blob: 520cb1b44d50c81db9dafd534ddff825d67dab55 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrVkPipeline.h"
#include "GrGeometryProcessor.h"
#include "GrPipeline.h"
#include "GrVkGpu.h"
#include "GrVkProgramDesc.h"
#include "GrVkRenderTarget.h"
#include "GrVkUtil.h"
static inline const VkFormat& attrib_type_to_vkformat(GrVertexAttribType type) {
SkASSERT(type >= 0 && type < kGrVertexAttribTypeCount);
static const VkFormat kFormats[kGrVertexAttribTypeCount] = {
VK_FORMAT_R32_SFLOAT, // kFloat_GrVertexAttribType
VK_FORMAT_R32G32_SFLOAT, // kVec2f_GrVertexAttribType
VK_FORMAT_R32G32B32_SFLOAT, // kVec3f_GrVertexAttribType
VK_FORMAT_R32G32B32A32_SFLOAT, // kVec4f_GrVertexAttribType
VK_FORMAT_R8_UNORM, // kUByte_GrVertexAttribType
VK_FORMAT_R8G8B8A8_UNORM, // kVec4ub_GrVertexAttribType
VK_FORMAT_R16G16_SSCALED, // kVec2s_GrVertexAttribType
};
GR_STATIC_ASSERT(0 == kFloat_GrVertexAttribType);
GR_STATIC_ASSERT(1 == kVec2f_GrVertexAttribType);
GR_STATIC_ASSERT(2 == kVec3f_GrVertexAttribType);
GR_STATIC_ASSERT(3 == kVec4f_GrVertexAttribType);
GR_STATIC_ASSERT(4 == kUByte_GrVertexAttribType);
GR_STATIC_ASSERT(5 == kVec4ub_GrVertexAttribType);
GR_STATIC_ASSERT(6 == kVec2s_GrVertexAttribType);
GR_STATIC_ASSERT(SK_ARRAY_COUNT(kFormats) == kGrVertexAttribTypeCount);
return kFormats[type];
}
static void setup_vertex_input_state(const GrPrimitiveProcessor& primProc,
VkPipelineVertexInputStateCreateInfo* vertexInputInfo,
VkVertexInputBindingDescription* bindingDesc,
int maxBindingDescCount,
VkVertexInputAttributeDescription* attributeDesc,
int maxAttributeDescCount) {
// for now we have only one vertex buffer and one binding
memset(bindingDesc, 0, sizeof(VkVertexInputBindingDescription));
bindingDesc->binding = 0;
bindingDesc->stride = (uint32_t)primProc.getVertexStride();
bindingDesc->inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
// setup attribute descriptions
int vaCount = primProc.numAttribs();
SkASSERT(vaCount < maxAttributeDescCount);
if (vaCount > 0) {
size_t offset = 0;
for (int attribIndex = 0; attribIndex < vaCount; attribIndex++) {
const GrGeometryProcessor::Attribute& attrib = primProc.getAttrib(attribIndex);
GrVertexAttribType attribType = attrib.fType;
VkVertexInputAttributeDescription& vkAttrib = attributeDesc[attribIndex];
vkAttrib.location = attribIndex; // for now assume location = attribIndex
vkAttrib.binding = 0; // for now only one vertex buffer & binding
vkAttrib.format = attrib_type_to_vkformat(attribType);
vkAttrib.offset = static_cast<uint32_t>(offset);
offset += attrib.fOffset;
}
}
memset(vertexInputInfo, 0, sizeof(VkPipelineVertexInputStateCreateInfo));
vertexInputInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vertexInputInfo->pNext = nullptr;
vertexInputInfo->flags = 0;
vertexInputInfo->vertexBindingDescriptionCount = 1;
vertexInputInfo->pVertexBindingDescriptions = bindingDesc;
vertexInputInfo->vertexAttributeDescriptionCount = vaCount;
vertexInputInfo->pVertexAttributeDescriptions = attributeDesc;
}
static void setup_input_assembly_state(GrPrimitiveType primitiveType,
VkPipelineInputAssemblyStateCreateInfo* inputAssemblyInfo) {
static const VkPrimitiveTopology gPrimitiveType2VkTopology[] = {
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN,
VK_PRIMITIVE_TOPOLOGY_POINT_LIST,
VK_PRIMITIVE_TOPOLOGY_LINE_LIST,
VK_PRIMITIVE_TOPOLOGY_LINE_STRIP
};
memset(inputAssemblyInfo, 0, sizeof(VkPipelineInputAssemblyStateCreateInfo));
inputAssemblyInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
inputAssemblyInfo->pNext = nullptr;
inputAssemblyInfo->flags = 0;
inputAssemblyInfo->primitiveRestartEnable = false;
inputAssemblyInfo->topology = gPrimitiveType2VkTopology[primitiveType];
}
VkStencilOp stencil_op_to_vk_stencil_op(GrStencilOp op) {
static const VkStencilOp gTable[] = {
VK_STENCIL_OP_KEEP, // kKeep_StencilOp
VK_STENCIL_OP_REPLACE, // kReplace_StencilOp
VK_STENCIL_OP_INCREMENT_AND_WRAP, // kIncWrap_StencilOp
VK_STENCIL_OP_INCREMENT_AND_CLAMP, // kIncClamp_StencilOp
VK_STENCIL_OP_DECREMENT_AND_WRAP, // kDecWrap_StencilOp
VK_STENCIL_OP_DECREMENT_AND_CLAMP, // kDecClamp_StencilOp
VK_STENCIL_OP_ZERO, // kZero_StencilOp
VK_STENCIL_OP_INVERT, // kInvert_StencilOp
};
GR_STATIC_ASSERT(SK_ARRAY_COUNT(gTable) == kStencilOpCount);
GR_STATIC_ASSERT(0 == kKeep_StencilOp);
GR_STATIC_ASSERT(1 == kReplace_StencilOp);
GR_STATIC_ASSERT(2 == kIncWrap_StencilOp);
GR_STATIC_ASSERT(3 == kIncClamp_StencilOp);
GR_STATIC_ASSERT(4 == kDecWrap_StencilOp);
GR_STATIC_ASSERT(5 == kDecClamp_StencilOp);
GR_STATIC_ASSERT(6 == kZero_StencilOp);
GR_STATIC_ASSERT(7 == kInvert_StencilOp);
SkASSERT((unsigned)op < kStencilOpCount);
return gTable[op];
}
VkCompareOp stencil_func_to_vk_compare_op(GrStencilFunc basicFunc) {
static const VkCompareOp gTable[] = {
VK_COMPARE_OP_ALWAYS, // kAlways_StencilFunc
VK_COMPARE_OP_NEVER, // kNever_StencilFunc
VK_COMPARE_OP_GREATER, // kGreater_StencilFunc
VK_COMPARE_OP_GREATER_OR_EQUAL, // kGEqual_StencilFunc
VK_COMPARE_OP_LESS, // kLess_StencilFunc
VK_COMPARE_OP_LESS_OR_EQUAL, // kLEqual_StencilFunc,
VK_COMPARE_OP_EQUAL, // kEqual_StencilFunc,
VK_COMPARE_OP_NOT_EQUAL, // kNotEqual_StencilFunc,
};
GR_STATIC_ASSERT(SK_ARRAY_COUNT(gTable) == kBasicStencilFuncCount);
GR_STATIC_ASSERT(0 == kAlways_StencilFunc);
GR_STATIC_ASSERT(1 == kNever_StencilFunc);
GR_STATIC_ASSERT(2 == kGreater_StencilFunc);
GR_STATIC_ASSERT(3 == kGEqual_StencilFunc);
GR_STATIC_ASSERT(4 == kLess_StencilFunc);
GR_STATIC_ASSERT(5 == kLEqual_StencilFunc);
GR_STATIC_ASSERT(6 == kEqual_StencilFunc);
GR_STATIC_ASSERT(7 == kNotEqual_StencilFunc);
SkASSERT((unsigned)basicFunc < kBasicStencilFuncCount);
return gTable[basicFunc];
}
void setup_depth_stencil_state(const GrVkGpu* gpu,
const GrStencilSettings& stencilSettings,
VkPipelineDepthStencilStateCreateInfo* stencilInfo) {
memset(stencilInfo, 0, sizeof(VkPipelineDepthStencilStateCreateInfo));
stencilInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
stencilInfo->pNext = nullptr;
stencilInfo->flags = 0;
// set depth testing defaults
stencilInfo->depthTestEnable = VK_FALSE;
stencilInfo->depthWriteEnable = VK_FALSE;
stencilInfo->depthCompareOp = VK_COMPARE_OP_ALWAYS;
stencilInfo->depthBoundsTestEnable = VK_FALSE;
stencilInfo->stencilTestEnable = !stencilSettings.isDisabled();
if (!stencilSettings.isDisabled()) {
// Set front face
GrStencilSettings::Face face = GrStencilSettings::kFront_Face;
stencilInfo->front.failOp = stencil_op_to_vk_stencil_op(stencilSettings.failOp(face));
stencilInfo->front.passOp = stencil_op_to_vk_stencil_op(stencilSettings.passOp(face));
stencilInfo->front.depthFailOp = stencilInfo->front.failOp;
stencilInfo->front.compareOp = stencil_func_to_vk_compare_op(stencilSettings.func(face));
stencilInfo->front.compareMask = stencilSettings.funcMask(face);
stencilInfo->front.writeMask = 0;
stencilInfo->front.reference = 0;
// Set back face
face = GrStencilSettings::kBack_Face;
stencilInfo->back.failOp = stencil_op_to_vk_stencil_op(stencilSettings.failOp(face));
stencilInfo->back.passOp = stencil_op_to_vk_stencil_op(stencilSettings.passOp(face));
stencilInfo->back.depthFailOp = stencilInfo->front.failOp;
stencilInfo->back.compareOp = stencil_func_to_vk_compare_op(stencilSettings.func(face));
stencilInfo->back.compareMask = stencilSettings.funcMask(face);
stencilInfo->back.writeMask = 0;
stencilInfo->back.reference = 0;
}
stencilInfo->minDepthBounds = 0.0f;
stencilInfo->maxDepthBounds = 1.0f;
}
void setup_viewport_scissor_state(const GrVkGpu* gpu,
const GrPipeline& pipeline,
const GrVkRenderTarget* vkRT,
VkPipelineViewportStateCreateInfo* viewportInfo,
VkViewport* viewport,
VkRect2D* scissor) {
memset(viewportInfo, 0, sizeof(VkPipelineViewportStateCreateInfo));
viewportInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
viewportInfo->pNext = nullptr;
viewportInfo->flags = 0;
viewport->x = 0.0f;
viewport->y = 0.0f;
viewport->width = SkIntToScalar(vkRT->width());
viewport->height = SkIntToScalar(vkRT->height());
viewport->minDepth = 0.0f;
viewport->maxDepth = 1.0f;
viewportInfo->viewportCount = 1;
viewportInfo->pViewports = viewport;
const GrScissorState& scissorState = pipeline.getScissorState();
if (scissorState.enabled() &&
!scissorState.rect().contains(0, 0, vkRT->width(), vkRT->height())) {
// This all assumes the scissorState has previously been clipped to the device space render
// target.
scissor->offset.x = scissorState.rect().fLeft;
scissor->extent.width = scissorState.rect().width();
if (kTopLeft_GrSurfaceOrigin == vkRT->origin()) {
scissor->offset.y = scissorState.rect().fTop;
} else {
SkASSERT(kBottomLeft_GrSurfaceOrigin == vkRT->origin());
scissor->offset.y = vkRT->height() - scissorState.rect().fBottom;
}
scissor->extent.height = scissorState.rect().height();
viewportInfo->scissorCount = 1;
viewportInfo->pScissors = scissor;
SkASSERT(scissor->offset.x >= 0);
SkASSERT(scissor->offset.x + scissor->extent.width <= (uint32_t)vkRT->width());
SkASSERT(scissor->offset.y >= 0);
SkASSERT(scissor->offset.y + scissor->extent.height <= (uint32_t)vkRT->height());
} else {
scissor->extent.width = vkRT->width();
scissor->extent.height = vkRT->height();
scissor->offset.x = 0;
scissor->offset.y = 0;
viewportInfo->scissorCount = 1;
viewportInfo->pScissors = scissor;
}
SkASSERT(viewportInfo->viewportCount == viewportInfo->scissorCount);
}
void setup_multisample_state(const GrPipeline& pipeline,
VkPipelineMultisampleStateCreateInfo* multisampleInfo) {
memset(multisampleInfo, 0, sizeof(VkPipelineMultisampleStateCreateInfo));
multisampleInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
multisampleInfo->pNext = nullptr;
multisampleInfo->flags = 0;
int numSamples = pipeline.getRenderTarget()->numColorSamples();
SkAssertResult(GrSampleCountToVkSampleCount(numSamples,
&multisampleInfo->rasterizationSamples));
multisampleInfo->sampleShadingEnable = VK_FALSE;
multisampleInfo->minSampleShading = 0;
multisampleInfo->pSampleMask = nullptr;
multisampleInfo->alphaToCoverageEnable = VK_FALSE;
multisampleInfo->alphaToOneEnable = VK_FALSE;
}
static VkBlendFactor blend_coeff_to_vk_blend(GrBlendCoeff coeff) {
static const VkBlendFactor gTable[] = {
VK_BLEND_FACTOR_ZERO, // kZero_GrBlendCoeff
VK_BLEND_FACTOR_ONE, // kOne_GrBlendCoeff
VK_BLEND_FACTOR_SRC_COLOR, // kSC_GrBlendCoeff
VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR, // kISC_GrBlendCoeff
VK_BLEND_FACTOR_DST_COLOR, // kDC_GrBlendCoeff
VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR, // kIDC_GrBlendCoeff
VK_BLEND_FACTOR_SRC_ALPHA, // kSA_GrBlendCoeff
VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA, // kISA_GrBlendCoeff
VK_BLEND_FACTOR_DST_ALPHA, // kDA_GrBlendCoeff
VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA, // kIDA_GrBlendCoeff
VK_BLEND_FACTOR_CONSTANT_COLOR, // kConstC_GrBlendCoeff
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR, // kIConstC_GrBlendCoeff
VK_BLEND_FACTOR_CONSTANT_ALPHA, // kConstA_GrBlendCoeff
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA, // kIConstA_GrBlendCoeff
VK_BLEND_FACTOR_SRC1_COLOR, // kS2C_GrBlendCoeff
VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR, // kIS2C_GrBlendCoeff
VK_BLEND_FACTOR_SRC1_ALPHA, // kS2A_GrBlendCoeff
VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA, // kIS2A_GrBlendCoeff
};
GR_STATIC_ASSERT(SK_ARRAY_COUNT(gTable) == kGrBlendCoeffCnt);
GR_STATIC_ASSERT(0 == kZero_GrBlendCoeff);
GR_STATIC_ASSERT(1 == kOne_GrBlendCoeff);
GR_STATIC_ASSERT(2 == kSC_GrBlendCoeff);
GR_STATIC_ASSERT(3 == kISC_GrBlendCoeff);
GR_STATIC_ASSERT(4 == kDC_GrBlendCoeff);
GR_STATIC_ASSERT(5 == kIDC_GrBlendCoeff);
GR_STATIC_ASSERT(6 == kSA_GrBlendCoeff);
GR_STATIC_ASSERT(7 == kISA_GrBlendCoeff);
GR_STATIC_ASSERT(8 == kDA_GrBlendCoeff);
GR_STATIC_ASSERT(9 == kIDA_GrBlendCoeff);
GR_STATIC_ASSERT(10 == kConstC_GrBlendCoeff);
GR_STATIC_ASSERT(11 == kIConstC_GrBlendCoeff);
GR_STATIC_ASSERT(12 == kConstA_GrBlendCoeff);
GR_STATIC_ASSERT(13 == kIConstA_GrBlendCoeff);
GR_STATIC_ASSERT(14 == kS2C_GrBlendCoeff);
GR_STATIC_ASSERT(15 == kIS2C_GrBlendCoeff);
GR_STATIC_ASSERT(16 == kS2A_GrBlendCoeff);
GR_STATIC_ASSERT(17 == kIS2A_GrBlendCoeff);
SkASSERT((unsigned)coeff < kGrBlendCoeffCnt);
return gTable[coeff];
}
static VkBlendOp blend_equation_to_vk_blend_op(GrBlendEquation equation) {
static const VkBlendOp gTable[] = {
VK_BLEND_OP_ADD, // kAdd_GrBlendEquation
VK_BLEND_OP_SUBTRACT, // kSubtract_GrBlendEquation
VK_BLEND_OP_REVERSE_SUBTRACT, // kReverseSubtract_GrBlendEquation
};
GR_STATIC_ASSERT(SK_ARRAY_COUNT(gTable) == kFirstAdvancedGrBlendEquation);
GR_STATIC_ASSERT(0 == kAdd_GrBlendEquation);
GR_STATIC_ASSERT(1 == kSubtract_GrBlendEquation);
GR_STATIC_ASSERT(2 == kReverseSubtract_GrBlendEquation);
SkASSERT((unsigned)equation < kGrBlendCoeffCnt);
return gTable[equation];
}
bool blend_coeff_refs_constant(GrBlendCoeff coeff) {
static const bool gCoeffReferencesBlendConst[] = {
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
true,
true,
true,
true,
// extended blend coeffs
false,
false,
false,
false,
};
return gCoeffReferencesBlendConst[coeff];
GR_STATIC_ASSERT(kGrBlendCoeffCnt == SK_ARRAY_COUNT(gCoeffReferencesBlendConst));
// Individual enum asserts already made in blend_coeff_to_vk_blend
}
void setup_color_blend_state(const GrVkGpu* gpu,
const GrPipeline& pipeline,
VkPipelineColorBlendStateCreateInfo* colorBlendInfo,
VkPipelineColorBlendAttachmentState* attachmentState) {
GrXferProcessor::BlendInfo blendInfo;
pipeline.getXferProcessor().getBlendInfo(&blendInfo);
GrBlendEquation equation = blendInfo.fEquation;
GrBlendCoeff srcCoeff = blendInfo.fSrcBlend;
GrBlendCoeff dstCoeff = blendInfo.fDstBlend;
bool blendOff = (kAdd_GrBlendEquation == equation || kSubtract_GrBlendEquation == equation) &&
kOne_GrBlendCoeff == srcCoeff && kZero_GrBlendCoeff == dstCoeff;
memset(attachmentState, 0, sizeof(VkPipelineColorBlendAttachmentState));
attachmentState->blendEnable = !blendOff;
if (!blendOff) {
attachmentState->srcColorBlendFactor = blend_coeff_to_vk_blend(srcCoeff);
attachmentState->dstColorBlendFactor = blend_coeff_to_vk_blend(dstCoeff);
attachmentState->colorBlendOp = blend_equation_to_vk_blend_op(equation);
attachmentState->srcAlphaBlendFactor = blend_coeff_to_vk_blend(srcCoeff);
attachmentState->dstAlphaBlendFactor = blend_coeff_to_vk_blend(dstCoeff);
attachmentState->alphaBlendOp = blend_equation_to_vk_blend_op(equation);
}
attachmentState->colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT |
VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
memset(colorBlendInfo, 0, sizeof(VkPipelineColorBlendStateCreateInfo));
colorBlendInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
colorBlendInfo->pNext = nullptr;
colorBlendInfo->flags = 0;
colorBlendInfo->logicOpEnable = VK_FALSE;
colorBlendInfo->attachmentCount = 1;
colorBlendInfo->pAttachments = attachmentState;
if (blend_coeff_refs_constant(srcCoeff) || blend_coeff_refs_constant(dstCoeff)) {
GrColorToRGBAFloat(blendInfo.fBlendConstant, colorBlendInfo->blendConstants);
}
}
VkCullModeFlags draw_face_to_vk_cull_mode(GrPipelineBuilder::DrawFace drawFace) {
// Assumes that we've set the front face to be ccw
static const VkCullModeFlags gTable[] = {
VK_CULL_MODE_NONE, // kBoth_DrawFace
VK_CULL_MODE_BACK_BIT, // kCCW_DrawFace, cull back face
VK_CULL_MODE_FRONT_BIT, // kCW_DrawFace, cull front face
};
GR_STATIC_ASSERT(0 == GrPipelineBuilder::kBoth_DrawFace);
GR_STATIC_ASSERT(1 == GrPipelineBuilder::kCCW_DrawFace);
GR_STATIC_ASSERT(2 == GrPipelineBuilder::kCW_DrawFace);
SkASSERT((unsigned)drawFace <= 2);
return gTable[drawFace];
}
void setup_raster_state(const GrVkGpu* gpu,
const GrPipeline& pipeline,
VkPipelineRasterizationStateCreateInfo* rasterInfo) {
memset(rasterInfo, 0, sizeof(VkPipelineRasterizationStateCreateInfo));
rasterInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rasterInfo->pNext = nullptr;
rasterInfo->flags = 0;
rasterInfo->depthClampEnable = VK_FALSE;
rasterInfo->rasterizerDiscardEnable = VK_FALSE;
rasterInfo->polygonMode = VK_POLYGON_MODE_FILL;
rasterInfo->cullMode = draw_face_to_vk_cull_mode(pipeline.getDrawFace());
rasterInfo->frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
rasterInfo->depthBiasEnable = VK_FALSE;
rasterInfo->depthBiasConstantFactor = 0.0f;
rasterInfo->depthBiasClamp = 0.0f;
rasterInfo->depthBiasSlopeFactor = 0.0f;
rasterInfo->lineWidth = 1.0f;
}
void setup_dynamic_state(const GrVkGpu* gpu,
const GrPipeline& pipeline,
VkPipelineDynamicStateCreateInfo* dynamicInfo) {
memset(dynamicInfo, 0, sizeof(VkPipelineDynamicStateCreateInfo));
dynamicInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
// TODO: mask out any state we might want to set dynamically
dynamicInfo->dynamicStateCount = 0;
}
GrVkPipeline* GrVkPipeline::Create(GrVkGpu* gpu, const GrPipeline& pipeline,
const GrPrimitiveProcessor& primProc,
VkPipelineShaderStageCreateInfo* shaderStageInfo,
int shaderStageCount,
GrPrimitiveType primitiveType,
const GrVkRenderPass& renderPass,
VkPipelineLayout layout) {
VkPipelineVertexInputStateCreateInfo vertexInputInfo;
VkVertexInputBindingDescription bindingDesc;
// TODO: allocate this based on VkPhysicalDeviceLimits::maxVertexInputAttributes
static const int kMaxVertexAttributes = 16;
static VkVertexInputAttributeDescription attributeDesc[kMaxVertexAttributes];
setup_vertex_input_state(primProc, &vertexInputInfo, &bindingDesc, 1,
attributeDesc, kMaxVertexAttributes);
VkPipelineInputAssemblyStateCreateInfo inputAssemblyInfo;
setup_input_assembly_state(primitiveType, &inputAssemblyInfo);
VkPipelineDepthStencilStateCreateInfo depthStencilInfo;
setup_depth_stencil_state(gpu, pipeline.getStencil(), &depthStencilInfo);
GrRenderTarget* rt = pipeline.getRenderTarget();
GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(rt);
VkPipelineViewportStateCreateInfo viewportInfo;
VkViewport viewport;
VkRect2D scissor;
setup_viewport_scissor_state(gpu, pipeline, vkRT, &viewportInfo, &viewport, &scissor);
VkPipelineMultisampleStateCreateInfo multisampleInfo;
setup_multisample_state(pipeline, &multisampleInfo);
// We will only have one color attachment per pipeline.
VkPipelineColorBlendAttachmentState attachmentStates[1];
VkPipelineColorBlendStateCreateInfo colorBlendInfo;
setup_color_blend_state(gpu, pipeline, &colorBlendInfo, attachmentStates);
VkPipelineRasterizationStateCreateInfo rasterInfo;
setup_raster_state(gpu, pipeline, &rasterInfo);
VkPipelineDynamicStateCreateInfo dynamicInfo;
setup_dynamic_state(gpu, pipeline, &dynamicInfo);
VkGraphicsPipelineCreateInfo pipelineCreateInfo;
memset(&pipelineCreateInfo, 0, sizeof(VkGraphicsPipelineCreateInfo));
pipelineCreateInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipelineCreateInfo.pNext = nullptr;
pipelineCreateInfo.flags = 0;
pipelineCreateInfo.stageCount = shaderStageCount;
pipelineCreateInfo.pStages = shaderStageInfo;
pipelineCreateInfo.pVertexInputState = &vertexInputInfo;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyInfo;
pipelineCreateInfo.pTessellationState = nullptr;
pipelineCreateInfo.pViewportState = &viewportInfo;
pipelineCreateInfo.pRasterizationState = &rasterInfo;
pipelineCreateInfo.pMultisampleState = &multisampleInfo;
pipelineCreateInfo.pDepthStencilState = &depthStencilInfo;
pipelineCreateInfo.pColorBlendState = &colorBlendInfo;
pipelineCreateInfo.pDynamicState = &dynamicInfo;
pipelineCreateInfo.layout = layout;
pipelineCreateInfo.renderPass = renderPass.vkRenderPass();
pipelineCreateInfo.subpass = 0;
pipelineCreateInfo.basePipelineHandle = VK_NULL_HANDLE;
pipelineCreateInfo.basePipelineIndex = -1;
VkPipeline vkPipeline;
VkResult err = GR_VK_CALL(gpu->vkInterface(), CreateGraphicsPipelines(gpu->device(),
nullptr, 1,
&pipelineCreateInfo,
nullptr, &vkPipeline));
if (err) {
return nullptr;
}
return new GrVkPipeline(vkPipeline);
}
void GrVkPipeline::freeGPUData(const GrVkGpu* gpu) const {
GR_VK_CALL(gpu->vkInterface(), DestroyPipeline(gpu->device(), fPipeline, nullptr));
}