| |
| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| // This is a GPU-backend specific test. It relies on static intializers to work |
| |
| #include "SkTypes.h" |
| |
| #if SK_SUPPORT_GPU && SK_ALLOW_STATIC_GLOBAL_INITIALIZERS |
| |
| #include "GrAutoLocaleSetter.h" |
| #include "GrBatchTest.h" |
| #include "GrContextFactory.h" |
| #include "GrDrawingManager.h" |
| #include "GrInvariantOutput.h" |
| #include "GrPipeline.h" |
| #include "GrResourceProvider.h" |
| #include "GrTest.h" |
| #include "GrXferProcessor.h" |
| #include "SkChecksum.h" |
| #include "SkRandom.h" |
| #include "Test.h" |
| |
| #include "batches/GrDrawBatch.h" |
| |
| #include "effects/GrConfigConversionEffect.h" |
| #include "effects/GrPorterDuffXferProcessor.h" |
| #include "effects/GrXfermodeFragmentProcessor.h" |
| |
| #include "gl/GrGLGpu.h" |
| #include "glsl/GrGLSLFragmentProcessor.h" |
| #include "glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "glsl/GrGLSLProgramBuilder.h" |
| |
| /* |
| * A dummy processor which just tries to insert a massive key and verify that it can retrieve the |
| * whole thing correctly |
| */ |
| static const uint32_t kMaxKeySize = 1024; |
| |
| class GLBigKeyProcessor : public GrGLSLFragmentProcessor { |
| public: |
| GLBigKeyProcessor(const GrProcessor&) {} |
| |
| virtual void emitCode(EmitArgs& args) override { |
| // pass through |
| GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder(); |
| if (args.fInputColor) { |
| fsBuilder->codeAppendf("%s = %s;\n", args.fOutputColor, args.fInputColor); |
| } else { |
| fsBuilder->codeAppendf("%s = vec4(1.0);\n", args.fOutputColor); |
| } |
| } |
| |
| static void GenKey(const GrProcessor& processor, const GrGLSLCaps&, GrProcessorKeyBuilder* b) { |
| for (uint32_t i = 0; i < kMaxKeySize; i++) { |
| b->add32(i); |
| } |
| } |
| |
| private: |
| typedef GrGLSLFragmentProcessor INHERITED; |
| }; |
| |
| class BigKeyProcessor : public GrFragmentProcessor { |
| public: |
| static GrFragmentProcessor* Create() { |
| return new BigKeyProcessor; |
| } |
| |
| const char* name() const override { return "Big Ole Key"; } |
| |
| GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { |
| return new GLBigKeyProcessor(*this); |
| } |
| |
| private: |
| BigKeyProcessor() { |
| this->initClassID<BigKeyProcessor>(); |
| } |
| virtual void onGetGLSLProcessorKey(const GrGLSLCaps& caps, |
| GrProcessorKeyBuilder* b) const override { |
| GLBigKeyProcessor::GenKey(*this, caps, b); |
| } |
| bool onIsEqual(const GrFragmentProcessor&) const override { return true; } |
| void onComputeInvariantOutput(GrInvariantOutput* inout) const override { } |
| |
| GR_DECLARE_FRAGMENT_PROCESSOR_TEST; |
| |
| typedef GrFragmentProcessor INHERITED; |
| }; |
| |
| GR_DEFINE_FRAGMENT_PROCESSOR_TEST(BigKeyProcessor); |
| |
| const GrFragmentProcessor* BigKeyProcessor::TestCreate(GrProcessorTestData*) { |
| return BigKeyProcessor::Create(); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| class BlockInputFragmentProcessor : public GrFragmentProcessor { |
| public: |
| static GrFragmentProcessor* Create(const GrFragmentProcessor* fp) { |
| return new BlockInputFragmentProcessor(fp); |
| } |
| |
| const char* name() const override { return "Block Input"; } |
| |
| GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { return new GLFP; } |
| |
| private: |
| class GLFP : public GrGLSLFragmentProcessor { |
| public: |
| void emitCode(EmitArgs& args) override { |
| this->emitChild(0, nullptr, args); |
| } |
| |
| private: |
| typedef GrGLSLFragmentProcessor INHERITED; |
| }; |
| |
| BlockInputFragmentProcessor(const GrFragmentProcessor* child) { |
| this->initClassID<BlockInputFragmentProcessor>(); |
| this->registerChildProcessor(child); |
| } |
| |
| void onGetGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override {} |
| |
| bool onIsEqual(const GrFragmentProcessor&) const override { return true; } |
| |
| void onComputeInvariantOutput(GrInvariantOutput* inout) const override { |
| inout->setToOther(kRGBA_GrColorComponentFlags, GrColor_WHITE, |
| GrInvariantOutput::kWillNot_ReadInput); |
| this->childProcessor(0).computeInvariantOutput(inout); |
| } |
| |
| typedef GrFragmentProcessor INHERITED; |
| }; |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| /* |
| * Begin test code |
| */ |
| static const int kRenderTargetHeight = 1; |
| static const int kRenderTargetWidth = 1; |
| |
| static GrRenderTarget* random_render_target(GrTextureProvider* textureProvider, SkRandom* random, |
| const GrCaps* caps) { |
| // setup render target |
| GrTextureParams params; |
| GrSurfaceDesc texDesc; |
| texDesc.fWidth = kRenderTargetWidth; |
| texDesc.fHeight = kRenderTargetHeight; |
| texDesc.fFlags = kRenderTarget_GrSurfaceFlag; |
| texDesc.fConfig = kRGBA_8888_GrPixelConfig; |
| texDesc.fOrigin = random->nextBool() == true ? kTopLeft_GrSurfaceOrigin : |
| kBottomLeft_GrSurfaceOrigin; |
| texDesc.fSampleCnt = random->nextBool() == true ? SkTMin(4, caps->maxSampleCount()) : 0; |
| |
| GrUniqueKey key; |
| static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain(); |
| GrUniqueKey::Builder builder(&key, kDomain, 2); |
| builder[0] = texDesc.fOrigin; |
| builder[1] = texDesc.fSampleCnt; |
| builder.finish(); |
| |
| GrTexture* texture = textureProvider->findAndRefTextureByUniqueKey(key); |
| if (!texture) { |
| texture = textureProvider->createTexture(texDesc, true); |
| if (texture) { |
| textureProvider->assignUniqueKeyToTexture(key, texture); |
| } |
| } |
| return texture ? texture->asRenderTarget() : nullptr; |
| } |
| |
| static void set_random_xpf(GrPipelineBuilder* pipelineBuilder, GrProcessorTestData* d) { |
| SkAutoTUnref<const GrXPFactory> xpf(GrProcessorTestFactory<GrXPFactory>::Create(d)); |
| SkASSERT(xpf); |
| pipelineBuilder->setXPFactory(xpf.get()); |
| } |
| |
| static const GrFragmentProcessor* create_random_proc_tree(GrProcessorTestData* d, |
| int minLevels, int maxLevels) { |
| SkASSERT(1 <= minLevels); |
| SkASSERT(minLevels <= maxLevels); |
| |
| // Return a leaf node if maxLevels is 1 or if we randomly chose to terminate. |
| // If returning a leaf node, make sure that it doesn't have children (e.g. another |
| // GrComposeEffect) |
| const float terminateProbability = 0.3f; |
| if (1 == minLevels) { |
| bool terminate = (1 == maxLevels) || (d->fRandom->nextF() < terminateProbability); |
| if (terminate) { |
| const GrFragmentProcessor* fp; |
| while (true) { |
| fp = GrProcessorTestFactory<GrFragmentProcessor>::Create(d); |
| SkASSERT(fp); |
| if (0 == fp->numChildProcessors()) { |
| break; |
| } |
| fp->unref(); |
| } |
| return fp; |
| } |
| } |
| // If we didn't terminate, choose either the left or right subtree to fulfill |
| // the minLevels requirement of this tree; the other child can have as few levels as it wants. |
| // Also choose a random xfer mode that's supported by CreateFrom2Procs(). |
| if (minLevels > 1) { |
| --minLevels; |
| } |
| SkAutoTUnref<const GrFragmentProcessor> minLevelsChild(create_random_proc_tree(d, minLevels, |
| maxLevels - 1)); |
| SkAutoTUnref<const GrFragmentProcessor> otherChild(create_random_proc_tree(d, 1, |
| maxLevels - 1)); |
| SkXfermode::Mode mode = static_cast<SkXfermode::Mode>(d->fRandom->nextRangeU(0, |
| SkXfermode::kLastCoeffMode)); |
| const GrFragmentProcessor* fp; |
| if (d->fRandom->nextF() < 0.5f) { |
| fp = GrXfermodeFragmentProcessor::CreateFromTwoProcessors(minLevelsChild, otherChild, mode); |
| SkASSERT(fp); |
| } else { |
| fp = GrXfermodeFragmentProcessor::CreateFromTwoProcessors(otherChild, minLevelsChild, mode); |
| SkASSERT(fp); |
| } |
| return fp; |
| } |
| |
| static void set_random_color_coverage_stages(GrPipelineBuilder* pipelineBuilder, |
| GrProcessorTestData* d, int maxStages) { |
| // Randomly choose to either create a linear pipeline of procs or create one proc tree |
| const float procTreeProbability = 0.5f; |
| if (d->fRandom->nextF() < procTreeProbability) { |
| // A full tree with 5 levels (31 nodes) may exceed the max allowed length of the gl |
| // processor key; maxTreeLevels should be a number from 1 to 4 inclusive. |
| const int maxTreeLevels = 4; |
| SkAutoTUnref<const GrFragmentProcessor> fp( |
| create_random_proc_tree(d, 2, maxTreeLevels)); |
| pipelineBuilder->addColorFragmentProcessor(fp); |
| } else { |
| int numProcs = d->fRandom->nextULessThan(maxStages + 1); |
| int numColorProcs = d->fRandom->nextULessThan(numProcs + 1); |
| |
| for (int s = 0; s < numProcs;) { |
| SkAutoTUnref<const GrFragmentProcessor> fp( |
| GrProcessorTestFactory<GrFragmentProcessor>::Create(d)); |
| SkASSERT(fp); |
| |
| // finally add the stage to the correct pipeline in the drawstate |
| if (s < numColorProcs) { |
| pipelineBuilder->addColorFragmentProcessor(fp); |
| } else { |
| pipelineBuilder->addCoverageFragmentProcessor(fp); |
| } |
| ++s; |
| } |
| } |
| } |
| |
| static void set_random_state(GrPipelineBuilder* pipelineBuilder, SkRandom* random) { |
| int state = 0; |
| for (int i = 1; i <= GrPipelineBuilder::kLast_Flag; i <<= 1) { |
| state |= random->nextBool() * i; |
| } |
| |
| // If we don't have an MSAA rendertarget then we have to disable useHWAA |
| if ((state | GrPipelineBuilder::kHWAntialias_Flag) && |
| !pipelineBuilder->getRenderTarget()->isUnifiedMultisampled()) { |
| state &= ~GrPipelineBuilder::kHWAntialias_Flag; |
| } |
| pipelineBuilder->enableState(state); |
| } |
| |
| // right now, the only thing we seem to care about in drawState's stencil is 'doesWrite()' |
| static void set_random_stencil(GrPipelineBuilder* pipelineBuilder, SkRandom* random) { |
| GR_STATIC_CONST_SAME_STENCIL(kDoesWriteStencil, |
| kReplace_StencilOp, |
| kReplace_StencilOp, |
| kAlways_StencilFunc, |
| 0xffff, |
| 0xffff, |
| 0xffff); |
| GR_STATIC_CONST_SAME_STENCIL(kDoesNotWriteStencil, |
| kKeep_StencilOp, |
| kKeep_StencilOp, |
| kNever_StencilFunc, |
| 0xffff, |
| 0xffff, |
| 0xffff); |
| |
| if (random->nextBool()) { |
| pipelineBuilder->setStencil(kDoesWriteStencil); |
| } else { |
| pipelineBuilder->setStencil(kDoesNotWriteStencil); |
| } |
| } |
| |
| bool GrDrawingManager::ProgramUnitTest(GrContext* context, int maxStages) { |
| GrDrawingManager* drawingManager = context->drawingManager(); |
| |
| // setup dummy textures |
| GrSurfaceDesc dummyDesc; |
| dummyDesc.fFlags = kRenderTarget_GrSurfaceFlag; |
| dummyDesc.fConfig = kSkia8888_GrPixelConfig; |
| dummyDesc.fWidth = 34; |
| dummyDesc.fHeight = 18; |
| SkAutoTUnref<GrTexture> dummyTexture1( |
| context->textureProvider()->createTexture(dummyDesc, false, nullptr, 0)); |
| dummyDesc.fFlags = kNone_GrSurfaceFlags; |
| dummyDesc.fConfig = kAlpha_8_GrPixelConfig; |
| dummyDesc.fWidth = 16; |
| dummyDesc.fHeight = 22; |
| SkAutoTUnref<GrTexture> dummyTexture2( |
| context->textureProvider()->createTexture(dummyDesc, false, nullptr, 0)); |
| |
| if (!dummyTexture1 || ! dummyTexture2) { |
| SkDebugf("Could not allocate dummy textures"); |
| return false; |
| } |
| |
| GrTexture* dummyTextures[] = {dummyTexture1.get(), dummyTexture2.get()}; |
| |
| // dummy scissor state |
| GrScissorState scissor; |
| |
| // wide open clip |
| GrClip clip; |
| |
| SkRandom random; |
| static const int NUM_TESTS = 2048; |
| for (int t = 0; t < NUM_TESTS; t++) { |
| // setup random render target(can fail) |
| SkAutoTUnref<GrRenderTarget> rt(random_render_target( |
| context->textureProvider(), &random, context->caps())); |
| if (!rt.get()) { |
| SkDebugf("Could not allocate render target"); |
| return false; |
| } |
| |
| GrPipelineBuilder pipelineBuilder; |
| pipelineBuilder.setRenderTarget(rt.get()); |
| pipelineBuilder.setClip(clip); |
| |
| SkAutoTUnref<GrDrawBatch> batch(GrRandomDrawBatch(&random, context)); |
| SkASSERT(batch); |
| |
| GrProcessorTestData ptd(&random, context, context->caps(), rt, dummyTextures); |
| set_random_color_coverage_stages(&pipelineBuilder, &ptd, maxStages); |
| set_random_xpf(&pipelineBuilder, &ptd); |
| set_random_state(&pipelineBuilder, &random); |
| set_random_stencil(&pipelineBuilder, &random); |
| |
| GrTestTarget tt; |
| context->getTestTarget(&tt, rt); |
| |
| tt.target()->drawBatch(pipelineBuilder, batch); |
| } |
| // Flush everything, test passes if flush is successful(ie, no asserts are hit, no crashes) |
| drawingManager->flush(); |
| |
| // Validate that GrFPs work correctly without an input. |
| GrSurfaceDesc rtDesc; |
| rtDesc.fWidth = kRenderTargetWidth; |
| rtDesc.fHeight = kRenderTargetHeight; |
| rtDesc.fFlags = kRenderTarget_GrSurfaceFlag; |
| rtDesc.fConfig = kRGBA_8888_GrPixelConfig; |
| SkAutoTUnref<GrRenderTarget> rt( |
| context->textureProvider()->createTexture(rtDesc, false)->asRenderTarget()); |
| int fpFactoryCnt = GrProcessorTestFactory<GrFragmentProcessor>::Count(); |
| for (int i = 0; i < fpFactoryCnt; ++i) { |
| // Since FP factories internally randomize, call each 10 times. |
| for (int j = 0; j < 10; ++j) { |
| SkAutoTUnref<GrDrawBatch> batch(GrRandomDrawBatch(&random, context)); |
| SkASSERT(batch); |
| GrProcessorTestData ptd(&random, context, context->caps(), rt, dummyTextures); |
| GrPipelineBuilder builder; |
| builder.setXPFactory(GrPorterDuffXPFactory::Create(SkXfermode::kSrc_Mode))->unref(); |
| builder.setRenderTarget(rt); |
| builder.setClip(clip); |
| |
| SkAutoTUnref<const GrFragmentProcessor> fp( |
| GrProcessorTestFactory<GrFragmentProcessor>::CreateIdx(i, &ptd)); |
| SkAutoTUnref<const GrFragmentProcessor> blockFP( |
| BlockInputFragmentProcessor::Create(fp)); |
| builder.addColorFragmentProcessor(blockFP); |
| |
| GrTestTarget tt; |
| context->getTestTarget(&tt, rt); |
| |
| tt.target()->drawBatch(builder, batch); |
| drawingManager->flush(); |
| } |
| } |
| |
| return true; |
| } |
| |
| DEF_GPUTEST(GLPrograms, reporter, factory) { |
| // Set a locale that would cause shader compilation to fail because of , as decimal separator. |
| // skbug 3330 |
| #ifdef SK_BUILD_FOR_WIN |
| GrAutoLocaleSetter als("sv-SE"); |
| #else |
| GrAutoLocaleSetter als("sv_SE.UTF-8"); |
| #endif |
| |
| // We suppress prints to avoid spew |
| GrContextOptions opts; |
| opts.fSuppressPrints = true; |
| GrContextFactory debugFactory(opts); |
| for (int type = 0; type < GrContextFactory::kLastGLContextType; ++type) { |
| GrContext* context = debugFactory.get(static_cast<GrContextFactory::GLContextType>(type)); |
| if (context) { |
| GrGLGpu* gpu = static_cast<GrGLGpu*>(context->getGpu()); |
| |
| /* |
| * For the time being, we only support the test with desktop GL or for android on |
| * ARM platforms |
| * TODO When we run ES 3.00 GLSL in more places, test again |
| */ |
| int maxStages; |
| if (kGL_GrGLStandard == gpu->glStandard() || |
| kARM_GrGLVendor == gpu->ctxInfo().vendor()) { |
| maxStages = 6; |
| } else if (kTegra3_GrGLRenderer == gpu->ctxInfo().renderer() || |
| kOther_GrGLRenderer == gpu->ctxInfo().renderer()) { |
| maxStages = 1; |
| } else { |
| return; |
| } |
| #if SK_ANGLE |
| // Some long shaders run out of temporary registers in the D3D compiler on ANGLE. |
| if (type == GrContextFactory::kANGLE_GLContextType) { |
| maxStages = 2; |
| } |
| #endif |
| #if SK_COMMAND_BUFFER |
| // Some long shaders run out of temporary registers in the D3D compiler on ANGLE. |
| // TODO(hendrikw): This only needs to happen with the ANGLE comand buffer backend. |
| if (type == GrContextFactory::kCommandBuffer_GLContextType) { |
| maxStages = 2; |
| } |
| #endif |
| REPORTER_ASSERT(reporter, GrDrawingManager::ProgramUnitTest(context, maxStages)); |
| } |
| } |
| } |
| |
| #endif |