blob: 8b69dca9d29cb8ad970f712605a0f8c4f4835b0b [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrDashingEffect.h"
#include "../GrAARectRenderer.h"
#include "GrGeometryProcessor.h"
#include "GrContext.h"
#include "GrCoordTransform.h"
#include "GrDefaultGeoProcFactory.h"
#include "GrDrawTarget.h"
#include "GrDrawTargetCaps.h"
#include "GrInvariantOutput.h"
#include "GrProcessor.h"
#include "GrStrokeInfo.h"
#include "SkGr.h"
#include "gl/GrGLGeometryProcessor.h"
#include "gl/GrGLProcessor.h"
#include "gl/GrGLSL.h"
#include "gl/builders/GrGLProgramBuilder.h"
///////////////////////////////////////////////////////////////////////////////
// Returns whether or not the gpu can fast path the dash line effect.
static bool can_fast_path_dash(const SkPoint pts[2], const GrStrokeInfo& strokeInfo,
const GrDrawTarget& target, const GrDrawState& ds,
const SkMatrix& viewMatrix) {
if (ds.getRenderTarget()->isMultisampled()) {
return false;
}
// Pts must be either horizontal or vertical in src space
if (pts[0].fX != pts[1].fX && pts[0].fY != pts[1].fY) {
return false;
}
// May be able to relax this to include skew. As of now cannot do perspective
// because of the non uniform scaling of bloating a rect
if (!viewMatrix.preservesRightAngles()) {
return false;
}
if (!strokeInfo.isDashed() || 2 != strokeInfo.dashCount()) {
return false;
}
const SkPathEffect::DashInfo& info = strokeInfo.getDashInfo();
if (0 == info.fIntervals[0] && 0 == info.fIntervals[1]) {
return false;
}
SkPaint::Cap cap = strokeInfo.getStrokeRec().getCap();
// Current we do don't handle Round or Square cap dashes
if (SkPaint::kRound_Cap == cap && info.fIntervals[0] != 0.f) {
return false;
}
return true;
}
namespace {
struct DashLineVertex {
SkPoint fPos;
SkPoint fDashPos;
};
};
static void calc_dash_scaling(SkScalar* parallelScale, SkScalar* perpScale,
const SkMatrix& viewMatrix, const SkPoint pts[2]) {
SkVector vecSrc = pts[1] - pts[0];
SkScalar magSrc = vecSrc.length();
SkScalar invSrc = magSrc ? SkScalarInvert(magSrc) : 0;
vecSrc.scale(invSrc);
SkVector vecSrcPerp;
vecSrc.rotateCW(&vecSrcPerp);
viewMatrix.mapVectors(&vecSrc, 1);
viewMatrix.mapVectors(&vecSrcPerp, 1);
// parallelScale tells how much to scale along the line parallel to the dash line
// perpScale tells how much to scale in the direction perpendicular to the dash line
*parallelScale = vecSrc.length();
*perpScale = vecSrcPerp.length();
}
// calculates the rotation needed to aligned pts to the x axis with pts[0] < pts[1]
// Stores the rotation matrix in rotMatrix, and the mapped points in ptsRot
static void align_to_x_axis(const SkPoint pts[2], SkMatrix* rotMatrix, SkPoint ptsRot[2] = NULL) {
SkVector vec = pts[1] - pts[0];
SkScalar mag = vec.length();
SkScalar inv = mag ? SkScalarInvert(mag) : 0;
vec.scale(inv);
rotMatrix->setSinCos(-vec.fY, vec.fX, pts[0].fX, pts[0].fY);
if (ptsRot) {
rotMatrix->mapPoints(ptsRot, pts, 2);
// correction for numerical issues if map doesn't make ptsRot exactly horizontal
ptsRot[1].fY = pts[0].fY;
}
}
// Assumes phase < sum of all intervals
static SkScalar calc_start_adjustment(const SkPathEffect::DashInfo& info) {
SkASSERT(info.fPhase < info.fIntervals[0] + info.fIntervals[1]);
if (info.fPhase >= info.fIntervals[0] && info.fPhase != 0) {
SkScalar srcIntervalLen = info.fIntervals[0] + info.fIntervals[1];
return srcIntervalLen - info.fPhase;
}
return 0;
}
static SkScalar calc_end_adjustment(const SkPathEffect::DashInfo& info, const SkPoint pts[2],
SkScalar phase, SkScalar* endingInt) {
if (pts[1].fX <= pts[0].fX) {
return 0;
}
SkScalar srcIntervalLen = info.fIntervals[0] + info.fIntervals[1];
SkScalar totalLen = pts[1].fX - pts[0].fX;
SkScalar temp = SkScalarDiv(totalLen, srcIntervalLen);
SkScalar numFullIntervals = SkScalarFloorToScalar(temp);
*endingInt = totalLen - numFullIntervals * srcIntervalLen + phase;
temp = SkScalarDiv(*endingInt, srcIntervalLen);
*endingInt = *endingInt - SkScalarFloorToScalar(temp) * srcIntervalLen;
if (0 == *endingInt) {
*endingInt = srcIntervalLen;
}
if (*endingInt > info.fIntervals[0]) {
if (0 == info.fIntervals[0]) {
*endingInt -= 0.01f; // make sure we capture the last zero size pnt (used if has caps)
}
return *endingInt - info.fIntervals[0];
}
return 0;
}
static void setup_dashed_rect(const SkRect& rect, DashLineVertex* verts, int idx, const SkMatrix& matrix,
SkScalar offset, SkScalar bloat, SkScalar len, SkScalar stroke) {
SkScalar startDashX = offset - bloat;
SkScalar endDashX = offset + len + bloat;
SkScalar startDashY = -stroke - bloat;
SkScalar endDashY = stroke + bloat;
verts[idx].fDashPos = SkPoint::Make(startDashX , startDashY);
verts[idx + 1].fDashPos = SkPoint::Make(startDashX, endDashY);
verts[idx + 2].fDashPos = SkPoint::Make(endDashX, endDashY);
verts[idx + 3].fDashPos = SkPoint::Make(endDashX, startDashY);
verts[idx].fPos = SkPoint::Make(rect.fLeft, rect.fTop);
verts[idx + 1].fPos = SkPoint::Make(rect.fLeft, rect.fBottom);
verts[idx + 2].fPos = SkPoint::Make(rect.fRight, rect.fBottom);
verts[idx + 3].fPos = SkPoint::Make(rect.fRight, rect.fTop);
matrix.mapPointsWithStride(&verts[idx].fPos, sizeof(DashLineVertex), 4);
}
static void setup_dashed_rect_pos(const SkRect& rect, int idx, const SkMatrix& matrix,
SkPoint* verts) {
verts[idx] = SkPoint::Make(rect.fLeft, rect.fTop);
verts[idx + 1] = SkPoint::Make(rect.fLeft, rect.fBottom);
verts[idx + 2] = SkPoint::Make(rect.fRight, rect.fBottom);
verts[idx + 3] = SkPoint::Make(rect.fRight, rect.fTop);
matrix.mapPoints(&verts[idx], 4);
}
bool GrDashingEffect::DrawDashLine(GrGpu* gpu, GrDrawTarget* target, GrDrawState* drawState,
GrColor color, const SkMatrix& viewMatrix, const SkPoint pts[2],
const GrPaint& paint, const GrStrokeInfo& strokeInfo) {
if (!can_fast_path_dash(pts, strokeInfo, *target, *drawState, viewMatrix)) {
return false;
}
const SkPathEffect::DashInfo& info = strokeInfo.getDashInfo();
SkPaint::Cap cap = strokeInfo.getStrokeRec().getCap();
SkScalar srcStrokeWidth = strokeInfo.getStrokeRec().getWidth();
// the phase should be normalized to be [0, sum of all intervals)
SkASSERT(info.fPhase >= 0 && info.fPhase < info.fIntervals[0] + info.fIntervals[1]);
SkScalar srcPhase = info.fPhase;
// Rotate the src pts so they are aligned horizontally with pts[0].fX < pts[1].fX
SkMatrix srcRotInv;
SkPoint ptsRot[2];
if (pts[0].fY != pts[1].fY || pts[0].fX > pts[1].fX) {
SkMatrix rotMatrix;
align_to_x_axis(pts, &rotMatrix, ptsRot);
if(!rotMatrix.invert(&srcRotInv)) {
SkDebugf("Failed to create invertible rotation matrix!\n");
return false;
}
} else {
srcRotInv.reset();
memcpy(ptsRot, pts, 2 * sizeof(SkPoint));
}
bool useAA = paint.isAntiAlias();
// Scale corrections of intervals and stroke from view matrix
SkScalar parallelScale;
SkScalar perpScale;
calc_dash_scaling(&parallelScale, &perpScale, viewMatrix, ptsRot);
bool hasCap = SkPaint::kButt_Cap != cap && 0 != srcStrokeWidth;
// We always want to at least stroke out half a pixel on each side in device space
// so 0.5f / perpScale gives us this min in src space
SkScalar halfSrcStroke = SkMaxScalar(srcStrokeWidth * 0.5f, 0.5f / perpScale);
SkScalar strokeAdj;
if (!hasCap) {
strokeAdj = 0.f;
} else {
strokeAdj = halfSrcStroke;
}
SkScalar startAdj = 0;
SkMatrix combinedMatrix = srcRotInv;
combinedMatrix.postConcat(viewMatrix);
bool lineDone = false;
SkRect startRect;
bool hasStartRect = false;
// If we are using AA, check to see if we are drawing a partial dash at the start. If so
// draw it separately here and adjust our start point accordingly
if (useAA) {
if (srcPhase > 0 && srcPhase < info.fIntervals[0]) {
SkPoint startPts[2];
startPts[0] = ptsRot[0];
startPts[1].fY = startPts[0].fY;
startPts[1].fX = SkMinScalar(startPts[0].fX + info.fIntervals[0] - srcPhase,
ptsRot[1].fX);
startRect.set(startPts, 2);
startRect.outset(strokeAdj, halfSrcStroke);
hasStartRect = true;
startAdj = info.fIntervals[0] + info.fIntervals[1] - srcPhase;
}
}
// adjustments for start and end of bounding rect so we only draw dash intervals
// contained in the original line segment.
startAdj += calc_start_adjustment(info);
if (startAdj != 0) {
ptsRot[0].fX += startAdj;
srcPhase = 0;
}
SkScalar endingInterval = 0;
SkScalar endAdj = calc_end_adjustment(info, ptsRot, srcPhase, &endingInterval);
ptsRot[1].fX -= endAdj;
if (ptsRot[0].fX >= ptsRot[1].fX) {
lineDone = true;
}
SkRect endRect;
bool hasEndRect = false;
// If we are using AA, check to see if we are drawing a partial dash at then end. If so
// draw it separately here and adjust our end point accordingly
if (useAA && !lineDone) {
// If we adjusted the end then we will not be drawing a partial dash at the end.
// If we didn't adjust the end point then we just need to make sure the ending
// dash isn't a full dash
if (0 == endAdj && endingInterval != info.fIntervals[0]) {
SkPoint endPts[2];
endPts[1] = ptsRot[1];
endPts[0].fY = endPts[1].fY;
endPts[0].fX = endPts[1].fX - endingInterval;
endRect.set(endPts, 2);
endRect.outset(strokeAdj, halfSrcStroke);
hasEndRect = true;
endAdj = endingInterval + info.fIntervals[1];
ptsRot[1].fX -= endAdj;
if (ptsRot[0].fX >= ptsRot[1].fX) {
lineDone = true;
}
}
}
if (startAdj != 0) {
srcPhase = 0;
}
// Change the dashing info from src space into device space
SkScalar devIntervals[2];
devIntervals[0] = info.fIntervals[0] * parallelScale;
devIntervals[1] = info.fIntervals[1] * parallelScale;
SkScalar devPhase = srcPhase * parallelScale;
SkScalar strokeWidth = srcStrokeWidth * perpScale;
if ((strokeWidth < 1.f && !useAA) || 0.f == strokeWidth) {
strokeWidth = 1.f;
}
SkScalar halfDevStroke = strokeWidth * 0.5f;
if (SkPaint::kSquare_Cap == cap && 0 != srcStrokeWidth) {
// add cap to on interveal and remove from off interval
devIntervals[0] += strokeWidth;
devIntervals[1] -= strokeWidth;
}
SkScalar startOffset = devIntervals[1] * 0.5f + devPhase;
SkScalar bloatX = useAA ? 0.5f / parallelScale : 0.f;
SkScalar bloatY = useAA ? 0.5f / perpScale : 0.f;
SkScalar devBloat = useAA ? 0.5f : 0.f;
if (devIntervals[1] <= 0.f && useAA) {
// Case when we end up drawing a solid AA rect
// Reset the start rect to draw this single solid rect
// but it requires to upload a new intervals uniform so we can mimic
// one giant dash
ptsRot[0].fX -= hasStartRect ? startAdj : 0;
ptsRot[1].fX += hasEndRect ? endAdj : 0;
startRect.set(ptsRot, 2);
startRect.outset(strokeAdj, halfSrcStroke);
hasStartRect = true;
hasEndRect = false;
lineDone = true;
SkPoint devicePts[2];
viewMatrix.mapPoints(devicePts, ptsRot, 2);
SkScalar lineLength = SkPoint::Distance(devicePts[0], devicePts[1]);
if (hasCap) {
lineLength += 2.f * halfDevStroke;
}
devIntervals[0] = lineLength;
}
// reset to device coordinates
SkMatrix invert;
if (!viewMatrix.invert(&invert)) {
SkDebugf("Failed to invert\n");
return false;
}
SkAutoTUnref<const GrGeometryProcessor> gp;
bool fullDash = devIntervals[1] > 0.f || useAA;
if (fullDash) {
SkPathEffect::DashInfo devInfo;
devInfo.fPhase = devPhase;
devInfo.fCount = 2;
devInfo.fIntervals = devIntervals;
GrPrimitiveEdgeType edgeType= useAA ? kFillAA_GrProcessorEdgeType :
kFillBW_GrProcessorEdgeType;
bool isRoundCap = SkPaint::kRound_Cap == cap;
GrDashingEffect::DashCap capType = isRoundCap ? GrDashingEffect::kRound_DashCap :
GrDashingEffect::kNonRound_DashCap;
gp.reset(GrDashingEffect::Create(color, edgeType, devInfo, strokeWidth, capType, invert));
} else {
// Set up the vertex data for the line and start/end dashes
gp.reset(GrDefaultGeoProcFactory::Create(GrDefaultGeoProcFactory::kPosition_GPType,
color,
SkMatrix::I(),
invert));
}
int totalRectCnt = 0;
totalRectCnt += !lineDone ? 1 : 0;
totalRectCnt += hasStartRect ? 1 : 0;
totalRectCnt += hasEndRect ? 1 : 0;
GrDrawTarget::AutoReleaseGeometry geo(target,
totalRectCnt * 4,
gp->getVertexStride(), 0);
if (!geo.succeeded()) {
SkDebugf("Failed to get space for vertices!\n");
return false;
}
int curVIdx = 0;
if (SkPaint::kRound_Cap == cap && 0 != srcStrokeWidth) {
// need to adjust this for round caps to correctly set the dashPos attrib on vertices
startOffset -= halfDevStroke;
}
// Draw interior part of dashed line
if (!lineDone) {
SkPoint devicePts[2];
viewMatrix.mapPoints(devicePts, ptsRot, 2);
SkScalar lineLength = SkPoint::Distance(devicePts[0], devicePts[1]);
if (hasCap) {
lineLength += 2.f * halfDevStroke;
}
SkRect bounds;
bounds.set(ptsRot[0].fX, ptsRot[0].fY, ptsRot[1].fX, ptsRot[1].fY);
bounds.outset(bloatX + strokeAdj, bloatY + halfSrcStroke);
if (fullDash) {
DashLineVertex* verts = reinterpret_cast<DashLineVertex*>(geo.vertices());
SkASSERT(gp->getVertexStride() == sizeof(DashLineVertex));
setup_dashed_rect(bounds, verts, curVIdx, combinedMatrix, startOffset, devBloat,
lineLength, halfDevStroke);
} else {
SkPoint* verts = reinterpret_cast<SkPoint*>(geo.vertices());
SkASSERT(gp->getVertexStride() == sizeof(SkPoint));
setup_dashed_rect_pos(bounds, curVIdx, combinedMatrix, verts);
}
curVIdx += 4;
}
if (hasStartRect) {
SkASSERT(useAA); // so that we know bloatX and bloatY have been set
startRect.outset(bloatX, bloatY);
if (fullDash) {
DashLineVertex* verts = reinterpret_cast<DashLineVertex*>(geo.vertices());
SkASSERT(gp->getVertexStride() == sizeof(DashLineVertex));
setup_dashed_rect(startRect, verts, curVIdx, combinedMatrix, startOffset, devBloat,
devIntervals[0], halfDevStroke);
} else {
SkPoint* verts = reinterpret_cast<SkPoint*>(geo.vertices());
SkASSERT(gp->getVertexStride() == sizeof(SkPoint));
setup_dashed_rect_pos(startRect, curVIdx, combinedMatrix, verts);
}
curVIdx += 4;
}
if (hasEndRect) {
SkASSERT(useAA); // so that we know bloatX and bloatY have been set
endRect.outset(bloatX, bloatY);
if (fullDash) {
DashLineVertex* verts = reinterpret_cast<DashLineVertex*>(geo.vertices());
SkASSERT(gp->getVertexStride() == sizeof(DashLineVertex));
setup_dashed_rect(endRect, verts, curVIdx, combinedMatrix, startOffset, devBloat,
devIntervals[0], halfDevStroke);
} else {
SkPoint* verts = reinterpret_cast<SkPoint*>(geo.vertices());
SkASSERT(gp->getVertexStride() == sizeof(SkPoint));
setup_dashed_rect_pos(endRect, curVIdx, combinedMatrix, verts);
}
}
target->setIndexSourceToBuffer(gpu->getContext()->getQuadIndexBuffer());
target->drawIndexedInstances(drawState, gp, kTriangles_GrPrimitiveType, totalRectCnt, 4, 6);
target->resetIndexSource();
return true;
}
//////////////////////////////////////////////////////////////////////////////
class GLDashingCircleEffect;
struct DashingCircleBatchTracker {
GrGPInput fInputColorType;
GrColor fColor;
bool fUsesLocalCoords;
};
/*
* This effect will draw a dotted line (defined as a dashed lined with round caps and no on
* interval). The radius of the dots is given by the strokeWidth and the spacing by the DashInfo.
* Both of the previous two parameters are in device space. This effect also requires the setting of
* a vec2 vertex attribute for the the four corners of the bounding rect. This attribute is the
* "dash position" of each vertex. In other words it is the vertex coords (in device space) if we
* transform the line to be horizontal, with the start of line at the origin then shifted to the
* right by half the off interval. The line then goes in the positive x direction.
*/
class DashingCircleEffect : public GrGeometryProcessor {
public:
typedef SkPathEffect::DashInfo DashInfo;
static GrGeometryProcessor* Create(GrColor,
GrPrimitiveEdgeType edgeType,
const DashInfo& info,
SkScalar radius,
const SkMatrix& localMatrix);
virtual ~DashingCircleEffect();
const char* name() const SK_OVERRIDE { return "DashingCircleEffect"; }
const GrAttribute* inPosition() const { return fInPosition; }
const GrAttribute* inCoord() const { return fInCoord; }
GrPrimitiveEdgeType getEdgeType() const { return fEdgeType; }
SkScalar getRadius() const { return fRadius; }
SkScalar getCenterX() const { return fCenterX; }
SkScalar getIntervalLength() const { return fIntervalLength; }
virtual void getGLProcessorKey(const GrBatchTracker&,
const GrGLCaps&,
GrProcessorKeyBuilder* b) const SK_OVERRIDE;
GrGLGeometryProcessor* createGLInstance(const GrBatchTracker&) const SK_OVERRIDE;
void initBatchTracker(GrBatchTracker* bt, const InitBT& init) const SK_OVERRIDE;
bool onCanMakeEqual(const GrBatchTracker&,
const GrGeometryProcessor&,
const GrBatchTracker&) const SK_OVERRIDE;
private:
DashingCircleEffect(GrColor, GrPrimitiveEdgeType edgeType, const DashInfo& info,
SkScalar radius, const SkMatrix& localMatrix);
bool onIsEqual(const GrGeometryProcessor& other) const SK_OVERRIDE;
void onGetInvariantOutputCoverage(GrInitInvariantOutput*) const SK_OVERRIDE;
GrPrimitiveEdgeType fEdgeType;
const GrAttribute* fInPosition;
const GrAttribute* fInCoord;
SkScalar fIntervalLength;
SkScalar fRadius;
SkScalar fCenterX;
GR_DECLARE_GEOMETRY_PROCESSOR_TEST;
typedef GrGeometryProcessor INHERITED;
};
//////////////////////////////////////////////////////////////////////////////
class GLDashingCircleEffect : public GrGLGeometryProcessor {
public:
GLDashingCircleEffect(const GrGeometryProcessor&, const GrBatchTracker&);
void emitCode(const EmitArgs&) SK_OVERRIDE;
static inline void GenKey(const GrGeometryProcessor&,
const GrBatchTracker&,
const GrGLCaps&,
GrProcessorKeyBuilder*);
virtual void setData(const GrGLProgramDataManager&,
const GrPrimitiveProcessor&,
const GrBatchTracker&) SK_OVERRIDE;
private:
UniformHandle fParamUniform;
UniformHandle fColorUniform;
GrColor fColor;
SkScalar fPrevRadius;
SkScalar fPrevCenterX;
SkScalar fPrevIntervalLength;
typedef GrGLGeometryProcessor INHERITED;
};
GLDashingCircleEffect::GLDashingCircleEffect(const GrGeometryProcessor&,
const GrBatchTracker&) {
fColor = GrColor_ILLEGAL;
fPrevRadius = SK_ScalarMin;
fPrevCenterX = SK_ScalarMin;
fPrevIntervalLength = SK_ScalarMax;
}
void GLDashingCircleEffect::emitCode(const EmitArgs& args) {
const DashingCircleEffect& dce = args.fGP.cast<DashingCircleEffect>();
const DashingCircleBatchTracker local = args.fBT.cast<DashingCircleBatchTracker>();
GrGLGPBuilder* pb = args.fPB;
const char *paramName;
// The param uniforms, xyz, refer to circle radius - 0.5, cicles center x coord, and
// the total interval length of the dash.
fParamUniform = args.fPB->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec3f_GrSLType, kDefault_GrSLPrecision,
"params", &paramName);
GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder();
GrGLVertToFrag v(kVec2f_GrSLType);
args.fPB->addVarying("Coord", &v);
vsBuilder->codeAppendf("%s = %s;", v.vsOut(), dce.inCoord()->fName);
// Setup pass through color
this->setupColorPassThrough(pb, local.fInputColorType, args.fOutputColor, NULL, &fColorUniform);
// setup coord outputs
vsBuilder->codeAppendf("%s = %s;", vsBuilder->positionCoords(), dce.inPosition()->fName);
vsBuilder->codeAppendf("%s = %s;", vsBuilder->localCoords(), dce.inPosition()->fName);
// setup uniform viewMatrix
this->addUniformViewMatrix(pb);
// setup position varying
vsBuilder->codeAppendf("%s = %s * vec3(%s, 1);", vsBuilder->glPosition(), this->uViewM(),
dce.inPosition()->fName);
// transforms all points so that we can compare them to our test circle
GrGLGPFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
fsBuilder->codeAppendf("\t\tfloat xShifted = %s.x - floor(%s.x / %s.z) * %s.z;\n",
v.fsIn(), v.fsIn(), paramName, paramName);
fsBuilder->codeAppendf("\t\tvec2 fragPosShifted = vec2(xShifted, %s.y);\n", v.fsIn());
fsBuilder->codeAppendf("\t\tvec2 center = vec2(%s.y, 0.0);\n", paramName);
fsBuilder->codeAppend("\t\tfloat dist = length(center - fragPosShifted);\n");
if (GrProcessorEdgeTypeIsAA(dce.getEdgeType())) {
fsBuilder->codeAppendf("\t\tfloat diff = dist - %s.x;\n", paramName);
fsBuilder->codeAppend("\t\tdiff = 1.0 - diff;\n");
fsBuilder->codeAppend("\t\tfloat alpha = clamp(diff, 0.0, 1.0);\n");
} else {
fsBuilder->codeAppendf("\t\tfloat alpha = 1.0;\n");
fsBuilder->codeAppendf("\t\talpha *= dist < %s.x + 0.5 ? 1.0 : 0.0;\n", paramName);
}
fsBuilder->codeAppendf("%s = vec4(alpha);", args.fOutputCoverage);
}
void GLDashingCircleEffect::setData(const GrGLProgramDataManager& pdman,
const GrPrimitiveProcessor& processor,
const GrBatchTracker& bt) {
this->setUniformViewMatrix(pdman, processor.viewMatrix());
const DashingCircleEffect& dce = processor.cast<DashingCircleEffect>();
SkScalar radius = dce.getRadius();
SkScalar centerX = dce.getCenterX();
SkScalar intervalLength = dce.getIntervalLength();
if (radius != fPrevRadius || centerX != fPrevCenterX || intervalLength != fPrevIntervalLength) {
pdman.set3f(fParamUniform, radius - 0.5f, centerX, intervalLength);
fPrevRadius = radius;
fPrevCenterX = centerX;
fPrevIntervalLength = intervalLength;
}
const DashingCircleBatchTracker& local = bt.cast<DashingCircleBatchTracker>();
if (kUniform_GrGPInput == local.fInputColorType && local.fColor != fColor) {
GrGLfloat c[4];
GrColorToRGBAFloat(local.fColor, c);
pdman.set4fv(fColorUniform, 1, c);
fColor = local.fColor;
}
}
void GLDashingCircleEffect::GenKey(const GrGeometryProcessor& processor,
const GrBatchTracker& bt,
const GrGLCaps&,
GrProcessorKeyBuilder* b) {
const DashingCircleBatchTracker& local = bt.cast<DashingCircleBatchTracker>();
const DashingCircleEffect& dce = processor.cast<DashingCircleEffect>();
b->add32(local.fUsesLocalCoords && processor.localMatrix().hasPerspective());
b->add32(dce.getEdgeType() << 16 | local.fInputColorType);
}
//////////////////////////////////////////////////////////////////////////////
GrGeometryProcessor* DashingCircleEffect::Create(GrColor color,
GrPrimitiveEdgeType edgeType,
const DashInfo& info,
SkScalar radius,
const SkMatrix& localMatrix) {
if (info.fCount != 2 || info.fIntervals[0] != 0) {
return NULL;
}
return SkNEW_ARGS(DashingCircleEffect, (color, edgeType, info, radius, localMatrix));
}
DashingCircleEffect::~DashingCircleEffect() {}
void DashingCircleEffect::onGetInvariantOutputCoverage(GrInitInvariantOutput* out) const {
out->setUnknownSingleComponent();
}
void DashingCircleEffect::getGLProcessorKey(const GrBatchTracker& bt,
const GrGLCaps& caps,
GrProcessorKeyBuilder* b) const {
GLDashingCircleEffect::GenKey(*this, bt, caps, b);
}
GrGLGeometryProcessor* DashingCircleEffect::createGLInstance(const GrBatchTracker& bt) const {
return SkNEW_ARGS(GLDashingCircleEffect, (*this, bt));
}
DashingCircleEffect::DashingCircleEffect(GrColor color,
GrPrimitiveEdgeType edgeType,
const DashInfo& info,
SkScalar radius,
const SkMatrix& localMatrix)
: INHERITED(color, SkMatrix::I(), localMatrix), fEdgeType(edgeType) {
this->initClassID<DashingCircleEffect>();
fInPosition = &this->addVertexAttrib(GrAttribute("inPosition", kVec2f_GrVertexAttribType));
fInCoord = &this->addVertexAttrib(GrAttribute("inCoord", kVec2f_GrVertexAttribType));
SkScalar onLen = info.fIntervals[0];
SkScalar offLen = info.fIntervals[1];
fIntervalLength = onLen + offLen;
fRadius = radius;
fCenterX = SkScalarHalf(offLen);
}
bool DashingCircleEffect::onIsEqual(const GrGeometryProcessor& other) const {
const DashingCircleEffect& dce = other.cast<DashingCircleEffect>();
return (fEdgeType == dce.fEdgeType &&
fIntervalLength == dce.fIntervalLength &&
fRadius == dce.fRadius &&
fCenterX == dce.fCenterX);
}
void DashingCircleEffect::initBatchTracker(GrBatchTracker* bt, const InitBT& init) const {
DashingCircleBatchTracker* local = bt->cast<DashingCircleBatchTracker>();
local->fInputColorType = GetColorInputType(&local->fColor, this->color(), init, false);
local->fUsesLocalCoords = init.fUsesLocalCoords;
}
bool DashingCircleEffect::onCanMakeEqual(const GrBatchTracker& m,
const GrGeometryProcessor& that,
const GrBatchTracker& t) const {
const DashingCircleBatchTracker& mine = m.cast<DashingCircleBatchTracker>();
const DashingCircleBatchTracker& theirs = t.cast<DashingCircleBatchTracker>();
return CanCombineLocalMatrices(*this, mine.fUsesLocalCoords,
that, theirs.fUsesLocalCoords) &&
CanCombineOutput(mine.fInputColorType, mine.fColor,
theirs.fInputColorType, theirs.fColor);
}
GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DashingCircleEffect);
GrGeometryProcessor* DashingCircleEffect::TestCreate(SkRandom* random,
GrContext*,
const GrDrawTargetCaps& caps,
GrTexture*[]) {
GrPrimitiveEdgeType edgeType = static_cast<GrPrimitiveEdgeType>(random->nextULessThan(
kGrProcessorEdgeTypeCnt));
SkScalar strokeWidth = random->nextRangeScalar(0, 100.f);
DashInfo info;
info.fCount = 2;
SkAutoTArray<SkScalar> intervals(info.fCount);
info.fIntervals = intervals.get();
info.fIntervals[0] = 0;
info.fIntervals[1] = random->nextRangeScalar(0, 10.f);
info.fPhase = random->nextRangeScalar(0, info.fIntervals[1]);
return DashingCircleEffect::Create(GrRandomColor(random),
edgeType, info, strokeWidth,
GrProcessorUnitTest::TestMatrix(random));
}
//////////////////////////////////////////////////////////////////////////////
class GLDashingLineEffect;
struct DashingLineBatchTracker {
GrGPInput fInputColorType;
GrColor fColor;
bool fUsesLocalCoords;
};
/*
* This effect will draw a dashed line. The width of the dash is given by the strokeWidth and the
* length and spacing by the DashInfo. Both of the previous two parameters are in device space.
* This effect also requires the setting of a vec2 vertex attribute for the the four corners of the
* bounding rect. This attribute is the "dash position" of each vertex. In other words it is the
* vertex coords (in device space) if we transform the line to be horizontal, with the start of
* line at the origin then shifted to the right by half the off interval. The line then goes in the
* positive x direction.
*/
class DashingLineEffect : public GrGeometryProcessor {
public:
typedef SkPathEffect::DashInfo DashInfo;
static GrGeometryProcessor* Create(GrColor,
GrPrimitiveEdgeType edgeType,
const DashInfo& info,
SkScalar strokeWidth,
const SkMatrix& localMatrix);
virtual ~DashingLineEffect();
const char* name() const SK_OVERRIDE { return "DashingEffect"; }
const GrAttribute* inPosition() const { return fInPosition; }
const GrAttribute* inCoord() const { return fInCoord; }
GrPrimitiveEdgeType getEdgeType() const { return fEdgeType; }
const SkRect& getRect() const { return fRect; }
SkScalar getIntervalLength() const { return fIntervalLength; }
virtual void getGLProcessorKey(const GrBatchTracker& bt,
const GrGLCaps& caps,
GrProcessorKeyBuilder* b) const SK_OVERRIDE;
GrGLGeometryProcessor* createGLInstance(const GrBatchTracker& bt) const SK_OVERRIDE;
void initBatchTracker(GrBatchTracker* bt, const InitBT& init) const SK_OVERRIDE;
bool onCanMakeEqual(const GrBatchTracker&,
const GrGeometryProcessor&,
const GrBatchTracker&) const SK_OVERRIDE;
private:
DashingLineEffect(GrColor, GrPrimitiveEdgeType edgeType, const DashInfo& info,
SkScalar strokeWidth, const SkMatrix& localMatrix);
bool onIsEqual(const GrGeometryProcessor& other) const SK_OVERRIDE;
void onGetInvariantOutputCoverage(GrInitInvariantOutput*) const SK_OVERRIDE;
GrPrimitiveEdgeType fEdgeType;
const GrAttribute* fInPosition;
const GrAttribute* fInCoord;
SkRect fRect;
SkScalar fIntervalLength;
GR_DECLARE_GEOMETRY_PROCESSOR_TEST;
typedef GrGeometryProcessor INHERITED;
};
//////////////////////////////////////////////////////////////////////////////
class GLDashingLineEffect : public GrGLGeometryProcessor {
public:
GLDashingLineEffect(const GrGeometryProcessor&, const GrBatchTracker&);
void emitCode(const EmitArgs&) SK_OVERRIDE;
static inline void GenKey(const GrGeometryProcessor&,
const GrBatchTracker&,
const GrGLCaps&,
GrProcessorKeyBuilder*);
virtual void setData(const GrGLProgramDataManager&,
const GrPrimitiveProcessor&,
const GrBatchTracker&) SK_OVERRIDE;
private:
GrColor fColor;
UniformHandle fRectUniform;
UniformHandle fIntervalUniform;
UniformHandle fColorUniform;
SkRect fPrevRect;
SkScalar fPrevIntervalLength;
typedef GrGLGeometryProcessor INHERITED;
};
GLDashingLineEffect::GLDashingLineEffect(const GrGeometryProcessor&,
const GrBatchTracker&) {
fColor = GrColor_ILLEGAL;
fPrevRect.fLeft = SK_ScalarNaN;
fPrevIntervalLength = SK_ScalarMax;
}
void GLDashingLineEffect::emitCode(const EmitArgs& args) {
const DashingLineEffect& de = args.fGP.cast<DashingLineEffect>();
const DashingLineBatchTracker& local = args.fBT.cast<DashingLineBatchTracker>();
GrGLGPBuilder* pb = args.fPB;
const char *rectName;
// The rect uniform's xyzw refer to (left + 0.5, top + 0.5, right - 0.5, bottom - 0.5),
// respectively.
fRectUniform = args.fPB->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec4f_GrSLType, kDefault_GrSLPrecision,
"rect",
&rectName);
const char *intervalName;
// The interval uniform's refers to the total length of the interval (on + off)
fIntervalUniform = args.fPB->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kFloat_GrSLType, kDefault_GrSLPrecision,
"interval",
&intervalName);
GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder();
GrGLVertToFrag v(kVec2f_GrSLType);
args.fPB->addVarying("Coord", &v);
vsBuilder->codeAppendf("%s = %s;", v.vsOut(), de.inCoord()->fName);
// Setup pass through color
this->setupColorPassThrough(pb, local.fInputColorType, args.fOutputColor, NULL, &fColorUniform);
// setup coord outputs
vsBuilder->codeAppendf("%s = %s;", vsBuilder->positionCoords(), de.inPosition()->fName);
vsBuilder->codeAppendf("%s = %s;", vsBuilder->localCoords(), de.inPosition()->fName);
// setup uniform viewMatrix
this->addUniformViewMatrix(pb);
// setup position varying
vsBuilder->codeAppendf("%s = %s * vec3(%s, 1);", vsBuilder->glPosition(), this->uViewM(),
de.inPosition()->fName);
// transforms all points so that we can compare them to our test rect
GrGLGPFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
fsBuilder->codeAppendf("\t\tfloat xShifted = %s.x - floor(%s.x / %s) * %s;\n",
v.fsIn(), v.fsIn(), intervalName, intervalName);
fsBuilder->codeAppendf("\t\tvec2 fragPosShifted = vec2(xShifted, %s.y);\n", v.fsIn());
if (GrProcessorEdgeTypeIsAA(de.getEdgeType())) {
// The amount of coverage removed in x and y by the edges is computed as a pair of negative
// numbers, xSub and ySub.
fsBuilder->codeAppend("\t\tfloat xSub, ySub;\n");
fsBuilder->codeAppendf("\t\txSub = min(fragPosShifted.x - %s.x, 0.0);\n", rectName);
fsBuilder->codeAppendf("\t\txSub += min(%s.z - fragPosShifted.x, 0.0);\n", rectName);
fsBuilder->codeAppendf("\t\tySub = min(fragPosShifted.y - %s.y, 0.0);\n", rectName);
fsBuilder->codeAppendf("\t\tySub += min(%s.w - fragPosShifted.y, 0.0);\n", rectName);
// Now compute coverage in x and y and multiply them to get the fraction of the pixel
// covered.
fsBuilder->codeAppendf("\t\tfloat alpha = (1.0 + max(xSub, -1.0)) * (1.0 + max(ySub, -1.0));\n");
} else {
// Assuming the bounding geometry is tight so no need to check y values
fsBuilder->codeAppendf("\t\tfloat alpha = 1.0;\n");
fsBuilder->codeAppendf("\t\talpha *= (fragPosShifted.x - %s.x) > -0.5 ? 1.0 : 0.0;\n", rectName);
fsBuilder->codeAppendf("\t\talpha *= (%s.z - fragPosShifted.x) >= -0.5 ? 1.0 : 0.0;\n", rectName);
}
fsBuilder->codeAppendf("%s = vec4(alpha);", args.fOutputCoverage);
}
void GLDashingLineEffect::setData(const GrGLProgramDataManager& pdman,
const GrPrimitiveProcessor& processor,
const GrBatchTracker& bt) {
this->setUniformViewMatrix(pdman, processor.viewMatrix());
const DashingLineEffect& de = processor.cast<DashingLineEffect>();
const SkRect& rect = de.getRect();
SkScalar intervalLength = de.getIntervalLength();
if (rect != fPrevRect || intervalLength != fPrevIntervalLength) {
pdman.set4f(fRectUniform, rect.fLeft + 0.5f, rect.fTop + 0.5f,
rect.fRight - 0.5f, rect.fBottom - 0.5f);
pdman.set1f(fIntervalUniform, intervalLength);
fPrevRect = rect;
fPrevIntervalLength = intervalLength;
}
const DashingLineBatchTracker& local = bt.cast<DashingLineBatchTracker>();
if (kUniform_GrGPInput == local.fInputColorType && local.fColor != fColor) {
GrGLfloat c[4];
GrColorToRGBAFloat(local.fColor, c);
pdman.set4fv(fColorUniform, 1, c);
fColor = local.fColor;
}
}
void GLDashingLineEffect::GenKey(const GrGeometryProcessor& processor,
const GrBatchTracker& bt,
const GrGLCaps&,
GrProcessorKeyBuilder* b) {
const DashingLineBatchTracker& local = bt.cast<DashingLineBatchTracker>();
const DashingLineEffect& de = processor.cast<DashingLineEffect>();
b->add32(local.fUsesLocalCoords && processor.localMatrix().hasPerspective());
b->add32(de.getEdgeType() << 16 | local.fInputColorType);
}
//////////////////////////////////////////////////////////////////////////////
GrGeometryProcessor* DashingLineEffect::Create(GrColor color,
GrPrimitiveEdgeType edgeType,
const DashInfo& info,
SkScalar strokeWidth,
const SkMatrix& localMatrix) {
if (info.fCount != 2) {
return NULL;
}
return SkNEW_ARGS(DashingLineEffect, (color, edgeType, info, strokeWidth, localMatrix));
}
DashingLineEffect::~DashingLineEffect() {}
void DashingLineEffect::onGetInvariantOutputCoverage(GrInitInvariantOutput* out) const {
out->setUnknownSingleComponent();
}
void DashingLineEffect::getGLProcessorKey(const GrBatchTracker& bt,
const GrGLCaps& caps,
GrProcessorKeyBuilder* b) const {
GLDashingLineEffect::GenKey(*this, bt, caps, b);
}
GrGLGeometryProcessor* DashingLineEffect::createGLInstance(const GrBatchTracker& bt) const {
return SkNEW_ARGS(GLDashingLineEffect, (*this, bt));
}
DashingLineEffect::DashingLineEffect(GrColor color,
GrPrimitiveEdgeType edgeType,
const DashInfo& info,
SkScalar strokeWidth,
const SkMatrix& localMatrix)
: INHERITED(color, SkMatrix::I(), localMatrix), fEdgeType(edgeType) {
this->initClassID<DashingLineEffect>();
fInPosition = &this->addVertexAttrib(GrAttribute("inPosition", kVec2f_GrVertexAttribType));
fInCoord = &this->addVertexAttrib(GrAttribute("inCoord", kVec2f_GrVertexAttribType));
SkScalar onLen = info.fIntervals[0];
SkScalar offLen = info.fIntervals[1];
SkScalar halfOffLen = SkScalarHalf(offLen);
SkScalar halfStroke = SkScalarHalf(strokeWidth);
fIntervalLength = onLen + offLen;
fRect.set(halfOffLen, -halfStroke, halfOffLen + onLen, halfStroke);
}
bool DashingLineEffect::onIsEqual(const GrGeometryProcessor& other) const {
const DashingLineEffect& de = other.cast<DashingLineEffect>();
return (fEdgeType == de.fEdgeType &&
fRect == de.fRect &&
fIntervalLength == de.fIntervalLength);
}
void DashingLineEffect::initBatchTracker(GrBatchTracker* bt, const InitBT& init) const {
DashingLineBatchTracker* local = bt->cast<DashingLineBatchTracker>();
local->fInputColorType = GetColorInputType(&local->fColor, this->color(), init, false);
local->fUsesLocalCoords = init.fUsesLocalCoords;
}
bool DashingLineEffect::onCanMakeEqual(const GrBatchTracker& m,
const GrGeometryProcessor& that,
const GrBatchTracker& t) const {
const DashingLineBatchTracker& mine = m.cast<DashingLineBatchTracker>();
const DashingLineBatchTracker& theirs = t.cast<DashingLineBatchTracker>();
return CanCombineLocalMatrices(*this, mine.fUsesLocalCoords,
that, theirs.fUsesLocalCoords) &&
CanCombineOutput(mine.fInputColorType, mine.fColor,
theirs.fInputColorType, theirs.fColor);
}
GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DashingLineEffect);
GrGeometryProcessor* DashingLineEffect::TestCreate(SkRandom* random,
GrContext*,
const GrDrawTargetCaps& caps,
GrTexture*[]) {
GrPrimitiveEdgeType edgeType = static_cast<GrPrimitiveEdgeType>(random->nextULessThan(
kGrProcessorEdgeTypeCnt));
SkScalar strokeWidth = random->nextRangeScalar(0, 100.f);
DashInfo info;
info.fCount = 2;
SkAutoTArray<SkScalar> intervals(info.fCount);
info.fIntervals = intervals.get();
info.fIntervals[0] = random->nextRangeScalar(0, 10.f);
info.fIntervals[1] = random->nextRangeScalar(0, 10.f);
info.fPhase = random->nextRangeScalar(0, info.fIntervals[0] + info.fIntervals[1]);
return DashingLineEffect::Create(GrRandomColor(random),
edgeType, info, strokeWidth,
GrProcessorUnitTest::TestMatrix(random));
}
//////////////////////////////////////////////////////////////////////////////
GrGeometryProcessor* GrDashingEffect::Create(GrColor color,
GrPrimitiveEdgeType edgeType,
const SkPathEffect::DashInfo& info,
SkScalar strokeWidth,
GrDashingEffect::DashCap cap,
const SkMatrix& localMatrix) {
switch (cap) {
case GrDashingEffect::kRound_DashCap:
return DashingCircleEffect::Create(color, edgeType, info,
SkScalarHalf(strokeWidth),
localMatrix);
case GrDashingEffect::kNonRound_DashCap:
return DashingLineEffect::Create(color, edgeType, info, strokeWidth, localMatrix);
default:
SkFAIL("Unexpected dashed cap.");
}
return NULL;
}