blob: ff4851080b872644459222c9558626ae1e4bb9d7 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrLatticeOp.h"
#include "GrDefaultGeoProcFactory.h"
#include "GrDrawOpTest.h"
#include "GrMeshDrawOp.h"
#include "GrOpFlushState.h"
#include "GrResourceProvider.h"
#include "GrSimpleMeshDrawOpHelper.h"
#include "SkBitmap.h"
#include "SkLatticeIter.h"
#include "SkMatrixPriv.h"
#include "SkPointPriv.h"
#include "SkRect.h"
#include "glsl/GrGLSLColorSpaceXformHelper.h"
#include "glsl/GrGLSLGeometryProcessor.h"
#include "glsl/GrGLSLVarying.h"
namespace {
class LatticeGP : public GrGeometryProcessor {
public:
struct Vertex {
SkPoint fPosition;
SkPoint fTextureCoords;
SkRect fTextureDomain;
GrColor fColor;
};
static sk_sp<GrGeometryProcessor> Make(const GrTextureProxy* proxy,
sk_sp<GrColorSpaceXform> csxf,
GrSamplerState::Filter filter) {
return sk_sp<GrGeometryProcessor>(new LatticeGP(proxy, std::move(csxf), filter));
}
const char* name() const override { return "LatticeGP"; }
void getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const override {
b->add32(GrColorSpaceXform::XformKey(fColorSpaceXform.get()));
}
GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps& caps) const override {
class GLSLProcessor : public GrGLSLGeometryProcessor {
public:
void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& proc,
FPCoordTransformIter&& transformIter) override {
const auto& latticeGP = proc.cast<LatticeGP>();
this->setTransformDataHelper(SkMatrix::I(), pdman, &transformIter);
fColorSpaceXformHelper.setData(pdman, latticeGP.fColorSpaceXform.get());
}
private:
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
using Interpolation = GrGLSLVaryingHandler::Interpolation;
const auto& latticeGP = args.fGP.cast<LatticeGP>();
fColorSpaceXformHelper.emitCode(args.fUniformHandler,
latticeGP.fColorSpaceXform.get());
args.fVaryingHandler->emitAttributes(latticeGP);
this->writeOutputPosition(args.fVertBuilder, gpArgs, latticeGP.fInPosition.name());
this->emitTransforms(args.fVertBuilder,
args.fVaryingHandler,
args.fUniformHandler,
latticeGP.fInTextureCoords.asShaderVar(),
args.fFPCoordTransformHandler);
args.fFragBuilder->codeAppend("float2 textureCoords;");
args.fVaryingHandler->addPassThroughAttribute(latticeGP.fInTextureCoords,
"textureCoords");
args.fFragBuilder->codeAppend("float4 textureDomain;");
args.fVaryingHandler->addPassThroughAttribute(
latticeGP.fInTextureDomain, "textureDomain", Interpolation::kCanBeFlat);
args.fVaryingHandler->addPassThroughAttribute(latticeGP.fInColor,
args.fOutputColor,
Interpolation::kCanBeFlat);
args.fFragBuilder->codeAppendf("%s = ", args.fOutputColor);
args.fFragBuilder->appendTextureLookupAndModulate(
args.fOutputColor,
args.fTexSamplers[0],
"clamp(textureCoords, textureDomain.xy, textureDomain.zw)",
kFloat2_GrSLType,
&fColorSpaceXformHelper);
args.fFragBuilder->codeAppend(";");
args.fFragBuilder->codeAppendf("%s = half4(1);", args.fOutputCoverage);
}
GrGLSLColorSpaceXformHelper fColorSpaceXformHelper;
};
return new GLSLProcessor;
}
private:
LatticeGP(const GrTextureProxy* proxy, sk_sp<GrColorSpaceXform> csxf,
GrSamplerState::Filter filter)
: INHERITED(kLatticeGP_ClassID), fColorSpaceXform(std::move(csxf)) {
fSampler.reset(proxy->textureType(), proxy->config(), filter);
this->setTextureSamplerCnt(1);
fInPosition = {"position", kFloat2_GrVertexAttribType, kFloat2_GrSLType};
fInTextureCoords = {"textureCoords", kFloat2_GrVertexAttribType, kFloat2_GrSLType};
fInTextureDomain = {"textureDomain", kFloat4_GrVertexAttribType, kFloat4_GrSLType};
fInColor = {"color", kUByte4_norm_GrVertexAttribType, kHalf4_GrSLType};
this->setVertexAttributes(&fInPosition, 4);
}
const TextureSampler& onTextureSampler(int) const override { return fSampler; }
Attribute fInPosition;
Attribute fInTextureCoords;
Attribute fInTextureDomain;
Attribute fInColor;
sk_sp<GrColorSpaceXform> fColorSpaceXform;
TextureSampler fSampler;
typedef GrGeometryProcessor INHERITED;
};
class NonAALatticeOp final : public GrMeshDrawOp {
private:
using Helper = GrSimpleMeshDrawOpHelper;
public:
DEFINE_OP_CLASS_ID
static const int kVertsPerRect = 4;
static const int kIndicesPerRect = 6;
static std::unique_ptr<GrDrawOp> Make(GrContext* context,
GrPaint&& paint,
const SkMatrix& viewMatrix,
sk_sp<GrTextureProxy> proxy,
sk_sp<GrColorSpaceXform> colorSpaceXForm,
GrSamplerState::Filter filter,
std::unique_ptr<SkLatticeIter> iter,
const SkRect& dst) {
SkASSERT(proxy);
return Helper::FactoryHelper<NonAALatticeOp>(context, std::move(paint), viewMatrix,
std::move(proxy),
std::move(colorSpaceXForm), filter,
std::move(iter), dst);
}
NonAALatticeOp(Helper::MakeArgs& helperArgs, const SkPMColor4f& color,
const SkMatrix& viewMatrix, sk_sp<GrTextureProxy> proxy,
sk_sp<GrColorSpaceXform> colorSpaceXform, GrSamplerState::Filter filter,
std::unique_ptr<SkLatticeIter> iter, const SkRect& dst)
: INHERITED(ClassID())
, fHelper(helperArgs, GrAAType::kNone)
, fProxy(std::move(proxy))
, fColorSpaceXform(std::move(colorSpaceXform))
, fFilter(filter) {
Patch& patch = fPatches.push_back();
patch.fViewMatrix = viewMatrix;
patch.fColor = color;
patch.fIter = std::move(iter);
patch.fDst = dst;
// setup bounds
this->setTransformedBounds(patch.fDst, viewMatrix, HasAABloat::kNo, IsZeroArea::kNo);
}
const char* name() const override { return "NonAALatticeOp"; }
void visitProxies(const VisitProxyFunc& func, VisitorType) const override {
func(fProxy.get());
fHelper.visitProxies(func);
}
#ifdef SK_DEBUG
SkString dumpInfo() const override {
SkString str;
for (int i = 0; i < fPatches.count(); ++i) {
str.appendf("%d: Color: 0x%08x Dst [L: %.2f, T: %.2f, R: %.2f, B: %.2f]\n", i,
fPatches[i].fColor.toBytes_RGBA(), fPatches[i].fDst.fLeft,
fPatches[i].fDst.fTop, fPatches[i].fDst.fRight, fPatches[i].fDst.fBottom);
}
str += fHelper.dumpInfo();
str += INHERITED::dumpInfo();
return str;
}
#endif
FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); }
RequiresDstTexture finalize(const GrCaps& caps, const GrAppliedClip* clip) override {
auto opaque = fPatches[0].fColor.isOpaque() && GrPixelConfigIsOpaque(fProxy->config())
? GrProcessorAnalysisColor::Opaque::kYes
: GrProcessorAnalysisColor::Opaque::kNo;
auto analysisColor = GrProcessorAnalysisColor(opaque);
auto result = fHelper.xpRequiresDstTexture(
caps, clip, GrProcessorAnalysisCoverage::kNone, &analysisColor);
analysisColor.isConstant(&fPatches[0].fColor);
return result;
}
private:
void onPrepareDraws(Target* target) override {
auto gp = LatticeGP::Make(fProxy.get(), fColorSpaceXform, fFilter);
if (!gp) {
SkDebugf("Couldn't create GrGeometryProcessor\n");
return;
}
size_t kVertexStride = gp->vertexStride();
int patchCnt = fPatches.count();
int numRects = 0;
for (int i = 0; i < patchCnt; i++) {
numRects += fPatches[i].fIter->numRectsToDraw();
}
if (!numRects) {
return;
}
sk_sp<const GrBuffer> indexBuffer = target->resourceProvider()->refQuadIndexBuffer();
PatternHelper helper(target, GrPrimitiveType::kTriangles, kVertexStride, indexBuffer.get(),
kVertsPerRect, kIndicesPerRect, numRects);
void* vertices = helper.vertices();
if (!vertices || !indexBuffer) {
SkDebugf("Could not allocate vertices\n");
return;
}
intptr_t verts = reinterpret_cast<intptr_t>(vertices);
for (int i = 0; i < patchCnt; i++) {
const Patch& patch = fPatches[i];
// TODO4F: Preserve float colors
GrColor patchColor = patch.fColor.toBytes_RGBA();
// Apply the view matrix here if it is scale-translate. Otherwise, we need to
// wait until we've created the dst rects.
bool isScaleTranslate = patch.fViewMatrix.isScaleTranslate();
if (isScaleTranslate) {
patch.fIter->mapDstScaleTranslate(patch.fViewMatrix);
}
SkIRect srcR;
SkRect dstR;
intptr_t patchVerts = verts;
Sk4f scales(1.f / fProxy->width(), 1.f / fProxy->height(),
1.f / fProxy->width(), 1.f / fProxy->height());
static const Sk4f kDomainOffsets(0.5f, 0.5f, -0.5f, -0.5f);
static const Sk4f kFlipOffsets(0.f, 1, 0.f, 1.f);
static const Sk4f kFlipMuls(1.f, -1.f, 1.f, -1.f);
while (patch.fIter->next(&srcR, &dstR)) {
auto vertices = reinterpret_cast<LatticeGP::Vertex*>(verts);
SkPointPriv::SetRectTriStrip(&vertices->fPosition, dstR, kVertexStride);
Sk4f coords(SkIntToScalar(srcR.fLeft), SkIntToScalar(srcR.fTop),
SkIntToScalar(srcR.fRight), SkIntToScalar(srcR.fBottom));
Sk4f domain = coords + kDomainOffsets;
coords *= scales;
domain *= scales;
if (fProxy->origin() == kBottomLeft_GrSurfaceOrigin) {
coords = kFlipMuls * coords + kFlipOffsets;
domain = SkNx_shuffle<0, 3, 2, 1>(kFlipMuls * domain + kFlipOffsets);
}
SkPointPriv::SetRectTriStrip(&vertices->fTextureCoords, coords[0], coords[1],
coords[2], coords[3], kVertexStride);
for (int j = 0; j < kVertsPerRect; ++j) {
vertices[j].fTextureDomain = {domain[0], domain[1], domain[2], domain[3]};
}
for (int j = 0; j < kVertsPerRect; ++j) {
vertices[j].fColor = patchColor;
}
verts += kVertsPerRect * kVertexStride;
}
// If we didn't handle it above, apply the matrix here.
if (!isScaleTranslate) {
SkPoint* positions = reinterpret_cast<SkPoint*>(patchVerts);
SkMatrixPriv::MapPointsWithStride(patch.fViewMatrix, positions, kVertexStride,
kVertsPerRect * patch.fIter->numRectsToDraw());
}
}
auto pipe = fHelper.makePipeline(target, 1);
pipe.fFixedDynamicState->fPrimitiveProcessorTextures[0] = fProxy.get();
helper.recordDraw(target, std::move(gp), pipe.fPipeline, pipe.fFixedDynamicState);
}
CombineResult onCombineIfPossible(GrOp* t, const GrCaps& caps) override {
NonAALatticeOp* that = t->cast<NonAALatticeOp>();
if (fProxy != that->fProxy) {
return CombineResult::kCannotCombine;
}
if (fFilter != that->fFilter) {
return CombineResult::kCannotCombine;
}
if (GrColorSpaceXform::Equals(fColorSpaceXform.get(), that->fColorSpaceXform.get())) {
return CombineResult::kCannotCombine;
}
if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) {
return CombineResult::kCannotCombine;
}
fPatches.move_back_n(that->fPatches.count(), that->fPatches.begin());
return CombineResult::kMerged;
}
struct Patch {
SkMatrix fViewMatrix;
std::unique_ptr<SkLatticeIter> fIter;
SkRect fDst;
SkPMColor4f fColor;
};
Helper fHelper;
SkSTArray<1, Patch, true> fPatches;
sk_sp<GrTextureProxy> fProxy;
sk_sp<GrColorSpaceXform> fColorSpaceXform;
GrSamplerState::Filter fFilter;
typedef GrMeshDrawOp INHERITED;
};
} // anonymous namespace
namespace GrLatticeOp {
std::unique_ptr<GrDrawOp> MakeNonAA(GrContext* context,
GrPaint&& paint,
const SkMatrix& viewMatrix,
sk_sp<GrTextureProxy> proxy,
sk_sp<GrColorSpaceXform> colorSpaceXform,
GrSamplerState::Filter filter,
std::unique_ptr<SkLatticeIter> iter,
const SkRect& dst) {
return NonAALatticeOp::Make(context, std::move(paint), viewMatrix, std::move(proxy),
std::move(colorSpaceXform), filter, std::move(iter), dst);
}
};
#if GR_TEST_UTILS
#include "GrContextPriv.h"
#include "GrProxyProvider.h"
/** Randomly divides subset into count divs. */
static void init_random_divs(int divs[], int count, int subsetStart, int subsetStop,
SkRandom* random) {
// Rules for lattice divs: Must be strictly increasing and in the range
// [subsetStart, subsetStop).
// Not terribly efficient alg for generating random divs:
// 1) Start with minimum legal pixels between each div.
// 2) Randomly assign the remaining pixels of the subset to divs.
// 3) Convert from pixel counts to div offsets.
// 1) Initially each divs[i] represents the number of pixels between
// div i-1 and i. The initial div is allowed to be at subsetStart. There
// must be one pixel spacing between subsequent divs.
divs[0] = 0;
for (int i = 1; i < count; ++i) {
divs[i] = 1;
}
// 2) Assign the remaining subset pixels to fall
int subsetLength = subsetStop - subsetStart;
for (int i = 0; i < subsetLength - count; ++i) {
// +1 because count divs means count+1 intervals.
int entry = random->nextULessThan(count + 1);
// We don't have an entry to to store the count after the last div
if (entry < count) {
divs[entry]++;
}
}
// 3) Now convert the counts between divs to pixel indices, incorporating the subset's offset.
int offset = subsetStart;
for (int i = 0; i < count; ++i) {
divs[i] += offset;
offset = divs[i];
}
}
GR_DRAW_OP_TEST_DEFINE(NonAALatticeOp) {
SkCanvas::Lattice lattice;
// We loop because our random lattice code can produce an invalid lattice in the case where
// there is a single div separator in both x and y and both are aligned with the left and top
// edge of the image subset, respectively.
std::unique_ptr<int[]> xdivs;
std::unique_ptr<int[]> ydivs;
std::unique_ptr<SkCanvas::Lattice::RectType[]> flags;
std::unique_ptr<SkColor[]> colors;
SkIRect subset;
GrSurfaceDesc desc;
desc.fConfig = kRGBA_8888_GrPixelConfig;
desc.fWidth = random->nextRangeU(1, 1000);
desc.fHeight = random->nextRangeU(1, 1000);
GrSurfaceOrigin origin =
random->nextBool() ? kTopLeft_GrSurfaceOrigin : kBottomLeft_GrSurfaceOrigin;
auto proxy = context->contextPriv().proxyProvider()->createProxy(
desc, origin, SkBackingFit::kExact, SkBudgeted::kYes);
do {
if (random->nextBool()) {
subset.fLeft = random->nextULessThan(desc.fWidth);
subset.fRight = random->nextRangeU(subset.fLeft + 1, desc.fWidth);
subset.fTop = random->nextULessThan(desc.fHeight);
subset.fBottom = random->nextRangeU(subset.fTop + 1, desc.fHeight);
} else {
subset.setXYWH(0, 0, desc.fWidth, desc.fHeight);
}
// SkCanvas::Lattice allows bounds to be null. However, SkCanvas creates a temp Lattice with
// a non-null bounds before creating a SkLatticeIter since SkLatticeIter requires a bounds.
lattice.fBounds = &subset;
lattice.fXCount = random->nextRangeU(1, subset.width());
lattice.fYCount = random->nextRangeU(1, subset.height());
xdivs.reset(new int[lattice.fXCount]);
ydivs.reset(new int[lattice.fYCount]);
init_random_divs(xdivs.get(), lattice.fXCount, subset.fLeft, subset.fRight, random);
init_random_divs(ydivs.get(), lattice.fYCount, subset.fTop, subset.fBottom, random);
lattice.fXDivs = xdivs.get();
lattice.fYDivs = ydivs.get();
bool hasFlags = random->nextBool();
if (hasFlags) {
int n = (lattice.fXCount + 1) * (lattice.fYCount + 1);
flags.reset(new SkCanvas::Lattice::RectType[n]);
colors.reset(new SkColor[n]);
for (int i = 0; i < n; ++i) {
flags[i] = random->nextBool() ? SkCanvas::Lattice::kTransparent
: SkCanvas::Lattice::kDefault;
}
lattice.fRectTypes = flags.get();
lattice.fColors = colors.get();
} else {
lattice.fRectTypes = nullptr;
lattice.fColors = nullptr;
}
} while (!SkLatticeIter::Valid(desc.fWidth, desc.fHeight, lattice));
SkRect dst;
dst.fLeft = random->nextRangeScalar(-2000.5f, 1000.f);
dst.fTop = random->nextRangeScalar(-2000.5f, 1000.f);
dst.fRight = dst.fLeft + random->nextRangeScalar(0.5f, 1000.f);
dst.fBottom = dst.fTop + random->nextRangeScalar(0.5f, 1000.f);
std::unique_ptr<SkLatticeIter> iter(new SkLatticeIter(lattice, dst));
SkMatrix viewMatrix = GrTest::TestMatrixPreservesRightAngles(random);
auto csxf = GrTest::TestColorXform(random);
GrSamplerState::Filter filter =
random->nextBool() ? GrSamplerState::Filter::kNearest : GrSamplerState::Filter::kBilerp;
return NonAALatticeOp::Make(context, std::move(paint), viewMatrix, std::move(proxy),
std::move(csxf), filter, std::move(iter), dst);
}
#endif