| /* |
| * Copyright 2016 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include <cmath> |
| #include "gm.h" |
| #include "Resources.h" |
| #include "SkCodec.h" |
| #include "SkColorSpace_Base.h" |
| #include "SkColorSpace_A2B.h" |
| #include "SkColorSpacePriv.h" |
| #include "SkData.h" |
| #include "SkFloatingPoint.h" |
| #include "SkImageInfo.h" |
| #include "SkScalar.h" |
| #include "SkSRGB.h" |
| #include "SkStream.h" |
| #include "SkSurface.h" |
| #include "SkTypes.h" |
| |
| static inline void interp_3d_clut(float dst[3], float src[3], const SkColorLookUpTable* colorLUT) { |
| // Call the src components x, y, and z. |
| uint8_t maxX = colorLUT->fGridPoints[0] - 1; |
| uint8_t maxY = colorLUT->fGridPoints[1] - 1; |
| uint8_t maxZ = colorLUT->fGridPoints[2] - 1; |
| |
| // An approximate index into each of the three dimensions of the table. |
| float x = src[0] * maxX; |
| float y = src[1] * maxY; |
| float z = src[2] * maxZ; |
| |
| // This gives us the low index for our interpolation. |
| int ix = sk_float_floor2int(x); |
| int iy = sk_float_floor2int(y); |
| int iz = sk_float_floor2int(z); |
| |
| // Make sure the low index is not also the max index. |
| ix = (maxX == ix) ? ix - 1 : ix; |
| iy = (maxY == iy) ? iy - 1 : iy; |
| iz = (maxZ == iz) ? iz - 1 : iz; |
| |
| // Weighting factors for the interpolation. |
| float diffX = x - ix; |
| float diffY = y - iy; |
| float diffZ = z - iz; |
| |
| // Constants to help us navigate the 3D table. |
| // Ex: Assume x = a, y = b, z = c. |
| // table[a * n001 + b * n010 + c * n100] logically equals table[a][b][c]. |
| const int n000 = 0; |
| const int n001 = 3 * colorLUT->fGridPoints[1] * colorLUT->fGridPoints[2]; |
| const int n010 = 3 * colorLUT->fGridPoints[2]; |
| const int n011 = n001 + n010; |
| const int n100 = 3; |
| const int n101 = n100 + n001; |
| const int n110 = n100 + n010; |
| const int n111 = n110 + n001; |
| |
| // Base ptr into the table. |
| const float* ptr = &(colorLUT->table()[ix*n001 + iy*n010 + iz*n100]); |
| |
| // The code below performs a tetrahedral interpolation for each of the three |
| // dst components. Once the tetrahedron containing the interpolation point is |
| // identified, the interpolation is a weighted sum of grid values at the |
| // vertices of the tetrahedron. The claim is that tetrahedral interpolation |
| // provides a more accurate color conversion. |
| // blogs.mathworks.com/steve/2006/11/24/tetrahedral-interpolation-for-colorspace-conversion/ |
| // |
| // I have one test image, and visually I can't tell the difference between |
| // tetrahedral and trilinear interpolation. In terms of computation, the |
| // tetrahedral code requires more branches but less computation. The |
| // SampleICC library provides an option for the client to choose either |
| // tetrahedral or trilinear. |
| for (int i = 0; i < 3; i++) { |
| if (diffZ < diffY) { |
| if (diffZ < diffX) { |
| dst[i] = (ptr[n000] + diffZ * (ptr[n110] - ptr[n010]) + |
| diffY * (ptr[n010] - ptr[n000]) + |
| diffX * (ptr[n111] - ptr[n110])); |
| } else if (diffY < diffX) { |
| dst[i] = (ptr[n000] + diffZ * (ptr[n111] - ptr[n011]) + |
| diffY * (ptr[n011] - ptr[n001]) + |
| diffX * (ptr[n001] - ptr[n000])); |
| } else { |
| dst[i] = (ptr[n000] + diffZ * (ptr[n111] - ptr[n011]) + |
| diffY * (ptr[n010] - ptr[n000]) + |
| diffX * (ptr[n011] - ptr[n010])); |
| } |
| } else { |
| if (diffZ < diffX) { |
| dst[i] = (ptr[n000] + diffZ * (ptr[n101] - ptr[n001]) + |
| diffY * (ptr[n111] - ptr[n101]) + |
| diffX * (ptr[n001] - ptr[n000])); |
| } else if (diffY < diffX) { |
| dst[i] = (ptr[n000] + diffZ * (ptr[n100] - ptr[n000]) + |
| diffY * (ptr[n111] - ptr[n101]) + |
| diffX * (ptr[n101] - ptr[n100])); |
| } else { |
| dst[i] = (ptr[n000] + diffZ * (ptr[n100] - ptr[n000]) + |
| diffY * (ptr[n110] - ptr[n100]) + |
| diffX * (ptr[n111] - ptr[n110])); |
| } |
| } |
| |
| // Increment the table ptr in order to handle the next component. |
| // Note that this is the how table is designed: all of nXXX |
| // variables are multiples of 3 because there are 3 output |
| // components. |
| ptr++; |
| } |
| } |
| |
| |
| /** |
| * This tests decoding from a Lab source image and displays on the left |
| * the image as raw RGB values, and on the right a Lab PCS. |
| * It currently does NOT apply a/b/m-curves, as in the .icc profile |
| * We are testing it on these are all identity transforms. |
| */ |
| class LabPCSDemoGM : public skiagm::GM { |
| public: |
| LabPCSDemoGM() |
| : fWidth(1080) |
| , fHeight(480) |
| {} |
| |
| protected: |
| |
| |
| SkString onShortName() override { |
| return SkString("labpcsdemo"); |
| } |
| |
| SkISize onISize() override { |
| return SkISize::Make(fWidth, fHeight); |
| } |
| |
| void onDraw(SkCanvas* canvas) override { |
| canvas->drawColor(SK_ColorGREEN); |
| const char* filename = "brickwork-texture.jpg"; |
| renderImage(canvas, filename, 0, false); |
| renderImage(canvas, filename, 1, true); |
| } |
| |
| void renderImage(SkCanvas* canvas, const char* filename, int col, bool convertLabToXYZ) { |
| SkBitmap bitmap; |
| SkStream* stream(GetResourceAsStream(filename)); |
| if (stream == nullptr) { |
| return; |
| } |
| std::unique_ptr<SkCodec> codec(SkCodec::NewFromStream(stream)); |
| |
| |
| // srgb_lab_pcs.icc is an elaborate way to specify sRGB but uses |
| // Lab as the PCS, so we can take any arbitrary image that should |
| // be sRGB and this should show a reasonable image |
| const SkString iccFilename(GetResourcePath("icc_profiles/srgb_lab_pcs.icc")); |
| sk_sp<SkData> iccData = SkData::MakeFromFileName(iccFilename.c_str()); |
| if (iccData == nullptr) { |
| return; |
| } |
| sk_sp<SkColorSpace> colorSpace = SkColorSpace::MakeICC(iccData->bytes(), iccData->size()); |
| |
| const int imageWidth = codec->getInfo().width(); |
| const int imageHeight = codec->getInfo().height(); |
| // Using nullptr as the color space instructs the codec to decode in legacy mode, |
| // meaning that we will get the raw encoded bytes without any color correction. |
| SkImageInfo imageInfo = SkImageInfo::Make(imageWidth, imageHeight, kN32_SkColorType, |
| kOpaque_SkAlphaType, nullptr); |
| bitmap.allocPixels(imageInfo); |
| codec->getPixels(imageInfo, bitmap.getPixels(), bitmap.rowBytes()); |
| if (convertLabToXYZ) { |
| SkASSERT(SkColorSpace_Base::Type::kA2B == as_CSB(colorSpace)->type()); |
| SkColorSpace_A2B& cs = *static_cast<SkColorSpace_A2B*>(colorSpace.get()); |
| const SkColorLookUpTable* colorLUT = nullptr; |
| bool printConversions = false; |
| // We're skipping evaluating the TRCs and the matrix here since they aren't |
| // in the ICC profile initially used here. |
| for (size_t e = 0; e < cs.count(); ++e) { |
| switch (cs.element(e).type()) { |
| case SkColorSpace_A2B::Element::Type::kGammaNamed: |
| SkASSERT(kLinear_SkGammaNamed == cs.element(e).gammaNamed()); |
| break; |
| case SkColorSpace_A2B::Element::Type::kGammas: |
| SkASSERT(false); |
| break; |
| case SkColorSpace_A2B::Element::Type::kCLUT: |
| colorLUT = &cs.element(e).colorLUT(); |
| break; |
| case SkColorSpace_A2B::Element::Type::kMatrix: |
| SkASSERT(cs.element(e).matrix().isIdentity()); |
| break; |
| } |
| } |
| SkASSERT(colorLUT); |
| for (int y = 0; y < imageHeight; ++y) { |
| for (int x = 0; x < imageWidth; ++x) { |
| uint32_t& p = *bitmap.getAddr32(x, y); |
| const int r = SkColorGetR(p); |
| const int g = SkColorGetG(p); |
| const int b = SkColorGetB(p); |
| if (printConversions) { |
| SkColorSpacePrintf("\nraw = (%d, %d, %d)\t", r, g, b); |
| } |
| |
| float lab[4] = { r * (1.f/255.f), g * (1.f/255.f), b * (1.f/255.f), 1.f }; |
| |
| interp_3d_clut(lab, lab, colorLUT); |
| |
| // Lab has ranges [0,100] for L and [-128,127] for a and b |
| // but the ICC profile loader stores as [0,1]. The ICC |
| // specifies an offset of -128 to convert. |
| // note: formula could be adjusted to remove this conversion, |
| // but for now let's keep it like this for clarity until |
| // an optimized version is added. |
| lab[0] *= 100.f; |
| lab[1] = 255.f * lab[1] - 128.f; |
| lab[2] = 255.f * lab[2] - 128.f; |
| if (printConversions) { |
| SkColorSpacePrintf("Lab = < %f, %f, %f >\n", lab[0], lab[1], lab[2]); |
| } |
| |
| // convert from Lab to XYZ |
| float Y = (lab[0] + 16.f) * (1.f/116.f); |
| float X = lab[1] * (1.f/500.f) + Y; |
| float Z = Y - (lab[2] * (1.f/200.f)); |
| float cubed; |
| cubed = X*X*X; |
| if (cubed > 0.008856f) |
| X = cubed; |
| else |
| X = (X - (16.f/116.f)) * (1.f/7.787f); |
| cubed = Y*Y*Y; |
| if (cubed > 0.008856f) |
| Y = cubed; |
| else |
| Y = (Y - (16.f/116.f)) * (1.f/7.787f); |
| cubed = Z*Z*Z; |
| if (cubed > 0.008856f) |
| Z = cubed; |
| else |
| Z = (Z - (16.f/116.f)) * (1.f/7.787f); |
| |
| // adjust to D50 illuminant |
| X *= 0.96422f; |
| Y *= 1.00000f; |
| Z *= 0.82521f; |
| |
| if (printConversions) { |
| SkColorSpacePrintf("XYZ = (%4f, %4f, %4f)\t", X, Y, Z); |
| } |
| |
| // convert XYZ -> linear sRGB |
| Sk4f lRGB( 3.1338561f*X - 1.6168667f*Y - 0.4906146f*Z, |
| -0.9787684f*X + 1.9161415f*Y + 0.0334540f*Z, |
| 0.0719453f*X - 0.2289914f*Y + 1.4052427f*Z, |
| 1.f); |
| // and apply sRGB gamma |
| Sk4i sRGB = sk_linear_to_srgb(lRGB); |
| if (printConversions) { |
| SkColorSpacePrintf("sRGB = (%d, %d, %d)\n", sRGB[0], sRGB[1], sRGB[2]); |
| } |
| p = SkColorSetRGB(sRGB[0], sRGB[1], sRGB[2]); |
| } |
| } |
| } |
| const int freeWidth = fWidth - 2*imageWidth; |
| const int freeHeight = fHeight - imageHeight; |
| canvas->drawBitmap(bitmap, |
| static_cast<SkScalar>((col+1) * (freeWidth / 3) + col*imageWidth), |
| static_cast<SkScalar>(freeHeight / 2)); |
| ++col; |
| } |
| |
| private: |
| const int fWidth; |
| const int fHeight; |
| |
| typedef skiagm::GM INHERITED; |
| }; |
| |
| DEF_GM( return new LabPCSDemoGM; ) |