blob: 66f8074e40ac18b9d7163e1a5a8728ba5e6699e9 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkNx_neon_DEFINED
#define SkNx_neon_DEFINED
#define SKNX_IS_FAST
// ARMv8 has vrndmq_f32 to floor 4 floats. Here we emulate it:
// - roundtrip through integers via truncation
// - subtract 1 if that's too big (possible for negative values).
// This restricts the domain of our inputs to a maximum somehwere around 2^31. Seems plenty big.
static inline float32x4_t armv7_vrndmq_f32(float32x4_t v) {
auto roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v));
auto too_big = vcgtq_f32(roundtrip, v);
return vsubq_f32(roundtrip, (float32x4_t)vandq_u32(too_big, (uint32x4_t)vdupq_n_f32(1)));
}
// Well, this is absurd. The shifts require compile-time constant arguments.
#define SHIFT8(op, v, bits) switch(bits) { \
case 1: return op(v, 1); case 2: return op(v, 2); case 3: return op(v, 3); \
case 4: return op(v, 4); case 5: return op(v, 5); case 6: return op(v, 6); \
case 7: return op(v, 7); \
} return fVec
#define SHIFT16(op, v, bits) if (bits < 8) { SHIFT8(op, v, bits); } switch(bits) { \
case 8: return op(v, 8); case 9: return op(v, 9); \
case 10: return op(v, 10); case 11: return op(v, 11); case 12: return op(v, 12); \
case 13: return op(v, 13); case 14: return op(v, 14); case 15: return op(v, 15); \
} return fVec
#define SHIFT32(op, v, bits) if (bits < 16) { SHIFT16(op, v, bits); } switch(bits) { \
case 16: return op(v, 16); case 17: return op(v, 17); case 18: return op(v, 18); \
case 19: return op(v, 19); case 20: return op(v, 20); case 21: return op(v, 21); \
case 22: return op(v, 22); case 23: return op(v, 23); case 24: return op(v, 24); \
case 25: return op(v, 25); case 26: return op(v, 26); case 27: return op(v, 27); \
case 28: return op(v, 28); case 29: return op(v, 29); case 30: return op(v, 30); \
case 31: return op(v, 31); } return fVec
template <>
class SkNx<2, float> {
public:
SkNx(float32x2_t vec) : fVec(vec) {}
SkNx() {}
SkNx(float val) : fVec(vdup_n_f32(val)) {}
static SkNx Load(const void* ptr) { return vld1_f32((const float*)ptr); }
SkNx(float a, float b) { fVec = (float32x2_t) { a, b }; }
void store(void* ptr) const { vst1_f32((float*)ptr, fVec); }
SkNx invert() const {
float32x2_t est0 = vrecpe_f32(fVec),
est1 = vmul_f32(vrecps_f32(est0, fVec), est0);
return est1;
}
SkNx operator + (const SkNx& o) const { return vadd_f32(fVec, o.fVec); }
SkNx operator - (const SkNx& o) const { return vsub_f32(fVec, o.fVec); }
SkNx operator * (const SkNx& o) const { return vmul_f32(fVec, o.fVec); }
SkNx operator / (const SkNx& o) const {
#if defined(SK_CPU_ARM64)
return vdiv_f32(fVec, o.fVec);
#else
float32x2_t est0 = vrecpe_f32(o.fVec),
est1 = vmul_f32(vrecps_f32(est0, o.fVec), est0),
est2 = vmul_f32(vrecps_f32(est1, o.fVec), est1);
return vmul_f32(fVec, est2);
#endif
}
SkNx operator == (const SkNx& o) const { return vreinterpret_f32_u32(vceq_f32(fVec, o.fVec)); }
SkNx operator < (const SkNx& o) const { return vreinterpret_f32_u32(vclt_f32(fVec, o.fVec)); }
SkNx operator > (const SkNx& o) const { return vreinterpret_f32_u32(vcgt_f32(fVec, o.fVec)); }
SkNx operator <= (const SkNx& o) const { return vreinterpret_f32_u32(vcle_f32(fVec, o.fVec)); }
SkNx operator >= (const SkNx& o) const { return vreinterpret_f32_u32(vcge_f32(fVec, o.fVec)); }
SkNx operator != (const SkNx& o) const {
return vreinterpret_f32_u32(vmvn_u32(vceq_f32(fVec, o.fVec)));
}
static SkNx Min(const SkNx& l, const SkNx& r) { return vmin_f32(l.fVec, r.fVec); }
static SkNx Max(const SkNx& l, const SkNx& r) { return vmax_f32(l.fVec, r.fVec); }
SkNx rsqrt() const {
float32x2_t est0 = vrsqrte_f32(fVec);
return vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0);
}
SkNx sqrt() const {
#if defined(SK_CPU_ARM64)
return vsqrt_f32(fVec);
#else
float32x2_t est0 = vrsqrte_f32(fVec),
est1 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0),
est2 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est1, est1)), est1);
return vmul_f32(fVec, est2);
#endif
}
float operator[](int k) const {
SkASSERT(0 <= k && k < 2);
union { float32x2_t v; float fs[2]; } pun = {fVec};
return pun.fs[k&1];
}
bool allTrue() const {
auto v = vreinterpret_u32_f32(fVec);
return vget_lane_u32(v,0) && vget_lane_u32(v,1);
}
bool anyTrue() const {
auto v = vreinterpret_u32_f32(fVec);
return vget_lane_u32(v,0) || vget_lane_u32(v,1);
}
float32x2_t fVec;
};
template <>
class SkNx<4, float> {
public:
SkNx(float32x4_t vec) : fVec(vec) {}
SkNx() {}
SkNx(float val) : fVec(vdupq_n_f32(val)) {}
static SkNx Load(const void* ptr) { return vld1q_f32((const float*)ptr); }
SkNx(float a, float b, float c, float d) { fVec = (float32x4_t) { a, b, c, d }; }
void store(void* ptr) const { vst1q_f32((float*)ptr, fVec); }
SkNx invert() const {
float32x4_t est0 = vrecpeq_f32(fVec),
est1 = vmulq_f32(vrecpsq_f32(est0, fVec), est0);
return est1;
}
SkNx operator + (const SkNx& o) const { return vaddq_f32(fVec, o.fVec); }
SkNx operator - (const SkNx& o) const { return vsubq_f32(fVec, o.fVec); }
SkNx operator * (const SkNx& o) const { return vmulq_f32(fVec, o.fVec); }
SkNx operator / (const SkNx& o) const {
#if defined(SK_CPU_ARM64)
return vdivq_f32(fVec, o.fVec);
#else
float32x4_t est0 = vrecpeq_f32(o.fVec),
est1 = vmulq_f32(vrecpsq_f32(est0, o.fVec), est0),
est2 = vmulq_f32(vrecpsq_f32(est1, o.fVec), est1);
return vmulq_f32(fVec, est2);
#endif
}
SkNx operator==(const SkNx& o) const { return vreinterpretq_f32_u32(vceqq_f32(fVec, o.fVec)); }
SkNx operator <(const SkNx& o) const { return vreinterpretq_f32_u32(vcltq_f32(fVec, o.fVec)); }
SkNx operator >(const SkNx& o) const { return vreinterpretq_f32_u32(vcgtq_f32(fVec, o.fVec)); }
SkNx operator<=(const SkNx& o) const { return vreinterpretq_f32_u32(vcleq_f32(fVec, o.fVec)); }
SkNx operator>=(const SkNx& o) const { return vreinterpretq_f32_u32(vcgeq_f32(fVec, o.fVec)); }
SkNx operator!=(const SkNx& o) const {
return vreinterpretq_f32_u32(vmvnq_u32(vceqq_f32(fVec, o.fVec)));
}
static SkNx Min(const SkNx& l, const SkNx& r) { return vminq_f32(l.fVec, r.fVec); }
static SkNx Max(const SkNx& l, const SkNx& r) { return vmaxq_f32(l.fVec, r.fVec); }
SkNx abs() const { return vabsq_f32(fVec); }
SkNx floor() const {
#if defined(SK_CPU_ARM64)
return vrndmq_f32(fVec);
#else
return armv7_vrndmq_f32(fVec);
#endif
}
SkNx rsqrt() const {
float32x4_t est0 = vrsqrteq_f32(fVec);
return vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est0, est0)), est0);
}
SkNx sqrt() const {
#if defined(SK_CPU_ARM64)
return vsqrtq_f32(fVec);
#else
float32x4_t est0 = vrsqrteq_f32(fVec),
est1 = vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est0, est0)), est0),
est2 = vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est1, est1)), est1);
return vmulq_f32(fVec, est2);
#endif
}
float operator[](int k) const {
SkASSERT(0 <= k && k < 4);
union { float32x4_t v; float fs[4]; } pun = {fVec};
return pun.fs[k&3];
}
bool allTrue() const {
auto v = vreinterpretq_u32_f32(fVec);
return vgetq_lane_u32(v,0) && vgetq_lane_u32(v,1)
&& vgetq_lane_u32(v,2) && vgetq_lane_u32(v,3);
}
bool anyTrue() const {
auto v = vreinterpretq_u32_f32(fVec);
return vgetq_lane_u32(v,0) || vgetq_lane_u32(v,1)
|| vgetq_lane_u32(v,2) || vgetq_lane_u32(v,3);
}
SkNx thenElse(const SkNx& t, const SkNx& e) const {
return vbslq_f32(vreinterpretq_u32_f32(fVec), t.fVec, e.fVec);
}
float32x4_t fVec;
};
// It's possible that for our current use cases, representing this as
// half a uint16x8_t might be better than representing it as a uint16x4_t.
// It'd make conversion to Sk4b one step simpler.
template <>
class SkNx<4, uint16_t> {
public:
SkNx(const uint16x4_t& vec) : fVec(vec) {}
SkNx() {}
SkNx(uint16_t val) : fVec(vdup_n_u16(val)) {}
static SkNx Load(const void* ptr) { return vld1_u16((const uint16_t*)ptr); }
SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d) {
fVec = (uint16x4_t) { a,b,c,d };
}
void store(void* ptr) const { vst1_u16((uint16_t*)ptr, fVec); }
SkNx operator + (const SkNx& o) const { return vadd_u16(fVec, o.fVec); }
SkNx operator - (const SkNx& o) const { return vsub_u16(fVec, o.fVec); }
SkNx operator * (const SkNx& o) const { return vmul_u16(fVec, o.fVec); }
SkNx operator << (int bits) const { SHIFT16(vshl_n_u16, fVec, bits); }
SkNx operator >> (int bits) const { SHIFT16(vshr_n_u16, fVec, bits); }
static SkNx Min(const SkNx& a, const SkNx& b) { return vmin_u16(a.fVec, b.fVec); }
uint16_t operator[](int k) const {
SkASSERT(0 <= k && k < 4);
union { uint16x4_t v; uint16_t us[4]; } pun = {fVec};
return pun.us[k&3];
}
SkNx thenElse(const SkNx& t, const SkNx& e) const {
return vbsl_u16(fVec, t.fVec, e.fVec);
}
uint16x4_t fVec;
};
template <>
class SkNx<8, uint16_t> {
public:
SkNx(const uint16x8_t& vec) : fVec(vec) {}
SkNx() {}
SkNx(uint16_t val) : fVec(vdupq_n_u16(val)) {}
static SkNx Load(const void* ptr) { return vld1q_u16((const uint16_t*)ptr); }
SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d,
uint16_t e, uint16_t f, uint16_t g, uint16_t h) {
fVec = (uint16x8_t) { a,b,c,d, e,f,g,h };
}
void store(void* ptr) const { vst1q_u16((uint16_t*)ptr, fVec); }
SkNx operator + (const SkNx& o) const { return vaddq_u16(fVec, o.fVec); }
SkNx operator - (const SkNx& o) const { return vsubq_u16(fVec, o.fVec); }
SkNx operator * (const SkNx& o) const { return vmulq_u16(fVec, o.fVec); }
SkNx operator << (int bits) const { SHIFT16(vshlq_n_u16, fVec, bits); }
SkNx operator >> (int bits) const { SHIFT16(vshrq_n_u16, fVec, bits); }
static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_u16(a.fVec, b.fVec); }
uint16_t operator[](int k) const {
SkASSERT(0 <= k && k < 8);
union { uint16x8_t v; uint16_t us[8]; } pun = {fVec};
return pun.us[k&7];
}
SkNx thenElse(const SkNx& t, const SkNx& e) const {
return vbslq_u16(fVec, t.fVec, e.fVec);
}
uint16x8_t fVec;
};
template <>
class SkNx<4, uint8_t> {
public:
SkNx(const uint8x8_t& vec) : fVec(vec) {}
SkNx() {}
SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d) {
fVec = (uint8x8_t){a,b,c,d, 0,0,0,0};
}
static SkNx Load(const void* ptr) {
return (uint8x8_t)vld1_dup_u32((const uint32_t*)ptr);
}
void store(void* ptr) const {
return vst1_lane_u32((uint32_t*)ptr, (uint32x2_t)fVec, 0);
}
uint8_t operator[](int k) const {
SkASSERT(0 <= k && k < 4);
union { uint8x8_t v; uint8_t us[8]; } pun = {fVec};
return pun.us[k&3];
}
// TODO as needed
uint8x8_t fVec;
};
template <>
class SkNx<16, uint8_t> {
public:
SkNx(const uint8x16_t& vec) : fVec(vec) {}
SkNx() {}
SkNx(uint8_t val) : fVec(vdupq_n_u8(val)) {}
static SkNx Load(const void* ptr) { return vld1q_u8((const uint8_t*)ptr); }
SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d,
uint8_t e, uint8_t f, uint8_t g, uint8_t h,
uint8_t i, uint8_t j, uint8_t k, uint8_t l,
uint8_t m, uint8_t n, uint8_t o, uint8_t p) {
fVec = (uint8x16_t) { a,b,c,d, e,f,g,h, i,j,k,l, m,n,o,p };
}
void store(void* ptr) const { vst1q_u8((uint8_t*)ptr, fVec); }
SkNx saturatedAdd(const SkNx& o) const { return vqaddq_u8(fVec, o.fVec); }
SkNx operator + (const SkNx& o) const { return vaddq_u8(fVec, o.fVec); }
SkNx operator - (const SkNx& o) const { return vsubq_u8(fVec, o.fVec); }
static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_u8(a.fVec, b.fVec); }
SkNx operator < (const SkNx& o) const { return vcltq_u8(fVec, o.fVec); }
uint8_t operator[](int k) const {
SkASSERT(0 <= k && k < 16);
union { uint8x16_t v; uint8_t us[16]; } pun = {fVec};
return pun.us[k&15];
}
SkNx thenElse(const SkNx& t, const SkNx& e) const {
return vbslq_u8(fVec, t.fVec, e.fVec);
}
uint8x16_t fVec;
};
template <>
class SkNx<4, int> {
public:
SkNx(const int32x4_t& vec) : fVec(vec) {}
SkNx() {}
SkNx(int v) {
fVec = vdupq_n_s32(v);
}
SkNx(int a, int b, int c, int d) {
fVec = (int32x4_t){a,b,c,d};
}
static SkNx Load(const void* ptr) {
return vld1q_s32((const int32_t*)ptr);
}
void store(void* ptr) const {
return vst1q_s32((int32_t*)ptr, fVec);
}
int operator[](int k) const {
SkASSERT(0 <= k && k < 4);
union { int32x4_t v; int is[4]; } pun = {fVec};
return pun.is[k&3];
}
SkNx operator + (const SkNx& o) const { return vaddq_s32(fVec, o.fVec); }
SkNx operator - (const SkNx& o) const { return vsubq_s32(fVec, o.fVec); }
SkNx operator * (const SkNx& o) const { return vmulq_s32(fVec, o.fVec); }
SkNx operator << (int bits) const { SHIFT32(vshlq_n_s32, fVec, bits); }
SkNx operator >> (int bits) const { SHIFT32(vshrq_n_s32, fVec, bits); }
static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_s32(a.fVec, b.fVec); }
// TODO as needed
int32x4_t fVec;
};
#undef SHIFT32
#undef SHIFT16
#undef SHIFT8
template<> inline Sk4i SkNx_cast<int, float>(const Sk4f& src) {
return vcvtq_s32_f32(src.fVec);
}
template<> inline Sk4f SkNx_cast<float, int>(const Sk4i& src) {
return vcvtq_f32_s32(src.fVec);
}
template<> inline Sk4h SkNx_cast<uint16_t, float>(const Sk4f& src) {
return vqmovn_u32(vcvtq_u32_f32(src.fVec));
}
template<> inline Sk4f SkNx_cast<float, uint16_t>(const Sk4h& src) {
return vcvtq_f32_u32(vmovl_u16(src.fVec));
}
template<> inline Sk4b SkNx_cast<uint8_t, float>(const Sk4f& src) {
uint32x4_t _32 = vcvtq_u32_f32(src.fVec);
uint16x4_t _16 = vqmovn_u32(_32);
return vqmovn_u16(vcombine_u16(_16, _16));
}
template<> inline Sk4f SkNx_cast<float, uint8_t>(const Sk4b& src) {
uint16x8_t _16 = vmovl_u8 (src.fVec) ;
uint32x4_t _32 = vmovl_u16(vget_low_u16(_16));
return vcvtq_f32_u32(_32);
}
template<> inline Sk16b SkNx_cast<uint8_t, float>(const Sk16f& src) {
Sk8f ab, cd;
SkNx_split(src, &ab, &cd);
Sk4f a,b,c,d;
SkNx_split(ab, &a, &b);
SkNx_split(cd, &c, &d);
return vuzpq_u8(vuzpq_u8((uint8x16_t)vcvtq_u32_f32(a.fVec),
(uint8x16_t)vcvtq_u32_f32(b.fVec)).val[0],
vuzpq_u8((uint8x16_t)vcvtq_u32_f32(c.fVec),
(uint8x16_t)vcvtq_u32_f32(d.fVec)).val[0]).val[0];
}
template<> inline Sk4h SkNx_cast<uint16_t, uint8_t>(const Sk4b& src) {
return vget_low_u16(vmovl_u8(src.fVec));
}
template<> inline Sk4b SkNx_cast<uint8_t, uint16_t>(const Sk4h& src) {
return vmovn_u16(vcombine_u16(src.fVec, src.fVec));
}
#endif//SkNx_neon_DEFINED