blob: f05f80565d3e8408aa0d022b8c8b2c88c422bae7 [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBenchLogger.h"
#include "BenchTimer.h"
#include "PictureBenchmark.h"
#include "SkCanvas.h"
#include "SkPicture.h"
#include "SkString.h"
#include "picture_utils.h"
namespace sk_tools {
PictureBenchmark::PictureBenchmark()
: fRepeats(1)
, fLogger(NULL)
, fRenderer(NULL)
, fTimerResult(TimerData::kAvg_Result)
, fTimerTypes(0)
, fTimeIndividualTiles(false)
, fPurgeDecodedTex(false)
{}
PictureBenchmark::~PictureBenchmark() {
SkSafeUnref(fRenderer);
}
void PictureBenchmark::setTimersToShow(bool wall,
bool truncatedWall,
bool cpu,
bool truncatedCpu,
bool gpu) {
fTimerTypes = 0;
fTimerTypes |= wall ? TimerData::kWall_Flag : 0;
fTimerTypes |= truncatedWall ? TimerData::kTruncatedWall_Flag : 0;
fTimerTypes |= cpu ? TimerData::kCpu_Flag : 0;
fTimerTypes |= truncatedCpu ? TimerData::kTruncatedCpu_Flag : 0;
fTimerTypes |= gpu ? TimerData::kGpu_Flag : 0;
}
BenchTimer* PictureBenchmark::setupTimer(bool useGLTimer) {
#if SK_SUPPORT_GPU
if (useGLTimer && fRenderer != NULL && fRenderer->isUsingGpuDevice()) {
return SkNEW_ARGS(BenchTimer, (fRenderer->getGLContext()));
}
#endif
return SkNEW_ARGS(BenchTimer, (NULL));
}
void PictureBenchmark::logProgress(const char msg[]) {
if (fLogger != NULL) {
fLogger->logProgress(msg);
}
}
PictureRenderer* PictureBenchmark::setRenderer(sk_tools::PictureRenderer* renderer) {
SkRefCnt_SafeAssign(fRenderer, renderer);
return renderer;
}
void PictureBenchmark::run(SkPicture* pict) {
SkASSERT(pict);
if (NULL == pict) {
return;
}
SkASSERT(fRenderer != NULL);
if (NULL == fRenderer) {
return;
}
fRenderer->init(pict);
// We throw this away to remove first time effects (such as paging in this program)
fRenderer->setup();
fRenderer->render(NULL);
fRenderer->resetState(true); // flush, swapBuffers and Finish
if (fPurgeDecodedTex) {
fRenderer->purgeTextures();
}
bool usingGpu = false;
#if SK_SUPPORT_GPU
usingGpu = fRenderer->isUsingGpuDevice();
#endif
uint32_t timerTypes = fTimerTypes;
if (!usingGpu) {
timerTypes &= ~TimerData::kGpu_Flag;
}
SkString timeFormat;
if (TimerData::kPerIter_Result == fTimerResult) {
timeFormat = fRenderer->getPerIterTimeFormat();
} else {
timeFormat = fRenderer->getNormalTimeFormat();
}
static const int kNumInnerLoops = 5;
int numOuterLoops = 1;
int numInnerLoops = fRepeats;
if (TimerData::kPerIter_Result == fTimerResult && fRepeats > 1) {
// interpret this flag combination to mean: generate 'fRepeats'
// numbers by averaging each rendering 'kNumInnerLoops' times
numOuterLoops = fRepeats;
numInnerLoops = kNumInnerLoops;
}
if (fTimeIndividualTiles) {
TiledPictureRenderer* tiledRenderer = fRenderer->getTiledRenderer();
SkASSERT(tiledRenderer && tiledRenderer->supportsTimingIndividualTiles());
if (NULL == tiledRenderer || !tiledRenderer->supportsTimingIndividualTiles()) {
return;
}
int xTiles, yTiles;
if (!tiledRenderer->tileDimensions(xTiles, yTiles)) {
return;
}
// Insert a newline so that each tile is reported on its own line (separate from the line
// that describes the skp being run).
this->logProgress("\n");
int x, y;
while (tiledRenderer->nextTile(x, y)) {
// There are two timers, which will behave slightly differently:
// 1) longRunningTimer, along with perTileTimerData, will time how long it takes to draw
// one tile fRepeats times, and take the average. As such, it will not respect the
// logPerIter or printMin options, since it does not know the time per iteration. It
// will also be unable to call flush() for each tile.
// The goal of this timer is to make up for a system timer that is not precise enough to
// measure the small amount of time it takes to draw one tile once.
//
// 2) perTileTimer, along with perTileTimerData, will record each run separately, and
// then take the average. As such, it supports logPerIter and printMin options.
//
// Although "legal", having two gpu timers running at the same time
// seems to cause problems (i.e., INVALID_OPERATIONs) on several
// platforms. To work around this, we disable the gpu timer on the
// long running timer.
SkAutoTDelete<BenchTimer> longRunningTimer(this->setupTimer());
TimerData longRunningTimerData(numOuterLoops);
for (int outer = 0; outer < numOuterLoops; ++outer) {
SkAutoTDelete<BenchTimer> perTileTimer(this->setupTimer(false));
TimerData perTileTimerData(numInnerLoops);
longRunningTimer->start();
for (int inner = 0; inner < numInnerLoops; ++inner) {
perTileTimer->start();
tiledRenderer->drawCurrentTile();
perTileTimer->truncatedEnd();
tiledRenderer->resetState(false); // flush & swapBuffers, but don't Finish
perTileTimer->end();
SkAssertResult(perTileTimerData.appendTimes(perTileTimer.get()));
if (fPurgeDecodedTex) {
fRenderer->purgeTextures();
}
}
longRunningTimer->truncatedEnd();
tiledRenderer->resetState(true); // flush, swapBuffers and Finish
longRunningTimer->end();
SkAssertResult(longRunningTimerData.appendTimes(longRunningTimer.get()));
}
SkString configName = tiledRenderer->getConfigName();
configName.appendf(": tile [%i,%i] out of [%i,%i]", x, y, xTiles, yTiles);
// TODO(borenet): Turn off per-iteration tile time reporting for now.
// Avoiding logging the time for every iteration for each tile cuts
// down on data file size by a significant amount. Re-enable this once
// we're loading the bench data directly into a data store and are no
// longer generating SVG graphs.
#if 0
SkString result = perTileTimerData.getResult(timeFormat.c_str(), fTimerResult,
configName.c_str(), timerTypes);
result.append("\n");
this->logProgress(result.c_str());
#endif
if (fPurgeDecodedTex) {
configName.append(" <withPurging>");
}
configName.append(" <averaged>");
SkString longRunningResult = longRunningTimerData.getResult(
tiledRenderer->getNormalTimeFormat().c_str(),
TimerData::kAvg_Result,
configName.c_str(), timerTypes, numInnerLoops);
longRunningResult.append("\n");
this->logProgress(longRunningResult.c_str());
}
} else {
SkAutoTDelete<BenchTimer> longRunningTimer(this->setupTimer());
TimerData longRunningTimerData(numOuterLoops);
for (int outer = 0; outer < numOuterLoops; ++outer) {
SkAutoTDelete<BenchTimer> perRunTimer(this->setupTimer(false));
TimerData perRunTimerData(numInnerLoops);
longRunningTimer->start();
for (int inner = 0; inner < numInnerLoops; ++inner) {
fRenderer->setup();
perRunTimer->start();
fRenderer->render(NULL);
perRunTimer->truncatedEnd();
fRenderer->resetState(false); // flush & swapBuffers, but don't Finish
perRunTimer->end();
SkAssertResult(perRunTimerData.appendTimes(perRunTimer.get()));
if (fPurgeDecodedTex) {
fRenderer->purgeTextures();
}
}
longRunningTimer->truncatedEnd();
fRenderer->resetState(true); // flush, swapBuffers and Finish
longRunningTimer->end();
SkAssertResult(longRunningTimerData.appendTimes(longRunningTimer.get()));
}
SkString configName = fRenderer->getConfigName();
if (fPurgeDecodedTex) {
configName.append(" <withPurging>");
}
// Beware - since the per-run-timer doesn't ever include a glFinish it can
// report a lower time then the long-running-timer
#if 0
SkString result = perRunTimerData.getResult(timeFormat.c_str(),
fTimerResult,
configName.c_str(),
timerTypes);
result.append("\n");
this->logProgress(result.c_str());
#else
SkString result = longRunningTimerData.getResult(timeFormat.c_str(),
fTimerResult,
configName.c_str(),
timerTypes,
numInnerLoops);
result.append("\n");
this->logProgress(result.c_str());
#endif
}
fRenderer->end();
}
}