| /* |
| * Copyright 2020 Google LLC. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef GrVx_DEFINED |
| #define GrVx_DEFINED |
| |
| #include "include/core/SkTypes.h" |
| #include "include/private/SkVx.h" |
| |
| // grvx is Ganesh's addendum to skvx, Skia's SIMD library. Here we introduce functions that are |
| // approximate and/or have LSB differences from platform to platform (e.g., by using hardware FMAs |
| // when available). When a function is approximate, its error range is well documented and tested. |
| namespace grvx { |
| |
| // Allow floating point contraction. e.g., allow a*x + y to be compiled to a single FMA even though |
| // it introduces LSB differences on platforms that don't have an FMA instruction. |
| #if defined(__clang__) |
| #pragma STDC FP_CONTRACT ON |
| #endif |
| |
| // Use familiar type names and functions from SkSL and GLSL. |
| template<int N> using vec = skvx::Vec<N, float>; |
| using float2 = vec<2>; |
| using float4 = vec<4>; |
| |
| template<int N> using ivec = skvx::Vec<N, int32_t>; |
| using int2 = ivec<2>; |
| using int4 = ivec<4>; |
| |
| template<int N> using uvec = skvx::Vec<N, uint32_t>; |
| using uint2 = uvec<2>; |
| using uint4 = uvec<4>; |
| |
| static SK_ALWAYS_INLINE float dot(float2 a, float2 b) { |
| float2 ab = a*b; |
| return ab[0] + ab[1]; |
| } |
| |
| static SK_ALWAYS_INLINE float cross(float2 a, float2 b) { |
| float2 x = a*skvx::shuffle<1,0>(b); |
| return x[0] - x[1]; |
| } |
| |
| // Returns f*m + a. The actual implementation may or may not be fused, depending on hardware |
| // support. We call this method "fast_madd" to draw attention to the fact that the operation may |
| // give different results on different platforms. |
| template<int N> SK_ALWAYS_INLINE vec<N> fast_madd(vec<N> f, vec<N> m, vec<N> a) { |
| #if FP_FAST_FMAF |
| return skvx::fma(f,m,a); |
| #else |
| return f*m + a; |
| #endif |
| } |
| |
| // Approximates the inverse cosine of x within 0.96 degrees using the rational polynomial: |
| // |
| // acos(x) ~= (bx^3 + ax) / (dx^4 + cx^2 + 1) + pi/2 |
| // |
| // See: https://stackoverflow.com/a/36387954 |
| // |
| // For a proof of max error, see the "grvx_approx_acos" unit test. |
| // |
| // NOTE: This function deviates immediately from pi and 0 outside -1 and 1. (The derivatives are |
| // infinite at -1 and 1). So the input must still be clamped between -1 and 1. |
| #define GRVX_APPROX_ACOS_MAX_ERROR SkDegreesToRadians(.96f) |
| template<int N> SK_ALWAYS_INLINE vec<N> approx_acos(vec<N> x) { |
| constexpr static float a = -0.939115566365855f; |
| constexpr static float b = 0.9217841528914573f; |
| constexpr static float c = -1.2845906244690837f; |
| constexpr static float d = 0.295624144969963174f; |
| constexpr static float pi_over_2 = 1.5707963267948966f; |
| vec<N> xx = x*x; |
| vec<N> numer = fast_madd<N>(b,xx,a); |
| vec<N> denom = fast_madd<N>(xx, fast_madd<N>(d,xx,c), 1); |
| return fast_madd<N>(x, numer/denom, pi_over_2); |
| } |
| |
| // Approximates the angle between vectors a and b within .96 degrees (GRVX_FAST_ACOS_MAX_ERROR). |
| // a (and b) represent "N" (Nx2/2) 2d vectors in SIMD, with the x values found in a.lo, and the |
| // y values in a.hi. |
| // |
| // Due to fp32 overflow, this method is only valid for magnitudes in the range (2^-31, 2^31) |
| // exclusive. Results are undefined if the inputs fall outside this range. |
| // |
| // NOTE: If necessary, we can extend our valid range to 2^(+/-63) by normalizing a and b separately. |
| // i.e.: "cosTheta = dot(a,b) / sqrt(dot(a,a)) / sqrt(dot(b,b))". |
| template<int Nx2> |
| SK_ALWAYS_INLINE vec<Nx2/2> approx_angle_between_vectors(vec<Nx2> a, vec<Nx2> b) { |
| auto aa=a*a, bb=b*b, ab=a*b; |
| auto cosTheta = (ab.lo + ab.hi) / skvx::sqrt((aa.lo + aa.hi) * (bb.lo + bb.hi)); |
| // Clamp cosTheta such that if it is NaN (e.g., if a or b was 0), then we return acos(1) = 0. |
| cosTheta = skvx::max(skvx::min(1, cosTheta), -1); |
| return approx_acos(cosTheta); |
| } |
| |
| // De-interleaving load of 4 vectors. |
| // |
| // WARNING: These are really only supported well on NEON. Consider restructuring your data before |
| // resorting to these methods. |
| template<typename T> |
| SK_ALWAYS_INLINE void strided_load4(const T* v, skvx::Vec<1,T>& a, skvx::Vec<1,T>& b, |
| skvx::Vec<1,T>& c, skvx::Vec<1,T>& d) { |
| a.val = v[0]; |
| b.val = v[1]; |
| c.val = v[2]; |
| d.val = v[3]; |
| } |
| template<int N, typename T> |
| SK_ALWAYS_INLINE typename std::enable_if<N >= 2, void>::type |
| strided_load4(const T* v, skvx::Vec<N,T>& a, skvx::Vec<N,T>& b, skvx::Vec<N,T>& c, |
| skvx::Vec<N,T>& d) { |
| strided_load4(v, a.lo, b.lo, c.lo, d.lo); |
| strided_load4(v + 4*(N/2), a.hi, b.hi, c.hi, d.hi); |
| } |
| #if !defined(SKNX_NO_SIMD) |
| #if defined(__ARM_NEON) |
| #define IMPL_LOAD4_TRANSPOSED(N, T, VLD) \ |
| template<> \ |
| SK_ALWAYS_INLINE void strided_load4(const T* v, skvx::Vec<N,T>& a, skvx::Vec<N,T>& b, \ |
| skvx::Vec<N,T>& c, skvx::Vec<N,T>& d) { \ |
| auto mat = VLD(v); \ |
| a = skvx::bit_pun<skvx::Vec<N,T>>(mat.val[0]); \ |
| b = skvx::bit_pun<skvx::Vec<N,T>>(mat.val[1]); \ |
| c = skvx::bit_pun<skvx::Vec<N,T>>(mat.val[2]); \ |
| d = skvx::bit_pun<skvx::Vec<N,T>>(mat.val[3]); \ |
| } |
| IMPL_LOAD4_TRANSPOSED(2, uint32_t, vld4_u32); |
| IMPL_LOAD4_TRANSPOSED(4, uint16_t, vld4_u16); |
| IMPL_LOAD4_TRANSPOSED(8, uint8_t, vld4_u8); |
| IMPL_LOAD4_TRANSPOSED(2, int32_t, vld4_s32); |
| IMPL_LOAD4_TRANSPOSED(4, int16_t, vld4_s16); |
| IMPL_LOAD4_TRANSPOSED(8, int8_t, vld4_s8); |
| IMPL_LOAD4_TRANSPOSED(2, float, vld4_f32); |
| IMPL_LOAD4_TRANSPOSED(4, uint32_t, vld4q_u32); |
| IMPL_LOAD4_TRANSPOSED(8, uint16_t, vld4q_u16); |
| IMPL_LOAD4_TRANSPOSED(16, uint8_t, vld4q_u8); |
| IMPL_LOAD4_TRANSPOSED(4, int32_t, vld4q_s32); |
| IMPL_LOAD4_TRANSPOSED(8, int16_t, vld4q_s16); |
| IMPL_LOAD4_TRANSPOSED(16, int8_t, vld4q_s8); |
| IMPL_LOAD4_TRANSPOSED(4, float, vld4q_f32); |
| #undef IMPL_LOAD4_TRANSPOSED |
| #elif defined(__SSE__) |
| template<> |
| SK_ALWAYS_INLINE void strided_load4(const float* v, float4& a, float4& b, float4& c, float4& d) { |
| using skvx::bit_pun; |
| __m128 a_ = _mm_loadu_ps(v); |
| __m128 b_ = _mm_loadu_ps(v+4); |
| __m128 c_ = _mm_loadu_ps(v+8); |
| __m128 d_ = _mm_loadu_ps(v+12); |
| _MM_TRANSPOSE4_PS(a_, b_, c_, d_); |
| a = bit_pun<float4>(a_); |
| b = bit_pun<float4>(b_); |
| c = bit_pun<float4>(c_); |
| d = bit_pun<float4>(d_); |
| } |
| #endif |
| #endif |
| |
| // De-interleaving load of 2 vectors. |
| // |
| // WARNING: These are really only supported well on NEON. Consider restructuring your data before |
| // resorting to these methods. |
| template<typename T> |
| SK_ALWAYS_INLINE void strided_load2(const T* v, skvx::Vec<1,T>& a, skvx::Vec<1,T>& b) { |
| a.val = v[0]; |
| b.val = v[1]; |
| } |
| template<int N, typename T> |
| SK_ALWAYS_INLINE typename std::enable_if<N >= 2, void>::type |
| strided_load2(const T* v, skvx::Vec<N,T>& a, skvx::Vec<N,T>& b) { |
| strided_load2(v, a.lo, b.lo); |
| strided_load2(v + 2*(N/2), a.hi, b.hi); |
| } |
| #if !defined(SKNX_NO_SIMD) |
| #if defined(__ARM_NEON) |
| #define IMPL_LOAD2_TRANSPOSED(N, T, VLD) \ |
| template<> \ |
| SK_ALWAYS_INLINE void strided_load2(const T* v, skvx::Vec<N,T>& a, skvx::Vec<N,T>& b) { \ |
| auto mat = VLD(v); \ |
| a = skvx::bit_pun<skvx::Vec<N,T>>(mat.val[0]); \ |
| b = skvx::bit_pun<skvx::Vec<N,T>>(mat.val[1]); \ |
| } |
| IMPL_LOAD2_TRANSPOSED(2, uint32_t, vld2_u32); |
| IMPL_LOAD2_TRANSPOSED(4, uint16_t, vld2_u16); |
| IMPL_LOAD2_TRANSPOSED(8, uint8_t, vld2_u8); |
| IMPL_LOAD2_TRANSPOSED(2, int32_t, vld2_s32); |
| IMPL_LOAD2_TRANSPOSED(4, int16_t, vld2_s16); |
| IMPL_LOAD2_TRANSPOSED(8, int8_t, vld2_s8); |
| IMPL_LOAD2_TRANSPOSED(2, float, vld2_f32); |
| IMPL_LOAD2_TRANSPOSED(4, uint32_t, vld2q_u32); |
| IMPL_LOAD2_TRANSPOSED(8, uint16_t, vld2q_u16); |
| IMPL_LOAD2_TRANSPOSED(16, uint8_t, vld2q_u8); |
| IMPL_LOAD2_TRANSPOSED(4, int32_t, vld2q_s32); |
| IMPL_LOAD2_TRANSPOSED(8, int16_t, vld2q_s16); |
| IMPL_LOAD2_TRANSPOSED(16, int8_t, vld2q_s8); |
| IMPL_LOAD2_TRANSPOSED(4, float, vld2q_f32); |
| #undef IMPL_LOAD2_TRANSPOSED |
| #endif |
| #endif |
| |
| #if defined(__clang__) |
| #pragma STDC FP_CONTRACT DEFAULT |
| #endif |
| |
| }; // namespace grvx |
| |
| #endif |