blob: 9415d5f6a7b355427dd7372e53669b4a298896a0 [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "PathOpsExtendedTest.h"
#include "SkBitmap.h"
#include "SkCanvas.h"
#include "SkMatrix.h"
#include "SkPaint.h"
#include "SkStream.h"
#ifdef SK_BUILD_FOR_MAC
#include <sys/sysctl.h>
#endif
bool gShowTestProgress = false;
bool gAllowExtendedTest = false;
static const char marker[] =
"</div>\n"
"\n"
"<script type=\"text/javascript\">\n"
"\n"
"var testDivs = [\n";
static const char* opStrs[] = {
"kDifference_PathOp",
"kIntersect_PathOp",
"kUnion_PathOp",
"kXor_PathOp",
};
static const char* opSuffixes[] = {
"d",
"i",
"u",
"x",
};
static bool gShowPath = false;
static bool gComparePaths = true;
static bool gShowOutputProgress = false;
static bool gComparePathsAssert = true;
static bool gPathStrAssert = true;
static bool gUsePhysicalFiles = false;
#if FORCE_RELEASE && !defined SK_BUILD_FOR_WIN
static bool gRunTestsInOneThread = false;
#else
static bool gRunTestsInOneThread = true;
#endif
static void showPathContour(SkPath::Iter& iter) {
uint8_t verb;
SkPoint pts[4];
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
SkDebugf("path.moveTo(%1.9g,%1.9g);\n", pts[0].fX, pts[0].fY);
continue;
case SkPath::kLine_Verb:
SkDebugf("path.lineTo(%1.9g,%1.9g);\n", pts[1].fX, pts[1].fY);
break;
case SkPath::kQuad_Verb:
SkDebugf("path.quadTo(%1.9g,%1.9g, %1.9g,%1.9g);\n",
pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY);
break;
case SkPath::kCubic_Verb:
SkDebugf("path.cubicTo(%1.9g,%1.9g, %1.9g,%1.9g, %1.9g,%1.9g);\n",
pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY, pts[3].fX, pts[3].fY);
break;
case SkPath::kClose_Verb:
SkDebugf("path.close();\n");
break;
default:
SkDEBUGFAIL("bad verb");
return;
}
}
}
void showPath(const SkPath& path, const char* str) {
SkDebugf("%s\n", !str ? "original:" : str);
showPath(path);
}
void showPath(const SkPath& path) {
SkPath::Iter iter(path, true);
#define SUPPORT_RECT_CONTOUR_DETECTION 0
#if SUPPORT_RECT_CONTOUR_DETECTION
int rectCount = path.isRectContours() ? path.rectContours(NULL, NULL) : 0;
if (rectCount > 0) {
SkTDArray<SkRect> rects;
SkTDArray<SkPath::Direction> directions;
rects.setCount(rectCount);
directions.setCount(rectCount);
path.rectContours(rects.begin(), directions.begin());
for (int contour = 0; contour < rectCount; ++contour) {
const SkRect& rect = rects[contour];
SkDebugf("path.addRect(%1.9g, %1.9g, %1.9g, %1.9g, %s);\n", rect.fLeft, rect.fTop,
rect.fRight, rect.fBottom, directions[contour] == SkPath::kCCW_Direction
? "SkPath::kCCW_Direction" : "SkPath::kCW_Direction");
}
return;
}
#endif
iter.setPath(path, true);
showPathContour(iter);
}
void showPathData(const SkPath& path) {
SkPath::Iter iter(path, true);
uint8_t verb;
SkPoint pts[4];
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
continue;
case SkPath::kLine_Verb:
SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY);
break;
case SkPath::kQuad_Verb:
SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY);
break;
case SkPath::kCubic_Verb:
SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY, pts[3].fX, pts[3].fY);
break;
case SkPath::kClose_Verb:
break;
default:
SkDEBUGFAIL("bad verb");
return;
}
}
}
void showOp(const SkPathOp op) {
switch (op) {
case kDifference_PathOp:
SkDebugf("op difference\n");
break;
case kIntersect_PathOp:
SkDebugf("op intersect\n");
break;
case kUnion_PathOp:
SkDebugf("op union\n");
break;
case kXOR_PathOp:
SkDebugf("op xor\n");
break;
default:
SkASSERT(0);
}
}
static void showPath(const SkPath& path, const char* str, const SkMatrix& scale) {
SkPath scaled;
SkMatrix inverse;
bool success = scale.invert(&inverse);
if (!success) {
SkASSERT(0);
}
path.transform(inverse, &scaled);
showPath(scaled, str);
}
const int bitWidth = 64;
const int bitHeight = 64;
static void scaleMatrix(const SkPath& one, const SkPath& two, SkMatrix& scale) {
SkRect larger = one.getBounds();
larger.join(two.getBounds());
SkScalar largerWidth = larger.width();
if (largerWidth < 4) {
largerWidth = 4;
}
SkScalar largerHeight = larger.height();
if (largerHeight < 4) {
largerHeight = 4;
}
SkScalar hScale = (bitWidth - 2) / largerWidth;
SkScalar vScale = (bitHeight - 2) / largerHeight;
scale.reset();
scale.preScale(hScale, vScale);
}
static int pathsDrawTheSame(SkBitmap& bits, const SkPath& scaledOne, const SkPath& scaledTwo,
int& error2x2) {
if (bits.width() == 0) {
bits.setConfig(SkBitmap::kARGB_8888_Config, bitWidth * 2, bitHeight);
bits.allocPixels();
}
SkCanvas canvas(bits);
canvas.drawColor(SK_ColorWHITE);
SkPaint paint;
canvas.save();
const SkRect& bounds1 = scaledOne.getBounds();
canvas.translate(-bounds1.fLeft + 1, -bounds1.fTop + 1);
canvas.drawPath(scaledOne, paint);
canvas.restore();
canvas.save();
canvas.translate(-bounds1.fLeft + 1 + bitWidth, -bounds1.fTop + 1);
canvas.drawPath(scaledTwo, paint);
canvas.restore();
int errors2 = 0;
int errors = 0;
for (int y = 0; y < bitHeight - 1; ++y) {
uint32_t* addr1 = bits.getAddr32(0, y);
uint32_t* addr2 = bits.getAddr32(0, y + 1);
uint32_t* addr3 = bits.getAddr32(bitWidth, y);
uint32_t* addr4 = bits.getAddr32(bitWidth, y + 1);
for (int x = 0; x < bitWidth - 1; ++x) {
// count 2x2 blocks
bool err = addr1[x] != addr3[x];
if (err) {
errors2 += addr1[x + 1] != addr3[x + 1]
&& addr2[x] != addr4[x] && addr2[x + 1] != addr4[x + 1];
errors++;
}
}
}
if (errors2 >= 6 || errors > 160) {
SkDebugf("%s errors2=%d errors=%d\n", __FUNCTION__, errors2, errors);
}
error2x2 = errors2;
return errors;
}
static int pathsDrawTheSame(const SkPath& one, const SkPath& two, SkBitmap& bits, SkPath& scaledOne,
SkPath& scaledTwo, int& error2x2) {
SkMatrix scale;
scaleMatrix(one, two, scale);
one.transform(scale, &scaledOne);
two.transform(scale, &scaledTwo);
return pathsDrawTheSame(bits, scaledOne, scaledTwo, error2x2);
}
bool drawAsciiPaths(const SkPath& one, const SkPath& two, bool drawPaths) {
if (!drawPaths) {
return true;
}
const SkRect& bounds1 = one.getBounds();
const SkRect& bounds2 = two.getBounds();
SkRect larger = bounds1;
larger.join(bounds2);
SkBitmap bits;
char out[256];
int bitWidth = SkScalarCeil(larger.width()) + 2;
if (bitWidth * 2 + 1 >= (int) sizeof(out)) {
return false;
}
int bitHeight = SkScalarCeil(larger.height()) + 2;
if (bitHeight >= (int) sizeof(out)) {
return false;
}
bits.setConfig(SkBitmap::kARGB_8888_Config, bitWidth * 2, bitHeight);
bits.allocPixels();
SkCanvas canvas(bits);
canvas.drawColor(SK_ColorWHITE);
SkPaint paint;
canvas.save();
canvas.translate(-bounds1.fLeft + 1, -bounds1.fTop + 1);
canvas.drawPath(one, paint);
canvas.restore();
canvas.save();
canvas.translate(-bounds1.fLeft + 1 + bitWidth, -bounds1.fTop + 1);
canvas.drawPath(two, paint);
canvas.restore();
for (int y = 0; y < bitHeight; ++y) {
uint32_t* addr1 = bits.getAddr32(0, y);
int x;
char* outPtr = out;
for (x = 0; x < bitWidth; ++x) {
*outPtr++ = addr1[x] == (uint32_t) -1 ? '_' : 'x';
}
*outPtr++ = '|';
for (x = bitWidth; x < bitWidth * 2; ++x) {
*outPtr++ = addr1[x] == (uint32_t) -1 ? '_' : 'x';
}
*outPtr++ = '\0';
SkDebugf("%s\n", out);
}
return true;
}
static void showSimplifiedPath(const SkPath& one, const SkPath& two,
const SkPath& scaledOne, const SkPath& scaledTwo) {
showPath(one, "original:");
showPath(two, "simplified:");
drawAsciiPaths(scaledOne, scaledTwo, true);
}
static int comparePaths(skiatest::Reporter* reporter, const SkPath& one, const SkPath& two,
SkBitmap& bitmap) {
int errors2x2;
SkPath scaledOne, scaledTwo;
int errors = pathsDrawTheSame(one, two, bitmap, scaledOne, scaledTwo, errors2x2);
if (errors2x2 == 0) {
return 0;
}
const int MAX_ERRORS = 9;
if (errors2x2 == MAX_ERRORS || errors2x2 == MAX_ERRORS - 1) {
showSimplifiedPath(one, two, scaledOne, scaledTwo);
}
if (errors2x2 > MAX_ERRORS && gComparePathsAssert) {
SkDebugf("%s errors=%d\n", __FUNCTION__, errors);
showSimplifiedPath(one, two, scaledOne, scaledTwo);
REPORTER_ASSERT(reporter, 0);
}
return errors2x2 > MAX_ERRORS ? errors2x2 : 0;
}
static void showPathOpPath(const SkPath& one, const SkPath& two, const SkPath& a, const SkPath& b,
const SkPath& scaledOne, const SkPath& scaledTwo, const SkPathOp shapeOp,
const SkMatrix& scale) {
SkASSERT((unsigned) shapeOp < sizeof(opStrs) / sizeof(opStrs[0]));
showPath(a, "minuend:");
SkDebugf("op: %s\n", opStrs[shapeOp]);
showPath(b, "subtrahend:");
// the region often isn't very helpful since it approximates curves with a lot of line-tos
if (0) showPath(scaledOne, "region:", scale);
showPath(two, "op result:");
drawAsciiPaths(scaledOne, scaledTwo, true);
}
static int comparePaths(skiatest::Reporter* reporter, const SkPath& one, const SkPath& scaledOne,
const SkPath& two, const SkPath& scaledTwo, SkBitmap& bitmap,
const SkPath& a, const SkPath& b, const SkPathOp shapeOp,
const SkMatrix& scale) {
int errors2x2;
int errors = pathsDrawTheSame(bitmap, scaledOne, scaledTwo, errors2x2);
if (errors2x2 == 0) {
return 0;
}
const int MAX_ERRORS = 8;
if (errors2x2 == MAX_ERRORS || errors2x2 == MAX_ERRORS - 1) {
showPathOpPath(one, two, a, b, scaledOne, scaledTwo, shapeOp, scale);
}
if (errors2x2 > MAX_ERRORS && gComparePathsAssert) {
SkDebugf("%s errors=%d\n", __FUNCTION__, errors);
showPathOpPath(one, two, a, b, scaledOne, scaledTwo, shapeOp, scale);
REPORTER_ASSERT(reporter, 0);
}
return errors2x2 > MAX_ERRORS ? errors2x2 : 0;
}
bool testSimplify(SkPath& path, bool useXor, SkPath& out, State4& state, const char* pathStr) {
SkPath::FillType fillType = useXor ? SkPath::kEvenOdd_FillType : SkPath::kWinding_FillType;
path.setFillType(fillType);
if (gShowPath) {
showPath(path);
}
Simplify(path, &out);
if (!gComparePaths) {
return true;
}
int result = comparePaths(state.reporter, path, out, state.bitmap);
if (result && gPathStrAssert) {
SkDebugf("addTest %s\n", state.filename);
char temp[8192];
sk_bzero(temp, sizeof(temp));
SkMemoryWStream stream(temp, sizeof(temp));
const char* pathPrefix = NULL;
const char* nameSuffix = NULL;
if (fillType == SkPath::kEvenOdd_FillType) {
pathPrefix = " path.setFillType(SkPath::kEvenOdd_FillType);\n";
nameSuffix = "x";
}
const char testFunction[] = "testSimplifyx(path);";
outputToStream(state, pathStr, pathPrefix, nameSuffix, testFunction, stream);
SkDebugf(temp);
REPORTER_ASSERT(state.reporter, 0);
}
return result == 0;
}
bool testSimplify(skiatest::Reporter* reporter, const SkPath& path) {
SkPath out;
Simplify(path, &out);
SkBitmap bitmap;
int result = comparePaths(reporter, path, out, bitmap);
if (result && gPathStrAssert) {
REPORTER_ASSERT(reporter, 0);
}
return result == 0;
}
bool testPathOp(skiatest::Reporter* reporter, const SkPath& a, const SkPath& b,
const SkPathOp shapeOp) {
#if FORCE_RELEASE == 0
showPathData(a);
showOp(shapeOp);
showPathData(b);
#endif
SkPath out;
Op(a, b, shapeOp, &out);
SkPath pathOut, scaledPathOut;
SkRegion rgnA, rgnB, openClip, rgnOut;
openClip.setRect(-16000, -16000, 16000, 16000);
rgnA.setPath(a, openClip);
rgnB.setPath(b, openClip);
rgnOut.op(rgnA, rgnB, (SkRegion::Op) shapeOp);
rgnOut.getBoundaryPath(&pathOut);
SkMatrix scale;
scaleMatrix(a, b, scale);
SkRegion scaledRgnA, scaledRgnB, scaledRgnOut;
SkPath scaledA, scaledB;
scaledA.addPath(a, scale);
scaledA.setFillType(a.getFillType());
scaledB.addPath(b, scale);
scaledB.setFillType(b.getFillType());
scaledRgnA.setPath(scaledA, openClip);
scaledRgnB.setPath(scaledB, openClip);
scaledRgnOut.op(scaledRgnA, scaledRgnB, (SkRegion::Op) shapeOp);
scaledRgnOut.getBoundaryPath(&scaledPathOut);
SkBitmap bitmap;
SkPath scaledOut;
scaledOut.addPath(out, scale);
scaledOut.setFillType(out.getFillType());
int result = comparePaths(reporter, pathOut, scaledPathOut, out, scaledOut, bitmap, a, b,
shapeOp, scale);
if (result && gPathStrAssert) {
REPORTER_ASSERT(reporter, 0);
}
return result == 0;
}
const int maxThreadsAllocated = 64;
static int maxThreads = 1;
static int threadIndex;
State4 threadState[maxThreadsAllocated];
static int testNumber;
static const char* testName;
static bool debugThreads = false;
State4* State4::queue = NULL;
#if HARD_CODE_PTHREAD
pthread_mutex_t State4::addQueue = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t State4::checkQueue = PTHREAD_COND_INITIALIZER;
#else
SK_DECLARE_STATIC_MUTEX(gQueueMutex);
#endif
State4::State4() {
bitmap.setConfig(SkBitmap::kARGB_8888_Config, 150 * 2, 100);
bitmap.allocPixels();
}
void createThread(State4* statePtr, ThreadFunction testFun) {
#if HARD_CODE_PTHREAD
SkDEBUGCODE(int threadError =) pthread_create(&statePtr->threadID, NULL, testFun,
(void*) statePtr);
SkASSERT(!threadError);
#else
statePtr->thread = new SkThread(testFun, (void*) statePtr);
statePtr->thread->start();
#endif
}
int dispatchTest4(ThreadFunction testFun, int a, int b, int c, int d) {
int testsRun = 0;
State4* statePtr;
if (!gRunTestsInOneThread) {
#if HARD_CODE_PTHREAD
pthread_mutex_lock(&State4::addQueue);
#else
SkAutoMutexAcquire aq(&gQueueMutex);
#endif
if (threadIndex < maxThreads) {
statePtr = &threadState[threadIndex];
statePtr->testsRun = 0;
statePtr->a = a;
statePtr->b = b;
statePtr->c = c;
statePtr->d = d;
statePtr->done = false;
statePtr->index = threadIndex;
statePtr->last = false;
if (debugThreads) SkDebugf("%s %d create done=%d last=%d\n", __FUNCTION__,
statePtr->index, statePtr->done, statePtr->last);
#if HARD_CODE_PTHREAD
pthread_cond_init(&statePtr->initialized, NULL);
#else
// statePtr->thread contains fData which points to SkThread_PThreadData which
// contains PThreadEvent fStarted, all of which is initialized by createThread below
#endif
++threadIndex;
createThread(statePtr, testFun);
} else {
while (!State4::queue) {
if (debugThreads) SkDebugf("%s checkQueue\n", __FUNCTION__);
#if HARD_CODE_PTHREAD
pthread_cond_wait(&State4::checkQueue, &State4::addQueue);
#else
// incomplete
#endif
}
statePtr = State4::queue;
testsRun += statePtr->testsRun;
statePtr->testsRun = 0;
statePtr->a = a;
statePtr->b = b;
statePtr->c = c;
statePtr->d = d;
statePtr->done = false;
State4::queue = NULL;
for (int index = 0; index < maxThreads; ++index) {
if (threadState[index].done) {
State4::queue = &threadState[index];
}
}
if (debugThreads) SkDebugf("%s %d init done=%d last=%d queued=%d\n", __FUNCTION__,
statePtr->index, statePtr->done, statePtr->last,
State4::queue ? State4::queue->index : -1);
#if HARD_CODE_PTHREAD
pthread_cond_signal(&statePtr->initialized);
#else
// incomplete
#endif
}
#if HARD_CODE_PTHREAD
pthread_mutex_unlock(&State4::addQueue);
#endif
} else {
statePtr = &threadState[0];
testsRun += statePtr->testsRun;
statePtr->testsRun = 0;
statePtr->a = a;
statePtr->b = b;
statePtr->c = c;
statePtr->d = d;
statePtr->done = false;
statePtr->index = threadIndex;
statePtr->last = false;
(*testFun)(statePtr);
}
return testsRun;
}
void initializeTests(skiatest::Reporter* reporter, const char* test, size_t testNameSize) {
testName = test;
if (!gRunTestsInOneThread) {
int threads = -1;
#ifdef SK_BUILD_FOR_MAC
size_t size = sizeof(threads);
sysctlbyname("hw.logicalcpu_max", &threads, &size, NULL, 0);
#endif
if (threads > 0) {
maxThreads = threads;
} else {
maxThreads = 8;
}
}
SkFILEStream inFile("../../experimental/Intersection/op.htm");
if (inFile.isValid()) {
SkTDArray<char> inData;
inData.setCount(inFile.getLength());
size_t inLen = inData.count();
inFile.read(inData.begin(), inLen);
inFile.setPath(NULL);
char* insert = strstr(inData.begin(), marker);
if (insert) {
insert += sizeof(marker) - 1;
const char* numLoc = insert + 4 /* indent spaces */ + testNameSize - 1;
testNumber = atoi(numLoc) + 1;
}
}
const char* filename = "debugXX.txt";
for (int index = 0; index < maxThreads; ++index) {
State4* statePtr = &threadState[index];
statePtr->reporter = reporter;
strcpy(statePtr->filename, filename);
size_t len = strlen(filename);
SkASSERT(statePtr->filename[len - 6] == 'X');
SkASSERT(statePtr->filename[len - 5] == 'X');
statePtr->filename[len - 6] = '0' + index / 10;
statePtr->filename[len - 5] = '0' + index % 10;
}
threadIndex = 0;
}
void outputProgress(const State4& state, const char* pathStr, SkPath::FillType pathFillType) {
if (gRunTestsInOneThread && gShowOutputProgress) {
if (pathFillType == SkPath::kEvenOdd_FillType) {
SkDebugf(" path.setFillType(SkPath::kEvenOdd_FillType);\n", pathStr);
}
SkDebugf("%s\n", pathStr);
}
const char testFunction[] = "testSimplifyx(path);";
const char* pathPrefix = NULL;
const char* nameSuffix = NULL;
if (pathFillType == SkPath::kEvenOdd_FillType) {
pathPrefix = " path.setFillType(SkPath::kEvenOdd_FillType);\n";
nameSuffix = "x";
}
if (gUsePhysicalFiles) {
SkFILEWStream outFile(state.filename);
if (!outFile.isValid()) {
SkASSERT(0);
return;
}
outputToStream(state, pathStr, pathPrefix, nameSuffix, testFunction, outFile);
return;
}
state.ramStream.reset();
outputToStream(state, pathStr, pathPrefix, nameSuffix, testFunction, state.ramStream);
}
void outputProgress(const State4& state, const char* pathStr, SkPathOp op) {
SkString testFunc("testPathOp(path, pathB, ");
testFunc += opStrs[op];
testFunc += ");";
const char* testFunction = testFunc.c_str();
if (gRunTestsInOneThread && gShowOutputProgress) {
SkDebugf("%s\n", pathStr);
SkDebugf(" %s\n", testFunction);
}
const char* nameSuffix = opSuffixes[op];
if (gUsePhysicalFiles) {
SkFILEWStream outFile(state.filename);
if (!outFile.isValid()) {
SkASSERT(0);
return;
}
outputToStream(state, pathStr, NULL, nameSuffix, testFunction, outFile);
return;
}
state.ramStream.reset();
outputToStream(state, pathStr, NULL, nameSuffix, testFunction, state.ramStream);
}
static void writeTestName(const char* nameSuffix, SkWStream& outFile) {
outFile.writeText(testName);
outFile.writeDecAsText(testNumber);
if (nameSuffix) {
outFile.writeText(nameSuffix);
}
}
void outputToStream(const State4& state, const char* pathStr, const char* pathPrefix,
const char* nameSuffix,
const char* testFunction, SkWStream& outFile) {
outFile.writeText("<div id=\"");
writeTestName(nameSuffix, outFile);
outFile.writeText("\">\n");
if (pathPrefix) {
outFile.writeText(pathPrefix);
}
outFile.writeText(pathStr);
outFile.writeText("</div>\n\n");
outFile.writeText(marker);
outFile.writeText(" ");
writeTestName(nameSuffix, outFile);
outFile.writeText(",\n\n\n");
outFile.writeText("static void ");
writeTestName(nameSuffix, outFile);
outFile.writeText("() {\n SkPath path");
if (!pathPrefix) {
outFile.writeText(", pathB");
}
outFile.writeText(";\n");
if (pathPrefix) {
outFile.writeText(pathPrefix);
}
outFile.writeText(pathStr);
outFile.writeText(" ");
outFile.writeText(testFunction);
outFile.writeText("\n}\n\n");
outFile.writeText("static void (*firstTest)() = ");
writeTestName(nameSuffix, outFile);
outFile.writeText(";\n\n");
outFile.writeText("static struct {\n");
outFile.writeText(" void (*fun)();\n");
outFile.writeText(" const char* str;\n");
outFile.writeText("} tests[] = {\n");
outFile.writeText(" TEST(");
writeTestName(nameSuffix, outFile);
outFile.writeText("),\n");
outFile.flush();
}
bool runNextTestSet(State4& state) {
if (gRunTestsInOneThread) {
return false;
}
#if HARD_CODE_PTHREAD
pthread_mutex_lock(&State4::addQueue);
#else
SkAutoMutexAcquire aq(&gQueueMutex);
#endif
state.done = true;
State4::queue = &state;
if (debugThreads) SkDebugf("%s %d checkQueue done=%d last=%d\n", __FUNCTION__, state.index,
state.done, state.last);
#if HARD_CODE_PTHREAD
pthread_cond_signal(&State4::checkQueue);
#else
// incomplete
#endif
while (state.done && !state.last) {
if (debugThreads) SkDebugf("%s %d done=%d last=%d\n", __FUNCTION__, state.index, state.done, state.last);
#if HARD_CODE_PTHREAD
pthread_cond_wait(&state.initialized, &State4::addQueue);
#else
// incomplete
#endif
}
#if HARD_CODE_PTHREAD
pthread_mutex_unlock(&State4::addQueue);
#endif
return !state.last;
}
int waitForCompletion() {
int testsRun = 0;
if (!gRunTestsInOneThread) {
#if HARD_CODE_PTHREAD
pthread_mutex_lock(&State4::addQueue);
#else
SkAutoMutexAcquire aq(gQueueMutex);
#endif
int runningThreads = threadIndex;
int index;
while (runningThreads > 0) {
while (!State4::queue) {
if (debugThreads) SkDebugf("%s checkQueue\n", __FUNCTION__);
#if HARD_CODE_PTHREAD
pthread_cond_wait(&State4::checkQueue, &State4::addQueue);
#else
// ioncomplete
#endif
}
while (State4::queue) {
--runningThreads;
#if DEBUG_SHOW_TEST_PROGRESS
SkDebugf("•");
#endif
State4::queue->last = true;
State4* next = NULL;
for (index = 0; index < maxThreads; ++index) {
State4& test = threadState[index];
if (test.done && !test.last) {
next = &test;
}
}
if (debugThreads) SkDebugf("%s %d next=%d deQueue\n", __FUNCTION__,
State4::queue->index, next ? next->index : -1);
#if HARD_CODE_PTHREAD
pthread_cond_signal(&State4::queue->initialized);
#else
// incomplete
#endif
State4::queue = next;
}
}
#if HARD_CODE_PTHREAD
pthread_mutex_unlock(&State4::addQueue);
#endif
for (index = 0; index < maxThreads; ++index) {
#if HARD_CODE_PTHREAD
pthread_join(threadState[index].threadID, NULL);
#else
threadState[index].thread->join();
delete threadState[index].thread;
#endif
testsRun += threadState[index].testsRun;
}
#if DEBUG_SHOW_TEST_PROGRESS
SkDebugf("\n");
#endif
}
#ifdef SK_DEBUG
gDebugMaxWindSum = SK_MaxS32;
gDebugMaxWindValue = SK_MaxS32;
#endif
return testsRun;
}
void RunTestSet(skiatest::Reporter* reporter, TestDesc tests[], size_t count,
void (*firstTest)(skiatest::Reporter* ),
void (*stopTest)(skiatest::Reporter* ), bool reverse) {
size_t index;
if (firstTest) {
index = count - 1;
while (index > 0 && tests[index].fun != firstTest) {
--index;
}
#if FORCE_RELEASE == 0
SkDebugf("<div id=\"%s\">\n", tests[index].str);
SkDebugf(" %s [%s]\n", __FUNCTION__, tests[index].str);
#endif
(*tests[index].fun)(reporter);
}
index = reverse ? count - 1 : 0;
size_t last = reverse ? 0 : count - 1;
do {
if (tests[index].fun != firstTest) {
#if FORCE_RELEASE == 0
SkDebugf("<div id=\"%s\">\n", tests[index].str);
SkDebugf(" %s [%s]\n", __FUNCTION__, tests[index].str);
#endif
(*tests[index].fun)(reporter);
}
if (tests[index].fun == stopTest) {
SkDebugf("lastTest\n");
}
if (index == last) {
break;
}
index += reverse ? -1 : 1;
} while (true);
}