blob: 54982bcbe5f391dd5636b997fff0c92d5ed796df [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Test.h"
#include "GrBackendSemaphore.h"
#include "GrClip.h"
#include "GrContextPriv.h"
#include "GrDefaultGeoProcFactory.h"
#include "GrOnFlushResourceProvider.h"
#include "GrProxyProvider.h"
#include "GrQuad.h"
#include "GrRenderTargetContextPriv.h"
#include "GrResourceProvider.h"
#include "GrTexture.h"
#include "SkBitmap.h"
#include "SkPointPriv.h"
#include "effects/generated/GrSimpleTextureEffect.h"
#include "ops/GrSimpleMeshDrawOpHelper.h"
namespace {
// This is a simplified mesh drawing op that can be used in the atlas generation test.
// Please see AtlasedRectOp below.
class NonAARectOp : public GrMeshDrawOp {
protected:
using Helper = GrSimpleMeshDrawOpHelper;
public:
DEFINE_OP_CLASS_ID
// This creates an instance of a simple non-AA solid color rect-drawing Op
static std::unique_ptr<GrDrawOp> Make(GrRecordingContext* context,
GrPaint&& paint,
const SkRect& r) {
return Helper::FactoryHelper<NonAARectOp>(context, std::move(paint), r, nullptr, ClassID());
}
// This creates an instance of a simple non-AA textured rect-drawing Op
static std::unique_ptr<GrDrawOp> Make(GrRecordingContext* context,
GrPaint&& paint,
const SkRect& r,
const SkRect& local) {
return Helper::FactoryHelper<NonAARectOp>(context, std::move(paint), r, &local, ClassID());
}
const SkPMColor4f& color() const { return fColor; }
NonAARectOp(const Helper::MakeArgs& helperArgs, const SkPMColor4f& color, const SkRect& r,
const SkRect* localRect, int32_t classID)
: INHERITED(classID)
, fColor(color)
, fHasLocalRect(SkToBool(localRect))
, fRect(r)
, fHelper(helperArgs, GrAAType::kNone) {
if (fHasLocalRect) {
fLocalQuad = GrQuad(*localRect);
}
// Choose some conservative values for aa bloat and zero area.
this->setBounds(r, HasAABloat::kYes, IsZeroArea::kYes);
}
const char* name() const override { return "NonAARectOp"; }
void visitProxies(const VisitProxyFunc& func, VisitorType) const override {
fHelper.visitProxies(func);
}
FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; }
GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip*,
GrFSAAType fsaaType, GrClampType clampType) override {
// Set the color to unknown because the subclass may change the color later.
GrProcessorAnalysisColor gpColor;
gpColor.setToUnknown();
// We ignore the clip so pass this rather than the GrAppliedClip param.
static GrAppliedClip kNoClip;
return fHelper.finalizeProcessors(
caps, &kNoClip, fsaaType, clampType, GrProcessorAnalysisCoverage::kNone, &gpColor);
}
protected:
SkPMColor4f fColor;
bool fHasLocalRect;
GrQuad fLocalQuad;
SkRect fRect;
private:
void onPrepareDraws(Target* target) override {
using namespace GrDefaultGeoProcFactory;
// The vertex attrib order is always pos, color, local coords.
static const int kColorOffset = sizeof(SkPoint);
static const int kLocalOffset = sizeof(SkPoint) + sizeof(GrColor);
sk_sp<GrGeometryProcessor> gp =
GrDefaultGeoProcFactory::Make(target->caps().shaderCaps(),
Color::kPremulGrColorAttribute_Type,
Coverage::kSolid_Type,
fHasLocalRect ? LocalCoords::kHasExplicit_Type
: LocalCoords::kUnused_Type,
SkMatrix::I());
if (!gp) {
SkDebugf("Couldn't create GrGeometryProcessor for GrAtlasedOp\n");
return;
}
size_t vertexStride = gp->vertexStride();
sk_sp<const GrBuffer> indexBuffer;
int firstIndex;
uint16_t* indices = target->makeIndexSpace(6, &indexBuffer, &firstIndex);
if (!indices) {
SkDebugf("Indices could not be allocated for GrAtlasedOp.\n");
return;
}
sk_sp<const GrBuffer> vertexBuffer;
int firstVertex;
void* vertices = target->makeVertexSpace(vertexStride, 4, &vertexBuffer, &firstVertex);
if (!vertices) {
SkDebugf("Vertices could not be allocated for GrAtlasedOp.\n");
return;
}
// Setup indices
indices[0] = 0;
indices[1] = 1;
indices[2] = 2;
indices[3] = 2;
indices[4] = 1;
indices[5] = 3;
// Setup positions
SkPoint* position = (SkPoint*) vertices;
SkPointPriv::SetRectTriStrip(position, fRect, vertexStride);
// Setup vertex colors
GrColor* color = (GrColor*)((intptr_t)vertices + kColorOffset);
for (int i = 0; i < 4; ++i) {
*color = fColor.toBytes_RGBA();
color = (GrColor*)((intptr_t)color + vertexStride);
}
// Setup local coords
if (fHasLocalRect) {
SkPoint* coords = (SkPoint*)((intptr_t) vertices + kLocalOffset);
for (int i = 0; i < 4; i++) {
*coords = fLocalQuad.point(i);
coords = (SkPoint*)((intptr_t) coords + vertexStride);
}
}
GrMesh* mesh = target->allocMesh(GrPrimitiveType::kTriangles);
mesh->setIndexed(indexBuffer, 6, firstIndex, 0, 3, GrPrimitiveRestart::kNo);
mesh->setVertexData(vertexBuffer, firstVertex);
target->recordDraw(std::move(gp), mesh);
}
void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override {
fHelper.executeDrawsAndUploads(this, flushState, chainBounds);
}
Helper fHelper;
typedef GrMeshDrawOp INHERITED;
};
} // anonymous namespace
static constexpr SkRect kEmptyRect = SkRect::MakeEmpty();
namespace {
/*
* Atlased ops just draw themselves as textured rects with the texture pixels being
* pulled out of the atlas. Their color is based on their ID.
*/
class AtlasedRectOp final : public NonAARectOp {
public:
DEFINE_OP_CLASS_ID
~AtlasedRectOp() override {
fID = -1;
}
const char* name() const override { return "AtlasedRectOp"; }
int id() const { return fID; }
static std::unique_ptr<AtlasedRectOp> Make(GrContext* context,
GrPaint&& paint,
const SkRect& r,
int id) {
GrDrawOp* op = Helper::FactoryHelper<AtlasedRectOp>(context, std::move(paint),
r, id).release();
return std::unique_ptr<AtlasedRectOp>(static_cast<AtlasedRectOp*>(op));
}
// We set the initial color of the NonAARectOp based on the ID.
// Note that we force creation of a NonAARectOp that has local coords in anticipation of
// pulling from the atlas.
AtlasedRectOp(const Helper::MakeArgs& helperArgs, const SkPMColor4f& color, const SkRect& r,
int id)
: INHERITED(helperArgs, SkPMColor4f::FromBytes_RGBA(kColors[id]), r, &kEmptyRect,
ClassID())
, fID(id)
, fNext(nullptr) {
SkASSERT(fID < kMaxIDs);
}
void setColor(const SkPMColor4f& color) { fColor = color; }
void setLocalRect(const SkRect& localRect) {
SkASSERT(fHasLocalRect); // This should've been created to anticipate this
fLocalQuad = GrQuad(localRect);
}
AtlasedRectOp* next() const { return fNext; }
void setNext(AtlasedRectOp* next) {
fNext = next;
}
private:
static const int kMaxIDs = 9;
static const GrColor kColors[kMaxIDs];
int fID;
// The Atlased ops have an internal singly-linked list of ops that land in the same opList
AtlasedRectOp* fNext;
typedef NonAARectOp INHERITED;
};
} // anonymous namespace
const GrColor AtlasedRectOp::kColors[kMaxIDs] = {
GrColorPackRGBA(255, 0, 0, 255),
GrColorPackRGBA(0, 255, 0, 255),
GrColorPackRGBA(0, 0, 255, 255),
GrColorPackRGBA(0, 255, 255, 255),
GrColorPackRGBA(255, 0, 255, 255),
GrColorPackRGBA(255, 255, 0, 255),
GrColorPackRGBA(0, 0, 0, 255),
GrColorPackRGBA(128, 128, 128, 255),
GrColorPackRGBA(255, 255, 255, 255)
};
static const int kDrawnTileSize = 16;
/*
* Rather than performing any rect packing, this atlaser just lays out constant-sized
* tiles in an Nx1 row
*/
static const int kAtlasTileSize = 2;
/*
* This class aggregates the op information required for atlasing
*/
class AtlasObject final : public GrOnFlushCallbackObject {
public:
AtlasObject() : fDone(false) { }
~AtlasObject() override {
SkASSERT(fDone);
}
void markAsDone() {
fDone = true;
}
// Insert the new op in an internal singly-linked list for 'opListID'
void addOp(uint32_t opListID, AtlasedRectOp* op) {
LinkedListHeader* header = nullptr;
for (int i = 0; i < fOps.count(); ++i) {
if (opListID == fOps[i].fID) {
header = &(fOps[i]);
}
}
if (!header) {
fOps.push_back({opListID, nullptr});
header = &(fOps[fOps.count()-1]);
}
op->setNext(header->fHead);
header->fHead = op;
}
int numOps() const { return fOps.count(); }
// Get the fully lazy proxy that is backing the atlas. Its actual width isn't
// known until flush time.
sk_sp<GrTextureProxy> getAtlasProxy(GrProxyProvider* proxyProvider, const GrCaps* caps) {
if (fAtlasProxy) {
return fAtlasProxy;
}
const GrBackendFormat format = caps->getBackendFormatFromColorType(kRGBA_8888_SkColorType);
fAtlasProxy = GrProxyProvider::MakeFullyLazyProxy(
[](GrResourceProvider* resourceProvider)
-> GrSurfaceProxy::LazyInstantiationResult {
GrSurfaceDesc desc;
desc.fFlags = kRenderTarget_GrSurfaceFlag;
// TODO: until partial flushes in MDB lands we're stuck having
// all 9 atlas draws occur
desc.fWidth = 9 /*this->numOps()*/ * kAtlasTileSize;
desc.fHeight = kAtlasTileSize;
desc.fConfig = kRGBA_8888_GrPixelConfig;
auto texture = resourceProvider->createTexture(
desc, SkBudgeted::kYes, GrResourceProvider::Flags::kNoPendingIO);
return std::move(texture);
},
format,
GrProxyProvider::Renderable::kYes,
kBottomLeft_GrSurfaceOrigin,
kRGBA_8888_GrPixelConfig,
*proxyProvider->caps());
return fAtlasProxy;
}
/*
* This callback creates the atlas and updates the AtlasedRectOps to read from it
*/
void preFlush(GrOnFlushResourceProvider* resourceProvider,
const uint32_t* opListIDs, int numOpListIDs,
SkTArray<sk_sp<GrRenderTargetContext>>* results) override {
SkASSERT(!results->count());
// Until MDB is landed we will most-likely only have one opList.
SkTDArray<LinkedListHeader*> lists;
for (int i = 0; i < numOpListIDs; ++i) {
if (LinkedListHeader* list = this->getList(opListIDs[i])) {
lists.push_back(list);
}
}
if (!lists.count()) {
return; // nothing to atlas
}
if (!resourceProvider->instatiateProxy(fAtlasProxy.get())) {
return;
}
// At this point all the GrAtlasedOp's should have lined up to read from 'atlasDest' and
// there should either be two writes to clear it or no writes.
SkASSERT(9 == fAtlasProxy->getPendingReadCnt_TestOnly());
SkASSERT(2 == fAtlasProxy->getPendingWriteCnt_TestOnly() ||
0 == fAtlasProxy->getPendingWriteCnt_TestOnly());
sk_sp<GrRenderTargetContext> rtc = resourceProvider->makeRenderTargetContext(
fAtlasProxy,
nullptr, nullptr);
// clear the atlas
rtc->clear(nullptr, SK_PMColor4fTRANSPARENT,
GrRenderTargetContext::CanClearFullscreen::kYes);
int blocksInAtlas = 0;
for (int i = 0; i < lists.count(); ++i) {
for (AtlasedRectOp* op = lists[i]->fHead; op; op = op->next()) {
SkIRect r = SkIRect::MakeXYWH(blocksInAtlas*kAtlasTileSize, 0,
kAtlasTileSize, kAtlasTileSize);
// For now, we avoid the resource buffer issues and just use clears
#if 1
rtc->clear(&r, op->color(), GrRenderTargetContext::CanClearFullscreen::kNo);
#else
GrPaint paint;
paint.setColor4f(op->color());
std::unique_ptr<GrDrawOp> drawOp(NonAARectOp::Make(std::move(paint),
SkRect::Make(r)));
rtc->priv().testingOnly_addDrawOp(std::move(drawOp));
#endif
blocksInAtlas++;
// Set the atlased Op's color to white (so we know we're not using it for
// the final draw).
op->setColor(SK_PMColor4fWHITE);
// Set the atlased Op's localRect to point to where it landed in the atlas
op->setLocalRect(SkRect::Make(r));
}
// We've updated all these ops and we certainly don't want to process them again
this->clearOpsFor(lists[i]);
}
results->push_back(std::move(rtc));
}
private:
typedef struct {
uint32_t fID;
AtlasedRectOp* fHead;
} LinkedListHeader;
LinkedListHeader* getList(uint32_t opListID) {
for (int i = 0; i < fOps.count(); ++i) {
if (opListID == fOps[i].fID) {
return &(fOps[i]);
}
}
return nullptr;
}
void clearOpsFor(LinkedListHeader* header) {
// The AtlasedRectOps have yet to execute (and this class doesn't own them) so just
// forget about them in the laziest way possible.
header->fHead = nullptr;
header->fID = 0; // invalid opList ID
}
// Each opList containing AtlasedRectOps gets its own internal singly-linked list
SkTDArray<LinkedListHeader> fOps;
// The fully lazy proxy for the atlas
sk_sp<GrTextureProxy> fAtlasProxy;
// Set to true when the testing harness expects this object to be no longer used
bool fDone;
};
// This creates an off-screen rendertarget whose ops which eventually pull from the atlas.
static sk_sp<GrTextureProxy> make_upstream_image(GrContext* context, AtlasObject* object, int start,
sk_sp<GrTextureProxy> atlasProxy) {
const GrBackendFormat format =
context->priv().caps()->getBackendFormatFromColorType(kRGBA_8888_SkColorType);
sk_sp<GrRenderTargetContext> rtc(context->priv().makeDeferredRenderTargetContext(
format,
SkBackingFit::kApprox,
3*kDrawnTileSize,
kDrawnTileSize,
kRGBA_8888_GrPixelConfig,
nullptr));
rtc->clear(nullptr, { 1, 0, 0, 1 }, GrRenderTargetContext::CanClearFullscreen::kYes);
for (int i = 0; i < 3; ++i) {
SkRect r = SkRect::MakeXYWH(i*kDrawnTileSize, 0, kDrawnTileSize, kDrawnTileSize);
auto fp = GrSimpleTextureEffect::Make(atlasProxy, SkMatrix::I());
GrPaint paint;
paint.addColorFragmentProcessor(std::move(fp));
paint.setPorterDuffXPFactory(SkBlendMode::kSrc);
std::unique_ptr<AtlasedRectOp> op(AtlasedRectOp::Make(context,
std::move(paint), r, start + i));
AtlasedRectOp* sparePtr = op.get();
uint32_t opListID;
rtc->priv().testingOnly_addDrawOp(GrNoClip(), std::move(op),
[&opListID](GrOp* op, uint32_t id) { opListID = id; });
SkASSERT(SK_InvalidUniqueID != opListID);
object->addOp(opListID, sparePtr);
}
return rtc->asTextureProxyRef();
}
// Enable this if you want to debug the final draws w/o having the atlasCallback create the
// atlas
#if 0
#include "SkGrPriv.h"
#include "SkImageEncoder.h"
#include "ToolUtils.h"
static void save_bm(const SkBitmap& bm, const char name[]) {
bool result = ToolUtils::EncodeImageToFile(name, bm, SkEncodedImageFormat::kPNG, 100);
SkASSERT(result);
}
sk_sp<GrTextureProxy> pre_create_atlas(GrContext* context) {
SkBitmap bm;
bm.allocN32Pixels(18, 2, true);
bm.erase(SK_ColorRED, SkIRect::MakeXYWH(0, 0, 2, 2));
bm.erase(SK_ColorGREEN, SkIRect::MakeXYWH(2, 0, 2, 2));
bm.erase(SK_ColorBLUE, SkIRect::MakeXYWH(4, 0, 2, 2));
bm.erase(SK_ColorCYAN, SkIRect::MakeXYWH(6, 0, 2, 2));
bm.erase(SK_ColorMAGENTA, SkIRect::MakeXYWH(8, 0, 2, 2));
bm.erase(SK_ColorYELLOW, SkIRect::MakeXYWH(10, 0, 2, 2));
bm.erase(SK_ColorBLACK, SkIRect::MakeXYWH(12, 0, 2, 2));
bm.erase(SK_ColorGRAY, SkIRect::MakeXYWH(14, 0, 2, 2));
bm.erase(SK_ColorWHITE, SkIRect::MakeXYWH(16, 0, 2, 2));
#if 1
save_bm(bm, "atlas-fake.png");
#endif
GrSurfaceDesc desc = GrImageInfoToSurfaceDesc(bm.info());
desc.fFlags |= kRenderTarget_GrSurfaceFlag;
sk_sp<GrSurfaceProxy> tmp = GrSurfaceProxy::MakeDeferred(*context->caps(),
context->textureProvider(),
desc, SkBudgeted::kYes,
bm.getPixels(), bm.rowBytes());
return sk_ref_sp(tmp->asTextureProxy());
}
#endif
static void test_color(skiatest::Reporter* reporter, const SkBitmap& bm, int x, SkColor expected) {
SkColor readback = bm.getColor(x, kDrawnTileSize/2);
REPORTER_ASSERT(reporter, expected == readback);
if (expected != readback) {
SkDebugf("Color mismatch: %x %x\n", expected, readback);
}
}
/*
* For the atlasing test we make a DAG that looks like:
*
* RT1 with ops: 0,1,2 RT2 with ops: 3,4,5 RT3 with ops: 6,7,8
* \ /
* \ /
* RT4
* We then flush RT4 and expect only ops 0-5 to be atlased together.
* Each op is just a solid colored rect so both the atlas and the final image should appear as:
* R G B C M Y
* with the atlas having width = 6*kAtlasTileSize and height = kAtlasTileSize.
*
* Note: until partial flushes in MDB lands, the atlas will actually have width= 9*kAtlasTileSize
* and look like:
* R G B C M Y K Grey White
*/
DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(OnFlushCallbackTest, reporter, ctxInfo) {
static const int kNumProxies = 3;
GrContext* context = ctxInfo.grContext();
auto proxyProvider = context->priv().proxyProvider();
AtlasObject object;
context->priv().addOnFlushCallbackObject(&object);
sk_sp<GrTextureProxy> proxies[kNumProxies];
for (int i = 0; i < kNumProxies; ++i) {
proxies[i] = make_upstream_image(context, &object, i*3,
object.getAtlasProxy(proxyProvider,
context->priv().caps()));
}
static const int kFinalWidth = 6*kDrawnTileSize;
static const int kFinalHeight = kDrawnTileSize;
const GrBackendFormat format =
context->priv().caps()->getBackendFormatFromColorType(kRGBA_8888_SkColorType);
sk_sp<GrRenderTargetContext> rtc(context->priv().makeDeferredRenderTargetContext(
format,
SkBackingFit::kApprox,
kFinalWidth,
kFinalHeight,
kRGBA_8888_GrPixelConfig,
nullptr));
rtc->clear(nullptr, SK_PMColor4fWHITE, GrRenderTargetContext::CanClearFullscreen::kYes);
// Note that this doesn't include the third texture proxy
for (int i = 0; i < kNumProxies-1; ++i) {
SkRect r = SkRect::MakeXYWH(i*3*kDrawnTileSize, 0, 3*kDrawnTileSize, kDrawnTileSize);
SkMatrix t = SkMatrix::MakeTrans(-i*3*kDrawnTileSize, 0);
GrPaint paint;
auto fp = GrSimpleTextureEffect::Make(std::move(proxies[i]), t);
paint.setPorterDuffXPFactory(SkBlendMode::kSrc);
paint.addColorFragmentProcessor(std::move(fp));
rtc->drawRect(GrNoClip(), std::move(paint), GrAA::kNo, SkMatrix::I(), r);
}
rtc->flush(SkSurface::BackendSurfaceAccess::kNoAccess, GrFlushInfo());
SkBitmap readBack;
readBack.allocN32Pixels(kFinalWidth, kFinalHeight);
SkDEBUGCODE(bool result =) rtc->readPixels(readBack.info(), readBack.getPixels(),
readBack.rowBytes(), 0, 0);
SkASSERT(result);
context->priv().testingOnly_flushAndRemoveOnFlushCallbackObject(&object);
object.markAsDone();
int x = kDrawnTileSize/2;
test_color(reporter, readBack, x, SK_ColorRED);
x += kDrawnTileSize;
test_color(reporter, readBack, x, SK_ColorGREEN);
x += kDrawnTileSize;
test_color(reporter, readBack, x, SK_ColorBLUE);
x += kDrawnTileSize;
test_color(reporter, readBack, x, SK_ColorCYAN);
x += kDrawnTileSize;
test_color(reporter, readBack, x, SK_ColorMAGENTA);
x += kDrawnTileSize;
test_color(reporter, readBack, x, SK_ColorYELLOW);
}