blob: 46b2ef4e0ff64c6a29d800d1939b38fe1e5810c3 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "gm.h"
#include "SkCanvas.h"
#define WIDTH 400
#define HEIGHT 600
namespace {
// Concave test
void test_concave(SkCanvas* canvas, const SkPaint& paint) {
SkPath path;
canvas->translate(0, 0);
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
path.lineTo(SkIntToScalar(30), SkIntToScalar(30));
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
canvas->drawPath(path, paint);
}
// Reverse concave test
void test_reverse_concave(SkCanvas* canvas, const SkPaint& paint) {
SkPath path;
canvas->save();
canvas->translate(100, 0);
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
path.lineTo(SkIntToScalar(30), SkIntToScalar(30));
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
canvas->drawPath(path, paint);
canvas->restore();
}
// Bowtie (intersection)
void test_bowtie(SkCanvas* canvas, const SkPaint& paint) {
SkPath path;
canvas->save();
canvas->translate(200, 0);
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
path.lineTo(SkIntToScalar(80), SkIntToScalar(80));
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
canvas->drawPath(path, paint);
canvas->restore();
}
// "fake" bowtie (concave, but no intersection)
void test_fake_bowtie(SkCanvas* canvas, const SkPaint& paint) {
SkPath path;
canvas->save();
canvas->translate(300, 0);
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
path.lineTo(SkIntToScalar(50), SkIntToScalar(40));
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
path.lineTo(SkIntToScalar(80), SkIntToScalar(80));
path.lineTo(SkIntToScalar(50), SkIntToScalar(60));
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
canvas->drawPath(path, paint);
canvas->restore();
}
// Fish test (intersection/concave)
void test_fish(SkCanvas* canvas, const SkPaint& paint) {
SkPath path;
canvas->save();
canvas->translate(0, 100);
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
path.lineTo(SkIntToScalar(80), SkIntToScalar(80));
path.lineTo(SkIntToScalar(70), SkIntToScalar(50));
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
path.lineTo(SkIntToScalar(0), SkIntToScalar(50));
canvas->drawPath(path, paint);
canvas->restore();
}
// Collinear edges
void test_collinear_edges(SkCanvas* canvas, const SkPaint& paint) {
SkPath path;
canvas->save();
canvas->translate(100, 100);
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
path.lineTo(SkIntToScalar(50), SkIntToScalar(20));
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
path.lineTo(SkIntToScalar(50), SkIntToScalar(80));
canvas->drawPath(path, paint);
canvas->restore();
}
// Square polygon with a square hole.
void test_hole(SkCanvas* canvas, const SkPaint& paint) {
SkPath path;
canvas->save();
canvas->translate(200, 100);
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
path.lineTo(SkIntToScalar(80), SkIntToScalar(80));
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
path.moveTo(SkIntToScalar(30), SkIntToScalar(30));
path.lineTo(SkIntToScalar(30), SkIntToScalar(70));
path.lineTo(SkIntToScalar(70), SkIntToScalar(70));
path.lineTo(SkIntToScalar(70), SkIntToScalar(30));
canvas->drawPath(path, paint);
canvas->restore();
}
// Star test (self-intersecting)
void test_star(SkCanvas* canvas, const SkPaint& paint) {
SkPath path;
canvas->save();
canvas->translate(300, 100);
path.moveTo(30, 20);
path.lineTo(50, 80);
path.lineTo(70, 20);
path.lineTo(20, 57);
path.lineTo(80, 57);
path.close();
canvas->drawPath(path, paint);
canvas->restore();
}
// Stairstep with repeated vert (intersection)
void test_stairstep(SkCanvas* canvas, const SkPaint& paint) {
SkPath path;
canvas->save();
canvas->translate(0, 200);
path.moveTo(SkIntToScalar(50), SkIntToScalar(50));
path.lineTo(SkIntToScalar(50), SkIntToScalar(20));
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
path.lineTo(SkIntToScalar(50), SkIntToScalar(50));
path.lineTo(SkIntToScalar(20), SkIntToScalar(50));
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
canvas->drawPath(path, paint);
canvas->restore();
}
void test_stairstep2(SkCanvas* canvas, const SkPaint& paint) {
SkPath path;
canvas->save();
canvas->translate(100, 200);
path.moveTo(20, 60);
path.lineTo(35, 80);
path.lineTo(50, 60);
path.lineTo(65, 80);
path.lineTo(80, 60);
canvas->drawPath(path, paint);
canvas->restore();
}
// Overlapping segments
void test_overlapping(SkCanvas* canvas, const SkPaint& paint) {
SkPath path;
canvas->save();
canvas->translate(200, 200);
path.moveTo(SkIntToScalar(20), SkIntToScalar(80));
path.lineTo(SkIntToScalar(80), SkIntToScalar(80));
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
path.lineTo(SkIntToScalar(80), SkIntToScalar(30));
canvas->drawPath(path, paint);
canvas->restore();
}
// Monotone test 1 (point in the middle)
void test_monotone_1(SkCanvas* canvas, const SkPaint& paint) {
SkPath path;
canvas->save();
canvas->translate(0, 300);
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
path.quadTo(SkIntToScalar(20), SkIntToScalar(50),
SkIntToScalar(80), SkIntToScalar(50));
path.quadTo(SkIntToScalar(20), SkIntToScalar(50),
SkIntToScalar(20), SkIntToScalar(80));
canvas->drawPath(path, paint);
canvas->restore();
}
// Monotone test 2 (point at the top)
void test_monotone_2(SkCanvas* canvas, const SkPaint& paint) {
SkPath path;
canvas->save();
canvas->translate(100, 300);
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
path.lineTo(SkIntToScalar(80), SkIntToScalar(30));
path.quadTo(SkIntToScalar(20), SkIntToScalar(20),
SkIntToScalar(20), SkIntToScalar(80));
canvas->drawPath(path, paint);
canvas->restore();
}
// Monotone test 3 (point at the bottom)
void test_monotone_3(SkCanvas* canvas, const SkPaint& paint) {
SkPath path;
canvas->save();
canvas->translate(200, 300);
path.moveTo(SkIntToScalar(20), SkIntToScalar(80));
path.lineTo(SkIntToScalar(80), SkIntToScalar(70));
path.quadTo(SkIntToScalar(20), SkIntToScalar(80),
SkIntToScalar(20), SkIntToScalar(20));
canvas->drawPath(path, paint);
canvas->restore();
}
// Monotone test 4 (merging of two monotones)
void test_monotone_4(SkCanvas* canvas, const SkPaint& paint) {
SkPath path;
canvas->save();
canvas->translate(300, 300);
path.moveTo(80, 25);
path.lineTo(50, 39);
path.lineTo(20, 25);
path.lineTo(40, 45);
path.lineTo(70, 50);
path.lineTo(80, 80);
canvas->drawPath(path, paint);
canvas->restore();
}
// Monotone test 5 (aborted merging of two monotones)
void test_monotone_5(SkCanvas* canvas, const SkPaint& paint) {
SkPath path;
canvas->save();
canvas->translate(0, 400);
path.moveTo(50, 20);
path.lineTo(80, 80);
path.lineTo(50, 50);
path.lineTo(20, 80);
canvas->drawPath(path, paint);
canvas->restore();
}
// Degenerate intersection test
void test_degenerate(SkCanvas* canvas, const SkPaint& paint) {
SkPath path;
canvas->save();
canvas->translate(100, 400);
path.moveTo(50, 20);
path.lineTo(70, 30);
path.lineTo(20, 50);
path.moveTo(50, 20);
path.lineTo(80, 80);
path.lineTo(50, 80);
canvas->drawPath(path, paint);
canvas->restore();
}
// Two triangles with a coincident edge.
void test_coincident_edge(SkCanvas* canvas, const SkPaint& paint) {
SkPath path;
canvas->save();
canvas->translate(200, 400);
path.moveTo(80, 20);
path.lineTo(80, 80);
path.lineTo(20, 80);
path.moveTo(20, 20);
path.lineTo(80, 80);
path.lineTo(20, 80);
canvas->drawPath(path, paint);
canvas->restore();
}
// Bowtie with a coincident triangle (one triangle vertex coincident with the
// bowtie's intersection).
void test_bowtie_coincident_triangle(SkCanvas* canvas, const SkPaint& paint) {
SkPath path;
canvas->save();
canvas->translate(300, 400);
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
path.lineTo(SkIntToScalar(80), SkIntToScalar(80));
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
path.moveTo(SkIntToScalar(50), SkIntToScalar(50));
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
path.lineTo(SkIntToScalar(80), SkIntToScalar(80));
canvas->drawPath(path, paint);
canvas->restore();
}
// Coincident edges (big ones first, coincident vert on top).
void test_coincident_edges_1(SkCanvas* canvas, const SkPaint& paint) {
SkPath path;
canvas->save();
canvas->translate(0, 500);
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
path.lineTo(SkIntToScalar(80), SkIntToScalar(80));
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
path.lineTo(SkIntToScalar(50), SkIntToScalar(50));
path.lineTo(SkIntToScalar(20), SkIntToScalar(50));
canvas->drawPath(path, paint);
canvas->restore();
}
// Coincident edges (small ones first, coincident vert on top).
void test_coincident_edges_2(SkCanvas* canvas, const SkPaint& paint) {
SkPath path;
canvas->save();
canvas->translate(100, 500);
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
path.lineTo(SkIntToScalar(50), SkIntToScalar(50));
path.lineTo(SkIntToScalar(20), SkIntToScalar(50));
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
path.lineTo(SkIntToScalar(80), SkIntToScalar(80));
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
canvas->drawPath(path, paint);
canvas->restore();
}
// Coincident edges (small ones first, coincident vert on bottom).
void test_coincident_edges_3(SkCanvas* canvas, const SkPaint& paint) {
SkPath path;
canvas->save();
canvas->translate(200, 500);
path.moveTo(SkIntToScalar(20), SkIntToScalar(80));
path.lineTo(SkIntToScalar(20), SkIntToScalar(50));
path.lineTo(SkIntToScalar(50), SkIntToScalar(50));
path.moveTo(SkIntToScalar(20), SkIntToScalar(80));
path.lineTo(SkIntToScalar(20), SkIntToScalar(20));
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
canvas->drawPath(path, paint);
canvas->restore();
}
// Coincident edges (big ones first, coincident vert on bottom).
void test_coincident_edges_4(SkCanvas* canvas, const SkPaint& paint) {
SkPath path;
canvas->save();
canvas->translate(300, 500);
path.moveTo(SkIntToScalar(20), SkIntToScalar(80));
path.lineTo(SkIntToScalar(20), SkIntToScalar(20));
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
path.moveTo(SkIntToScalar(20), SkIntToScalar(80));
path.lineTo(SkIntToScalar(20), SkIntToScalar(50));
path.lineTo(SkIntToScalar(50), SkIntToScalar(50));
canvas->drawPath(path, paint);
canvas->restore();
}
};
class ConcavePathsGM : public skiagm::GM {
public:
ConcavePathsGM() {}
protected:
SkString onShortName() override {
return SkString("concavepaths");
}
SkISize onISize() override {
return SkISize::Make(WIDTH, HEIGHT);
}
void onDraw(SkCanvas* canvas) override {
SkPaint paint;
paint.setAntiAlias(true);
paint.setStyle(SkPaint::kFill_Style);
test_concave(canvas, paint);
test_reverse_concave(canvas, paint);
test_bowtie(canvas, paint);
test_fake_bowtie(canvas, paint);
test_fish(canvas, paint);
test_collinear_edges(canvas, paint);
test_hole(canvas, paint);
test_star(canvas, paint);
test_stairstep(canvas, paint);
test_stairstep2(canvas, paint);
test_overlapping(canvas, paint);
test_monotone_1(canvas, paint);
test_monotone_2(canvas, paint);
test_monotone_3(canvas, paint);
test_monotone_4(canvas, paint);
test_monotone_5(canvas, paint);
test_degenerate(canvas, paint);
test_coincident_edge(canvas, paint);
test_bowtie_coincident_triangle(canvas, paint);
test_coincident_edges_1(canvas, paint);
test_coincident_edges_2(canvas, paint);
test_coincident_edges_3(canvas, paint);
test_coincident_edges_4(canvas, paint);
}
private:
typedef skiagm::GM INHERITED;
};
static skiagm::GM* F0(void*) { return new ConcavePathsGM; }
static skiagm::GMRegistry R0(F0);