| /* |
| * Copyright 2019 Google LLC |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| #include "bench/Benchmark.h" |
| #include "bench/ResultsWriter.h" |
| #include "bench/SkSLBench.h" |
| #include "src/sksl/SkSLCompiler.h" |
| |
| class SkSLCompilerStartupBench : public Benchmark { |
| protected: |
| const char* onGetName() override { |
| return "sksl_compiler_startup"; |
| } |
| |
| bool isSuitableFor(Backend backend) override { |
| return backend == kNonRendering_Backend; |
| } |
| |
| void onDraw(int loops, SkCanvas*) override { |
| for (int i = 0; i < loops; i++) { |
| SkSL::Compiler compiler; |
| } |
| } |
| }; |
| |
| DEF_BENCH(return new SkSLCompilerStartupBench();) |
| |
| class SkSLBench : public Benchmark { |
| public: |
| SkSLBench(SkSL::String name, const char* src) |
| : fName("sksl_" + name) |
| , fSrc(src) {} |
| |
| protected: |
| const char* onGetName() override { |
| return fName.c_str(); |
| } |
| |
| bool isSuitableFor(Backend backend) override { |
| return backend == kNonRendering_Backend; |
| } |
| |
| void onDraw(int loops, SkCanvas*) override { |
| for (int i = 0; i < loops; i++) { |
| std::unique_ptr<SkSL::Program> program = fCompiler.convertProgram( |
| SkSL::Program::kFragment_Kind, |
| fSrc, |
| fSettings); |
| if (fCompiler.errorCount()) { |
| printf("%s\n", fCompiler.errorText().c_str()); |
| SK_ABORT("shader compilation failed"); |
| } |
| } |
| } |
| |
| private: |
| SkSL::String fName; |
| SkSL::String fSrc; |
| SkSL::Compiler fCompiler; |
| SkSL::Program::Settings fSettings; |
| |
| using INHERITED = Benchmark; |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| DEF_BENCH(return new SkSLBench("tiny", "void main() { sk_FragColor = half4(1); }"); ) |
| DEF_BENCH(return new SkSLBench("large", R"( |
| uniform half urange_Stage1; |
| uniform half4 uleftBorderColor_Stage1_c0_c0; |
| uniform half4 urightBorderColor_Stage1_c0_c0; |
| uniform float3x3 umatrix_Stage1_c0_c0_c0; |
| uniform half2 ufocalParams_Stage1_c0_c0_c0_c0; |
| uniform float4 uscale0_1_Stage1_c0_c0_c1; |
| uniform float4 uscale2_3_Stage1_c0_c0_c1; |
| uniform float4 uscale4_5_Stage1_c0_c0_c1; |
| uniform float4 uscale6_7_Stage1_c0_c0_c1; |
| uniform float4 ubias0_1_Stage1_c0_c0_c1; |
| uniform float4 ubias2_3_Stage1_c0_c0_c1; |
| uniform float4 ubias4_5_Stage1_c0_c0_c1; |
| uniform float4 ubias6_7_Stage1_c0_c0_c1; |
| uniform half4 uthresholds1_7_Stage1_c0_c0_c1; |
| uniform half4 uthresholds9_13_Stage1_c0_c0_c1; |
| flat in half4 vcolor_Stage0; |
| in float vcoverage_Stage0; |
| flat in float4 vgeomSubset_Stage0; |
| in float2 vTransformedCoords_0_Stage0; |
| out half4 sk_FragColor; |
| half4 TwoPointConicalGradientLayout_Stage1_c0_c0_c0_c0(half4 _input) |
| { |
| half4 _output; |
| float t = -1.0; |
| half v = 1.0; |
| @switch (2) |
| { |
| case 1: |
| { |
| half r0_2 = ufocalParams_Stage1_c0_c0_c0_c0.y; |
| t = float(r0_2) - vTransformedCoords_0_Stage0.y * vTransformedCoords_0_Stage0.y; |
| if (t >= 0.0) |
| { |
| t = vTransformedCoords_0_Stage0.x + sqrt(t); |
| } |
| else |
| { |
| v = -1.0; |
| } |
| } |
| break; |
| case 0: |
| { |
| half r0 = ufocalParams_Stage1_c0_c0_c0_c0.x; |
| @if (true) |
| { |
| t = length(vTransformedCoords_0_Stage0) - float(r0); |
| } |
| else |
| { |
| t = -length(vTransformedCoords_0_Stage0) - float(r0); |
| } |
| } |
| break; |
| case 2: |
| { |
| half invR1 = ufocalParams_Stage1_c0_c0_c0_c0.x; |
| half fx = ufocalParams_Stage1_c0_c0_c0_c0.y; |
| float x_t = -1.0; |
| @if (false) |
| { |
| x_t = dot(vTransformedCoords_0_Stage0, vTransformedCoords_0_Stage0) / vTransformedCoords_0_Stage0.x; |
| } |
| else if (true) |
| { |
| x_t = length(vTransformedCoords_0_Stage0) - vTransformedCoords_0_Stage0.x * float(invR1); |
| } |
| else |
| { |
| float temp = vTransformedCoords_0_Stage0.x * vTransformedCoords_0_Stage0.x - vTransformedCoords_0_Stage0.y * vTransformedCoords_0_Stage0.y; |
| if (temp >= 0.0) |
| { |
| @if (false || !true) |
| { |
| x_t = -sqrt(temp) - vTransformedCoords_0_Stage0.x * float(invR1); |
| } |
| else |
| { |
| x_t = sqrt(temp) - vTransformedCoords_0_Stage0.x * float(invR1); |
| } |
| } |
| } |
| @if (!true) |
| { |
| if (x_t <= 0.0) |
| { |
| v = -1.0; |
| } |
| } |
| @if (true) |
| { |
| @if (false) |
| { |
| t = x_t; |
| } |
| else |
| { |
| t = x_t + float(fx); |
| } |
| } |
| else |
| { |
| @if (false) |
| { |
| t = -x_t; |
| } |
| else |
| { |
| t = -x_t + float(fx); |
| } |
| } |
| @if (false) |
| { |
| t = 1.0 - t; |
| } |
| } |
| break; |
| } |
| _output = half4(half(t), v, 0.0, 0.0); |
| return _output; |
| } |
| half4 MatrixEffect_Stage1_c0_c0_c0(half4 _input) |
| { |
| half4 _output; |
| _output = TwoPointConicalGradientLayout_Stage1_c0_c0_c0_c0(_input); |
| return _output; |
| } |
| half4 UnrolledBinaryGradientColorizer_Stage1_c0_c0_c1(half4 _input, float2 _coords) |
| { |
| half4 _output; |
| half t = half(_coords.x); |
| float4 scale, bias; |
| if (4 <= 4 || t < uthresholds1_7_Stage1_c0_c0_c1.w) |
| { |
| if (4 <= 2 || t < uthresholds1_7_Stage1_c0_c0_c1.y) |
| { |
| if (4 <= 1 || t < uthresholds1_7_Stage1_c0_c0_c1.x) |
| { |
| scale = uscale0_1_Stage1_c0_c0_c1; |
| bias = ubias0_1_Stage1_c0_c0_c1; |
| } |
| else |
| { |
| scale = uscale2_3_Stage1_c0_c0_c1; |
| bias = ubias2_3_Stage1_c0_c0_c1; |
| } |
| } |
| else |
| { |
| if (4 <= 3 || t < uthresholds1_7_Stage1_c0_c0_c1.z) |
| { |
| scale = uscale4_5_Stage1_c0_c0_c1; |
| bias = ubias4_5_Stage1_c0_c0_c1; |
| } |
| else |
| { |
| scale = uscale6_7_Stage1_c0_c0_c1; |
| bias = ubias6_7_Stage1_c0_c0_c1; |
| } |
| } |
| } |
| else |
| { |
| if (4 <= 6 || t < uthresholds9_13_Stage1_c0_c0_c1.y) |
| { |
| if (4 <= 5 || t < uthresholds9_13_Stage1_c0_c0_c1.x) |
| { |
| scale = float4(0); |
| bias = float4(0); |
| } |
| else |
| { |
| scale = float4(0); |
| bias = float4(0); |
| } |
| } |
| else |
| { |
| if (4 <= 7 || t < uthresholds9_13_Stage1_c0_c0_c1.z) |
| { |
| scale = float4(0); |
| bias = float4(0); |
| } |
| else |
| { |
| scale = float4(0); |
| bias = float4(0); |
| } |
| } |
| } |
| _output = half4(float(t) * scale + bias); |
| return _output; |
| } |
| half4 ClampedGradientEffect_Stage1_c0_c0(half4 _input) |
| { |
| half4 _output; |
| half4 t = MatrixEffect_Stage1_c0_c0_c0(_input); |
| if (!false && t.y < 0.0) |
| { |
| _output = half4(0.0); |
| } |
| else if (t.x < 0.0) |
| { |
| _output = uleftBorderColor_Stage1_c0_c0; |
| } |
| else if (t.x > 1.0) |
| { |
| _output = urightBorderColor_Stage1_c0_c0; |
| } |
| else |
| { |
| _output = UnrolledBinaryGradientColorizer_Stage1_c0_c0_c1(_input, float2(half2(t.x, 0.0))); |
| } |
| @if (false) |
| { |
| _output.xyz *= _output.w; |
| } |
| return _output; |
| } |
| half4 OverrideInputFragmentProcessor_Stage1_c0(half4 _input) |
| { |
| half4 _output; |
| half4 constColor; |
| @if (false) |
| { |
| constColor = half4(0); |
| } |
| else |
| { |
| constColor = half4(1.000000, 1.000000, 1.000000, 1.000000); |
| } |
| _output = ClampedGradientEffect_Stage1_c0_c0(constColor); |
| return _output; |
| } |
| void main() |
| { |
| half4 outputColor_Stage0; |
| half4 outputCoverage_Stage0; |
| { |
| // Stage 0, QuadPerEdgeAAGeometryProcessor |
| outputColor_Stage0 = vcolor_Stage0; |
| float coverage = vcoverage_Stage0 * sk_FragCoord.w; |
| float4 geoSubset; |
| geoSubset = vgeomSubset_Stage0; |
| if (coverage < 0.5) |
| { |
| float4 dists4 = clamp(float4(1, 1, -1, -1) * (sk_FragCoord.xyxy - geoSubset), 0, 1); |
| float2 dists2 = dists4.xy * dists4.zw; |
| coverage = min(coverage, dists2.x * dists2.y); |
| } |
| outputCoverage_Stage0 = half4(half(coverage)); |
| } |
| half4 output_Stage1; |
| { |
| // Stage 1, DitherEffect |
| half4 color = OverrideInputFragmentProcessor_Stage1_c0(outputColor_Stage0); |
| half value; |
| @if (sk_Caps.integerSupport) |
| { |
| uint x = uint(sk_FragCoord.x); |
| uint y = uint(sk_FragCoord.y) ^ x; |
| uint m = (((((y & 1) << 5 | (x & 1) << 4) | (y & 2) << 2) | (x & 2) << 1) | (y & 4) >> 1) | (x & 4) >> 2; |
| value = half(m) / 64.0 - 0.4921875; |
| } |
| else |
| { |
| half4 bits = mod(half4(sk_FragCoord.yxyx), half4(2.0, 2.0, 4.0, 4.0)); |
| bits.zw = step(2.0, bits.zw); |
| bits.xz = abs(bits.xz - bits.yw); |
| value = dot(bits, half4(0.5, 0.25, 0.125, 0.0625)) - 0.46875; |
| } |
| output_Stage1 = half4(clamp(color.xyz + value * urange_Stage1, 0.0, color.w), color.w); |
| } |
| { |
| // Xfer Processor: Porter Duff |
| sk_FragColor = output_Stage1 * outputCoverage_Stage0; |
| } |
| } |
| )");) |
| |
| DEF_BENCH(return new SkSLBench("medium", R"( |
| uniform half2 uDstTextureUpperLeft_Stage1; |
| uniform half2 uDstTextureCoordScale_Stage1; |
| uniform sampler2D uDstTextureSampler_Stage1; |
| noperspective in half4 vQuadEdge_Stage0; |
| noperspective in half4 vinColor_Stage0; |
| out half4 sk_FragColor; |
| half luminance_Stage1(half3 color) { |
| return dot(half3(0.3, 0.59, 0.11), color); |
| } |
| |
| half3 set_luminance_Stage1(half3 hueSat, half alpha, half3 lumColor) { |
| half diff = luminance_Stage1(lumColor - hueSat); |
| half3 outColor = hueSat + diff; |
| half outLum = luminance_Stage1(outColor); |
| half minComp = min(min(outColor.r, outColor.g), outColor.b); |
| half maxComp = max(max(outColor.r, outColor.g), outColor.b); |
| if (minComp < 0.0 && outLum != minComp) { |
| outColor = outLum + ((outColor - half3(outLum, outLum, outLum)) * outLum) / |
| (outLum - minComp); |
| } |
| if (maxComp > alpha && maxComp != outLum) { |
| outColor = outLum +((outColor - half3(outLum, outLum, outLum)) * (alpha - outLum)) / |
| (maxComp - outLum); |
| } |
| return outColor; |
| } |
| |
| void main() { |
| half4 outputColor_Stage0; |
| half4 outputCoverage_Stage0; |
| { // Stage 0, QuadEdge |
| outputColor_Stage0 = vinColor_Stage0; |
| half edgeAlpha; |
| half2 duvdx = half2(dFdx(vQuadEdge_Stage0.xy)); |
| half2 duvdy = half2(dFdy(vQuadEdge_Stage0.xy)); |
| if (vQuadEdge_Stage0.z > 0.0 && vQuadEdge_Stage0.w > 0.0) { |
| edgeAlpha = min(min(vQuadEdge_Stage0.z, vQuadEdge_Stage0.w) + 0.5, 1.0); |
| } else { |
| half2 gF = half2(2.0 * vQuadEdge_Stage0.x * duvdx.x - duvdx.y, |
| 2.0 * vQuadEdge_Stage0.x * duvdy.x - duvdy.y); |
| edgeAlpha = (vQuadEdge_Stage0.x*vQuadEdge_Stage0.x - vQuadEdge_Stage0.y); |
| edgeAlpha = saturate(0.5 - edgeAlpha / length(gF)); |
| } |
| outputCoverage_Stage0 = half4(edgeAlpha); |
| } |
| { // Xfer Processor: Custom Xfermode |
| if (all(lessThanEqual(outputCoverage_Stage0.rgb, half3(0)))) { |
| discard; |
| } |
| // Read color from copy of the destination. |
| half2 _dstTexCoord = (half2(sk_FragCoord.xy) - uDstTextureUpperLeft_Stage1) * |
| uDstTextureCoordScale_Stage1; |
| _dstTexCoord.y = 1.0 - _dstTexCoord.y; |
| half4 _dstColor = sample(uDstTextureSampler_Stage1, _dstTexCoord); |
| sk_FragColor.a = outputColor_Stage0.a + (1.0 - outputColor_Stage0.a) * _dstColor.a; |
| half4 srcDstAlpha = outputColor_Stage0 * _dstColor.a; |
| sk_FragColor.rgb = set_luminance_Stage1(_dstColor.rgb * outputColor_Stage0.a, |
| srcDstAlpha.a, srcDstAlpha.rgb); |
| sk_FragColor.rgb += (1.0 - outputColor_Stage0.a) * _dstColor.rgb + (1.0 - _dstColor.a) * |
| outputColor_Stage0.rgb; |
| sk_FragColor = outputCoverage_Stage0 * sk_FragColor + |
| (half4(1.0) - outputCoverage_Stage0) * _dstColor; |
| } |
| } |
| )"); ) |
| |
| #if defined(SK_BUILD_FOR_UNIX) |
| |
| #include <malloc.h> |
| |
| // These benchmarks aren't timed, they produce memory usage statistics. They run standalone, and |
| // directly add their results to the nanobench log. |
| void RunSkSLMemoryBenchmarks(NanoJSONResultsWriter* log) { |
| auto heap_bytes_used = []() { return mallinfo().uordblks; }; |
| auto bench = [log](const char* name, int bytes) { |
| log->beginObject(name); // test |
| log->beginObject("meta"); // config |
| log->appendS32("bytes", bytes); // sub_result |
| log->endObject(); // config |
| log->endObject(); // test |
| }; |
| |
| { |
| int before = heap_bytes_used(); |
| SkSL::Compiler compiler; |
| int after = heap_bytes_used(); |
| bench("sksl_compiler_baseline", after - before); |
| } |
| } |
| |
| #else |
| |
| void RunSkSLMemoryBenchmarks(NanoJSONResultsWriter*) {} |
| |
| #endif |