->fType.description() + "'");
return nullptr;
}
this->markWrittenTo(*base, true);
break;
case Token::LOGICALNOT:
if (base->fType != *fContext.fBool_Type) {
fErrors.error(expression.fPosition,
"'" + Token::OperatorName(expression.fOperator) +
"' cannot operate on '" + base->fType.description() + "'");
return nullptr;
}
if (base->fKind == Expression::kBoolLiteral_Kind) {
return std::unique_ptr<Expression>(new BoolLiteral(fContext, base->fPosition,
!((BoolLiteral&) *base).fValue));
}
break;
case Token::BITWISENOT:
if (base->fType != *fContext.fInt_Type) {
fErrors.error(expression.fPosition,
"'" + Token::OperatorName(expression.fOperator) +
"' cannot operate on '" + base->fType.description() + "'");
return nullptr;
}
break;
default:
ABORT("unsupported prefix operator\n");
}
return std::unique_ptr<Expression>(new PrefixExpression(expression.fOperator,
std::move(base)));
}
std::unique_ptr<Expression> IRGenerator::convertIndex(std::unique_ptr<Expression> base,
const ASTExpression& index) {
if (base->fType.kind() != Type::kArray_Kind && base->fType.kind() != Type::kMatrix_Kind &&
base->fType.kind() != Type::kVector_Kind) {
fErrors.error(base->fPosition, "expected array, but found '" + base->fType.description() +
"'");
return nullptr;
}
std::unique_ptr<Expression> converted = this->convertExpression(index);
if (!converted) {
return nullptr;
}
if (converted->fType != *fContext.fUInt_Type) {
converted = this->coerce(std::move(converted), *fContext.fInt_Type);
if (!converted) {
return nullptr;
}
}
return std::unique_ptr<Expression>(new IndexExpression(fContext, std::move(base),
std::move(converted)));
}
std::unique_ptr<Expression> IRGenerator::convertField(std::unique_ptr<Expression> base,
const SkString& field) {
auto fields = base->fType.fields();
for (size_t i = 0; i < fields.size(); i++) {
if (fields[i].fName == field) {
return std::unique_ptr<Expression>(new FieldAccess(std::move(base), (int) i));
}
}
fErrors.error(base->fPosition, "type '" + base->fType.description() + "' does not have a "
"field named '" + field + "");
return nullptr;
}
std::unique_ptr<Expression> IRGenerator::convertSwizzle(std::unique_ptr<Expression> base,
const SkString& fields) {
if (base->fType.kind() != Type::kVector_Kind) {
fErrors.error(base->fPosition, "cannot swizzle type '" + base->fType.description() + "'");
return nullptr;
}
std::vector<int> swizzleComponents;
for (size_t i = 0; i < fields.size(); i++) {
switch (fields[i]) {
case 'x': // fall through
case 'r': // fall through
case 's':
swizzleComponents.push_back(0);
break;
case 'y': // fall through
case 'g': // fall through
case 't':
if (base->fType.columns() >= 2) {
swizzleComponents.push_back(1);
break;
}
// fall through
case 'z': // fall through
case 'b': // fall through
case 'p':
if (base->fType.columns() >= 3) {
swizzleComponents.push_back(2);
break;
}
// fall through
case 'w': // fall through
case 'a': // fall through
case 'q':
if (base->fType.columns() >= 4) {
swizzleComponents.push_back(3);
break;
}
// fall through
default:
fErrors.error(base->fPosition, SkStringPrintf("invalid swizzle component '%c'",
fields[i]));
return nullptr;
}
}
ASSERT(swizzleComponents.size() > 0);
if (swizzleComponents.size() > 4) {
fErrors.error(base->fPosition, "too many components in swizzle mask '" + fields + "'");
return nullptr;
}
return std::unique_ptr<Expression>(new Swizzle(fContext, std::move(base), swizzleComponents));
}
std::unique_ptr<Expression> IRGenerator::getCap(Position position, SkString name) {
auto found = fCapsMap.find(name);
if (found == fCapsMap.end()) {
fErrors.error(position, "unknown capability flag '" + name + "'");
return nullptr;
}
switch (found->second.fKind) {
case CapValue::kBool_Kind:
return std::unique_ptr<Expression>(new BoolLiteral(fContext, position,
(bool) found->second.fValue));
case CapValue::kInt_Kind:
return std::unique_ptr<Expression>(new IntLiteral(fContext, position,
found->second.fValue));
}
ASSERT(false);
return nullptr;
}
std::unique_ptr<Expression> IRGenerator::convertSuffixExpression(
const ASTSuffixExpression& expression) {
std::unique_ptr<Expression> base = this->convertExpression(*expression.fBase);
if (!base) {
return nullptr;
}
switch (expression.fSuffix->fKind) {
case ASTSuffix::kIndex_Kind: {
const ASTExpression* expr = ((ASTIndexSuffix&) *expression.fSuffix).fExpression.get();
if (expr) {
return this->convertIndex(std::move(base), *expr);
} else if (base->fKind == Expression::kTypeReference_Kind) {
const Type& oldType = ((TypeReference&) *base).fValue;
Type* newType = new Type(oldType.name() + "[]", Type::kArray_Kind, oldType,
-1);
fSymbolTable->takeOwnership(newType);
return std::unique_ptr<Expression>(new TypeReference(fContext, base->fPosition,
*newType));
} else {
fErrors.error(expression.fPosition, "'[]' must follow a type name");
return nullptr;
}
}
case ASTSuffix::kCall_Kind: {
auto rawArguments = &((ASTCallSuffix&) *expression.fSuffix).fArguments;
std::vector<std::unique_ptr<Expression>> arguments;
for (size_t i = 0; i < rawArguments->size(); i++) {
std::unique_ptr<Expression> converted =
this->convertExpression(*(*rawArguments)[i]);
if (!converted) {
return nullptr;
}
arguments.push_back(std::move(converted));
}
return this->call(expression.fPosition, std::move(base), std::move(arguments));
}
case ASTSuffix::kField_Kind: {
if (base->fType == *fContext.fSkCaps_Type) {
return this->getCap(expression.fPosition,
((ASTFieldSuffix&) *expression.fSuffix).fField);
}
switch (base->fType.kind()) {
case Type::kVector_Kind:
return this->convertSwizzle(std::move(base),
((ASTFieldSuffix&) *expression.fSuffix).fField);
case Type::kStruct_Kind:
return this->convertField(std::move(base),
((ASTFieldSuffix&) *expression.fSuffix).fField);
default:
fErrors.error(base->fPosition, "cannot swizzle value of type '" +
base->fType.description() + "'");
return nullptr;
}
}
case ASTSuffix::kPostIncrement_Kind:
if (!base->fType.isNumber()) {
fErrors.error(expression.fPosition,
"'++' cannot operate on '" + base->fType.description() + "'");
return nullptr;
}
this->markWrittenTo(*base, true);
return std::unique_ptr<Expression>(new PostfixExpression(std::move(base),
Token::PLUSPLUS));
case ASTSuffix::kPostDecrement_Kind:
if (!base->fType.isNumber()) {
fErrors.error(expression.fPosition,
"'--' cannot operate on '" + base->fType.description() + "'");
return nullptr;
}
this->markWrittenTo(*base, true);
return std::unique_ptr<Expression>(new PostfixExpression(std::move(base),
Token::MINUSMINUS));
default:
ABORT("unsupported suffix operator");
}
}
void IRGenerator::checkValid(const Expression& expr) {
switch (expr.fKind) {
case Expression::kFunctionReference_Kind:
fErrors.error(expr.fPosition, "expected '(' to begin function call");
break;
case Expression::kTypeReference_Kind:
fErrors.error(expr.fPosition, "expected '(' to begin constructor invocation");
break;
default:
if (expr.fType == *fContext.fInvalid_Type) {
fErrors.error(expr.fPosition, "invalid expression");
}
}
}
static bool has_duplicates(const Swizzle& swizzle) {
int bits = 0;
for (int idx : swizzle.fComponents) {
ASSERT(idx >= 0 && idx <= 3);
int bit = 1 << idx;
if (bits & bit) {
return true;
}
bits |= bit;
}
return false;
}
void IRGenerator::markWrittenTo(const Expression& expr, bool readWrite) {
switch (expr.fKind) {
case Expression::kVariableReference_Kind: {
const Variable& var = ((VariableReference&) expr).fVariable;
if (var.fModifiers.fFlags & (Modifiers::kConst_Flag | Modifiers::kUniform_Flag)) {
fErrors.error(expr.fPosition,
"cannot modify immutable variable '" + var.fName + "'");
}
((VariableReference&) expr).setRefKind(readWrite ? VariableReference::kReadWrite_RefKind
: VariableReference::kWrite_RefKind);
break;
}
case Expression::kFieldAccess_Kind:
this->markWrittenTo(*((FieldAccess&) expr).fBase, readWrite);
break;
case Expression::kSwizzle_Kind:
if (has_duplicates((Swizzle&) expr)) {
fErrors.error(expr.fPosition,
"cannot write to the same swizzle field more than once");
}
this->markWrittenTo(*((Swizzle&) expr).fBase, readWrite);
break;
case Expression::kIndex_Kind:
this->markWrittenTo(*((IndexExpression&) expr).fBase, readWrite);
break;
default:
fErrors.error(expr.fPosition, "cannot assign to '" + expr.description() + "'");
break;
}
}
}