blob: 3e73393d140f67dbafbe8c1a6d638f1396619b2b [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Test.h"
#include "SkBitmap.h"
#include "SkBitmapProcShader.h"
#include "SkDeferredCanvas.h"
#include "SkDevice.h"
#include "SkGradientShader.h"
#include "SkShader.h"
#include "SkSurface.h"
#if SK_SUPPORT_GPU
#include "GrContextFactory.h"
#else
class GrContextFactory;
#endif
static const int gWidth = 2;
static const int gHeight = 2;
static void create(SkBitmap* bm, SkBitmap::Config config, SkColor color) {
bm->setConfig(config, gWidth, gHeight);
bm->allocPixels();
bm->eraseColor(color);
}
static void TestDeferredCanvasBitmapAccess(skiatest::Reporter* reporter) {
SkBitmap store;
create(&store, SkBitmap::kARGB_8888_Config, 0xFFFFFFFF);
SkDevice device(store);
SkDeferredCanvas canvas(&device);
canvas.clear(0x00000000);
SkAutoLockPixels alp(store);
REPORTER_ASSERT(reporter, store.getColor(0,0) == 0xFFFFFFFF); //verify that clear was deferred
SkBitmap accessed = canvas.getDevice()->accessBitmap(false);
REPORTER_ASSERT(reporter, store.getColor(0,0) == 0x00000000); //verify that clear was executed
REPORTER_ASSERT(reporter, accessed.pixelRef() == store.pixelRef());
}
static void TestDeferredCanvasFlush(skiatest::Reporter* reporter) {
SkBitmap store;
create(&store, SkBitmap::kARGB_8888_Config, 0xFFFFFFFF);
SkDevice device(store);
SkDeferredCanvas canvas(&device);
canvas.clear(0x00000000);
SkAutoLockPixels alp(store);
REPORTER_ASSERT(reporter, store.getColor(0,0) == 0xFFFFFFFF); //verify that clear was deferred
canvas.flush();
REPORTER_ASSERT(reporter, store.getColor(0,0) == 0x00000000); //verify that clear was executed
}
static void TestDeferredCanvasFreshFrame(skiatest::Reporter* reporter) {
SkBitmap store;
SkRect fullRect;
fullRect.setXYWH(SkIntToScalar(0), SkIntToScalar(0), SkIntToScalar(gWidth),
SkIntToScalar(gHeight));
SkRect partialRect;
partialRect.setXYWH(SkIntToScalar(0), SkIntToScalar(0),
SkIntToScalar(1), SkIntToScalar(1));
create(&store, SkBitmap::kARGB_8888_Config, 0xFFFFFFFF);
SkDevice device(store);
SkDeferredCanvas canvas(&device);
// verify that frame is intially fresh
REPORTER_ASSERT(reporter, canvas.isFreshFrame());
// no clearing op since last call to isFreshFrame -> not fresh
REPORTER_ASSERT(reporter, !canvas.isFreshFrame());
// Verify that clear triggers a fresh frame
canvas.clear(0x00000000);
REPORTER_ASSERT(reporter, canvas.isFreshFrame());
// Verify that clear with saved state triggers a fresh frame
canvas.save(SkCanvas::kMatrixClip_SaveFlag);
canvas.clear(0x00000000);
canvas.restore();
REPORTER_ASSERT(reporter, canvas.isFreshFrame());
// Verify that clear within a layer does NOT trigger a fresh frame
canvas.saveLayer(NULL, NULL, SkCanvas::kARGB_ClipLayer_SaveFlag);
canvas.clear(0x00000000);
canvas.restore();
REPORTER_ASSERT(reporter, !canvas.isFreshFrame());
// Verify that a clear with clipping triggers a fresh frame
// (clear is not affected by clipping)
canvas.save(SkCanvas::kMatrixClip_SaveFlag);
canvas.clipRect(partialRect, SkRegion::kIntersect_Op, false);
canvas.clear(0x00000000);
canvas.restore();
REPORTER_ASSERT(reporter, canvas.isFreshFrame());
// Verify that full frame rects with different forms of opaque paint
// trigger frames to be marked as fresh
{
SkPaint paint;
paint.setStyle(SkPaint::kFill_Style);
paint.setAlpha(255);
canvas.drawRect(fullRect, paint);
REPORTER_ASSERT(reporter, canvas.isFreshFrame());
}
{
SkPaint paint;
paint.setStyle(SkPaint::kFill_Style);
paint.setAlpha(255);
paint.setXfermodeMode(SkXfermode::kSrcIn_Mode);
canvas.drawRect(fullRect, paint);
REPORTER_ASSERT(reporter, !canvas.isFreshFrame());
}
{
SkPaint paint;
paint.setStyle(SkPaint::kFill_Style);
SkBitmap bmp;
create(&bmp, SkBitmap::kARGB_8888_Config, 0xFFFFFFFF);
bmp.setIsOpaque(true);
SkShader* shader = SkShader::CreateBitmapShader(bmp,
SkShader::kClamp_TileMode, SkShader::kClamp_TileMode);
paint.setShader(shader)->unref();
canvas.drawRect(fullRect, paint);
REPORTER_ASSERT(reporter, canvas.isFreshFrame());
}
// Verify that full frame rects with different forms of non-opaque paint
// do not trigger frames to be marked as fresh
{
SkPaint paint;
paint.setStyle(SkPaint::kFill_Style);
paint.setAlpha(254);
canvas.drawRect(fullRect, paint);
REPORTER_ASSERT(reporter, !canvas.isFreshFrame());
}
{
SkPaint paint;
paint.setStyle(SkPaint::kFill_Style);
// Defining a cone that partially overlaps the canvas
const SkPoint pt1 = SkPoint::Make(SkIntToScalar(0), SkIntToScalar(0));
const SkScalar r1 = SkIntToScalar(1);
const SkPoint pt2 = SkPoint::Make(SkIntToScalar(10), SkIntToScalar(0));
const SkScalar r2 = SkIntToScalar(5);
const SkColor colors[2] = {SK_ColorWHITE, SK_ColorWHITE};
const SkScalar pos[2] = {0, SK_Scalar1};
SkShader* shader = SkGradientShader::CreateTwoPointConical(
pt1, r1, pt2, r2, colors, pos, 2, SkShader::kClamp_TileMode, NULL);
paint.setShader(shader)->unref();
canvas.drawRect(fullRect, paint);
REPORTER_ASSERT(reporter, !canvas.isFreshFrame());
}
{
SkPaint paint;
paint.setStyle(SkPaint::kFill_Style);
SkBitmap bmp;
create(&bmp, SkBitmap::kARGB_8888_Config, 0xFFFFFFFF);
bmp.setIsOpaque(false);
SkShader* shader = SkShader::CreateBitmapShader(bmp,
SkShader::kClamp_TileMode, SkShader::kClamp_TileMode);
paint.setShader(shader)->unref();
canvas.drawRect(fullRect, paint);
REPORTER_ASSERT(reporter, !canvas.isFreshFrame());
}
// Verify that incomplete coverage does not trigger a fresh frame
{
SkPaint paint;
paint.setStyle(SkPaint::kFill_Style);
paint.setAlpha(255);
canvas.drawRect(partialRect, paint);
REPORTER_ASSERT(reporter, !canvas.isFreshFrame());
}
// Verify that incomplete coverage due to clipping does not trigger a fresh
// frame
{
canvas.save(SkCanvas::kMatrixClip_SaveFlag);
canvas.clipRect(partialRect, SkRegion::kIntersect_Op, false);
SkPaint paint;
paint.setStyle(SkPaint::kFill_Style);
paint.setAlpha(255);
canvas.drawRect(fullRect, paint);
canvas.restore();
REPORTER_ASSERT(reporter, !canvas.isFreshFrame());
}
{
canvas.save(SkCanvas::kMatrixClip_SaveFlag);
SkPaint paint;
paint.setStyle(SkPaint::kFill_Style);
paint.setAlpha(255);
SkPath path;
path.addCircle(SkIntToScalar(0), SkIntToScalar(0), SkIntToScalar(2));
canvas.clipPath(path, SkRegion::kIntersect_Op, false);
canvas.drawRect(fullRect, paint);
canvas.restore();
REPORTER_ASSERT(reporter, !canvas.isFreshFrame());
}
// Verify that stroked rect does not trigger a fresh frame
{
SkPaint paint;
paint.setStyle(SkPaint::kStroke_Style);
paint.setAlpha(255);
canvas.drawRect(fullRect, paint);
REPORTER_ASSERT(reporter, !canvas.isFreshFrame());
}
// Verify kSrcMode triggers a fresh frame even with transparent color
{
SkPaint paint;
paint.setStyle(SkPaint::kFill_Style);
paint.setAlpha(100);
paint.setXfermodeMode(SkXfermode::kSrc_Mode);
canvas.drawRect(fullRect, paint);
REPORTER_ASSERT(reporter, canvas.isFreshFrame());
}
}
class MockDevice : public SkDevice {
public:
MockDevice(const SkBitmap& bm) : SkDevice(bm) {
fDrawBitmapCallCount = 0;
}
virtual void drawBitmap(const SkDraw&, const SkBitmap&,
const SkIRect*,
const SkMatrix&, const SkPaint&) {
fDrawBitmapCallCount++;
}
int fDrawBitmapCallCount;
};
// Verifies that the deferred canvas triggers a flush when its memory
// limit is exceeded
static void TestDeferredCanvasMemoryLimit(skiatest::Reporter* reporter) {
SkBitmap store;
store.setConfig(SkBitmap::kARGB_8888_Config, 100, 100);
store.allocPixels();
MockDevice mockDevice(store);
SkDeferredCanvas canvas(&mockDevice);
canvas.setMaxRecordingStorage(160000);
SkBitmap sourceImage;
// 100 by 100 image, takes 40,000 bytes in memory
sourceImage.setConfig(SkBitmap::kARGB_8888_Config, 100, 100);
sourceImage.allocPixels();
for (int i = 0; i < 5; i++) {
sourceImage.notifyPixelsChanged(); // to force re-serialization
canvas.drawBitmap(sourceImage, 0, 0, NULL);
}
REPORTER_ASSERT(reporter, mockDevice.fDrawBitmapCallCount == 4);
}
class NotificationCounter : public SkDeferredCanvas::NotificationClient {
public:
NotificationCounter() {
fPrepareForDrawCount = fStorageAllocatedChangedCount =
fFlushedDrawCommandsCount = fSkippedPendingDrawCommandsCount = 0;
}
virtual void prepareForDraw() SK_OVERRIDE {
fPrepareForDrawCount++;
}
virtual void storageAllocatedForRecordingChanged(size_t) SK_OVERRIDE {
fStorageAllocatedChangedCount++;
}
virtual void flushedDrawCommands() SK_OVERRIDE {
fFlushedDrawCommandsCount++;
}
virtual void skippedPendingDrawCommands() SK_OVERRIDE {
fSkippedPendingDrawCommandsCount++;
}
int fPrepareForDrawCount;
int fStorageAllocatedChangedCount;
int fFlushedDrawCommandsCount;
int fSkippedPendingDrawCommandsCount;
private:
typedef SkDeferredCanvas::NotificationClient INHERITED;
};
static void TestDeferredCanvasBitmapCaching(skiatest::Reporter* reporter) {
SkBitmap store;
store.setConfig(SkBitmap::kARGB_8888_Config, 100, 100);
store.allocPixels();
SkDevice device(store);
NotificationCounter notificationCounter;
SkDeferredCanvas canvas(&device);
canvas.setNotificationClient(&notificationCounter);
const int imageCount = 2;
SkBitmap sourceImages[imageCount];
for (int i = 0; i < imageCount; i++)
{
sourceImages[i].setConfig(SkBitmap::kARGB_8888_Config, 100, 100);
sourceImages[i].allocPixels();
}
size_t bitmapSize = sourceImages[0].getSize();
canvas.drawBitmap(sourceImages[0], 0, 0, NULL);
REPORTER_ASSERT(reporter, 1 == notificationCounter.fStorageAllocatedChangedCount);
// stored bitmap + drawBitmap command
REPORTER_ASSERT(reporter, canvas.storageAllocatedForRecording() > bitmapSize);
// verify that nothing can be freed at this point
REPORTER_ASSERT(reporter, 0 == canvas.freeMemoryIfPossible(~0U));
// verify that flush leaves image in cache
REPORTER_ASSERT(reporter, 0 == notificationCounter.fFlushedDrawCommandsCount);
REPORTER_ASSERT(reporter, 0 == notificationCounter.fPrepareForDrawCount);
canvas.flush();
REPORTER_ASSERT(reporter, 1 == notificationCounter.fFlushedDrawCommandsCount);
REPORTER_ASSERT(reporter, 1 == notificationCounter.fPrepareForDrawCount);
REPORTER_ASSERT(reporter, canvas.storageAllocatedForRecording() >= bitmapSize);
// verify that after a flush, cached image can be freed
REPORTER_ASSERT(reporter, canvas.freeMemoryIfPossible(~0U) >= bitmapSize);
// Verify that caching works for avoiding multiple copies of the same bitmap
canvas.drawBitmap(sourceImages[0], 0, 0, NULL);
REPORTER_ASSERT(reporter, 2 == notificationCounter.fStorageAllocatedChangedCount);
canvas.drawBitmap(sourceImages[0], 0, 0, NULL);
REPORTER_ASSERT(reporter, 2 == notificationCounter.fStorageAllocatedChangedCount);
REPORTER_ASSERT(reporter, 1 == notificationCounter.fFlushedDrawCommandsCount);
REPORTER_ASSERT(reporter, canvas.storageAllocatedForRecording() < 2 * bitmapSize);
// Verify partial eviction based on bytesToFree
canvas.drawBitmap(sourceImages[1], 0, 0, NULL);
REPORTER_ASSERT(reporter, 1 == notificationCounter.fFlushedDrawCommandsCount);
canvas.flush();
REPORTER_ASSERT(reporter, 2 == notificationCounter.fFlushedDrawCommandsCount);
REPORTER_ASSERT(reporter, canvas.storageAllocatedForRecording() > 2 * bitmapSize);
size_t bytesFreed = canvas.freeMemoryIfPossible(1);
REPORTER_ASSERT(reporter, 2 == notificationCounter.fFlushedDrawCommandsCount);
REPORTER_ASSERT(reporter, bytesFreed >= bitmapSize);
REPORTER_ASSERT(reporter, bytesFreed < 2*bitmapSize);
// Verifiy that partial purge works, image zero is in cache but not reffed by
// a pending draw, while image 1 is locked-in.
canvas.freeMemoryIfPossible(~0U);
REPORTER_ASSERT(reporter, 2 == notificationCounter.fFlushedDrawCommandsCount);
canvas.drawBitmap(sourceImages[0], 0, 0, NULL);
canvas.flush();
canvas.drawBitmap(sourceImages[1], 0, 0, NULL);
bytesFreed = canvas.freeMemoryIfPossible(~0U);
// only one bitmap should have been freed.
REPORTER_ASSERT(reporter, bytesFreed >= bitmapSize);
REPORTER_ASSERT(reporter, bytesFreed < 2*bitmapSize);
// Clear for next test
canvas.flush();
canvas.freeMemoryIfPossible(~0U);
REPORTER_ASSERT(reporter, canvas.storageAllocatedForRecording() < bitmapSize);
// Verify the image cache is sensitive to genID bumps
canvas.drawBitmap(sourceImages[1], 0, 0, NULL);
sourceImages[1].notifyPixelsChanged();
canvas.drawBitmap(sourceImages[1], 0, 0, NULL);
REPORTER_ASSERT(reporter, canvas.storageAllocatedForRecording() > 2*bitmapSize);
// Verify that nothing in this test caused commands to be skipped
REPORTER_ASSERT(reporter, 0 == notificationCounter.fSkippedPendingDrawCommandsCount);
}
static void TestDeferredCanvasSkip(skiatest::Reporter* reporter) {
SkBitmap store;
store.setConfig(SkBitmap::kARGB_8888_Config, 100, 100);
store.allocPixels();
SkDevice device(store);
NotificationCounter notificationCounter;
SkDeferredCanvas canvas(&device);
canvas.setNotificationClient(&notificationCounter);
canvas.clear(0x0);
REPORTER_ASSERT(reporter, 1 == notificationCounter.fSkippedPendingDrawCommandsCount);
REPORTER_ASSERT(reporter, 0 == notificationCounter.fFlushedDrawCommandsCount);
canvas.flush();
REPORTER_ASSERT(reporter, 1 == notificationCounter.fSkippedPendingDrawCommandsCount);
REPORTER_ASSERT(reporter, 1 == notificationCounter.fFlushedDrawCommandsCount);
}
static void TestDeferredCanvasBitmapShaderNoLeak(skiatest::Reporter* reporter) {
// This is a regression test for crbug.com/155875
// This test covers a code path that inserts bitmaps into the bitmap heap through the
// flattening of SkBitmapProcShaders. The refcount in the bitmap heap is maintained through
// the flattening and unflattening of the shader.
SkBitmap store;
store.setConfig(SkBitmap::kARGB_8888_Config, 100, 100);
store.allocPixels();
SkDevice device(store);
SkDeferredCanvas canvas(&device);
// test will fail if nbIterations is not in sync with
// BITMAPS_TO_KEEP in SkGPipeWrite.cpp
const int nbIterations = 5;
size_t bytesAllocated = 0;
for(int pass = 0; pass < 2; ++pass) {
for(int i = 0; i < nbIterations; ++i) {
SkPaint paint;
SkBitmap paintPattern;
paintPattern.setConfig(SkBitmap::kARGB_8888_Config, 10, 10);
paintPattern.allocPixels();
paint.setShader(SkNEW_ARGS(SkBitmapProcShader,
(paintPattern, SkShader::kClamp_TileMode, SkShader::kClamp_TileMode)))->unref();
canvas.drawPaint(paint);
canvas.flush();
// In the first pass, memory allocation should be monotonically increasing as
// the bitmap heap slots fill up. In the second pass memory allocation should be
// stable as bitmap heap slots get recycled.
size_t newBytesAllocated = canvas.storageAllocatedForRecording();
if (pass == 0) {
REPORTER_ASSERT(reporter, newBytesAllocated > bytesAllocated);
bytesAllocated = newBytesAllocated;
} else {
REPORTER_ASSERT(reporter, newBytesAllocated == bytesAllocated);
}
}
}
// All cached resources should be evictable since last canvas call was flush()
canvas.freeMemoryIfPossible(~0U);
REPORTER_ASSERT(reporter, 0 == canvas.storageAllocatedForRecording());
}
static void TestDeferredCanvasBitmapSizeThreshold(skiatest::Reporter* reporter) {
SkBitmap store;
store.setConfig(SkBitmap::kARGB_8888_Config, 100, 100);
store.allocPixels();
SkBitmap sourceImage;
// 100 by 100 image, takes 40,000 bytes in memory
sourceImage.setConfig(SkBitmap::kARGB_8888_Config, 100, 100);
sourceImage.allocPixels();
// 1 under : should not store the image
{
SkDevice device(store);
SkDeferredCanvas canvas(&device);
canvas.setBitmapSizeThreshold(39999);
canvas.drawBitmap(sourceImage, 0, 0, NULL);
size_t newBytesAllocated = canvas.storageAllocatedForRecording();
REPORTER_ASSERT(reporter, newBytesAllocated == 0);
}
// exact value : should store the image
{
SkDevice device(store);
SkDeferredCanvas canvas(&device);
canvas.setBitmapSizeThreshold(40000);
canvas.drawBitmap(sourceImage, 0, 0, NULL);
size_t newBytesAllocated = canvas.storageAllocatedForRecording();
REPORTER_ASSERT(reporter, newBytesAllocated > 0);
}
// 1 over : should still store the image
{
SkDevice device(store);
SkDeferredCanvas canvas(&device);
canvas.setBitmapSizeThreshold(40001);
canvas.drawBitmap(sourceImage, 0, 0, NULL);
size_t newBytesAllocated = canvas.storageAllocatedForRecording();
REPORTER_ASSERT(reporter, newBytesAllocated > 0);
}
}
typedef void* PixelPtr;
// Returns an opaque pointer which, either points to a GrTexture or RAM pixel
// buffer. Used to test pointer equality do determine whether a surface points
// to the same pixel data storage as before.
static PixelPtr getSurfacePixelPtr(SkSurface* surface, bool useGpu) {
return useGpu ? surface->getCanvas()->getDevice()->accessBitmap(false).getTexture() :
surface->getCanvas()->getDevice()->accessBitmap(false).getPixels();
}
static void TestDeferredCanvasSurface(skiatest::Reporter* reporter, GrContextFactory* factory) {
SkImage::Info imageSpec = {
10, // width
10, // height
SkImage::kPMColor_ColorType,
SkImage::kPremul_AlphaType
};
SkSurface* surface;
bool useGpu = NULL != factory;
#if SK_SUPPORT_GPU
if (useGpu) {
GrContext* context = factory->get(GrContextFactory::kNative_GLContextType);
surface = SkSurface::NewRenderTarget(context, imageSpec);
} else {
surface = SkSurface::NewRaster(imageSpec);
}
#else
SkASSERT(!useGpu);
surface = SkSurface::NewRaster(imageSpec);
#endif
SkASSERT(NULL != surface);
SkAutoTUnref<SkSurface> aur(surface);
SkDeferredCanvas canvas(surface);
SkImage* image1 = canvas.newImageSnapshot();
SkAutoTUnref<SkImage> aur_i1(image1);
PixelPtr pixels1 = getSurfacePixelPtr(surface, useGpu);
// The following clear would normally trigger a copy on write, but
// it won't because rendering is deferred.
canvas.clear(SK_ColorBLACK);
// Obtaining a snapshot directly from the surface (as opposed to the
// SkDeferredCanvas) will not trigger a flush of deferred draw operations
// and will therefore return the same image as the previous snapshot.
SkImage* image2 = surface->newImageSnapshot();
SkAutoTUnref<SkImage> aur_i2(image2);
// Images identical because of deferral
REPORTER_ASSERT(reporter, image1->uniqueID() == image2->uniqueID());
// Now we obtain a snpshot via the deferred canvas, which triggers a flush.
// Because there is a pending clear, this will generate a different image.
SkImage* image3 = canvas.newImageSnapshot();
SkAutoTUnref<SkImage> aur_i3(image3);
REPORTER_ASSERT(reporter, image1->uniqueID() != image3->uniqueID());
// Verify that backing store is now a different buffer because of copy on
// write
PixelPtr pixels2 = getSurfacePixelPtr(surface, useGpu);
REPORTER_ASSERT(reporter, pixels1 != pixels2);
// Verify copy-on write with a draw operation that gets deferred by
// the in order draw buffer.
SkPaint paint;
canvas.drawPaint(paint);
SkImage* image4 = canvas.newImageSnapshot(); // implicit flush
SkAutoTUnref<SkImage> aur_i4(image4);
REPORTER_ASSERT(reporter, image4->uniqueID() != image3->uniqueID());
PixelPtr pixels3 = getSurfacePixelPtr(surface, useGpu);
REPORTER_ASSERT(reporter, pixels2 != pixels3);
// Verify that a direct canvas flush with a pending draw does not trigger
// a copy on write when the surface is not sharing its buffer with an
// SkImage.
canvas.clear(SK_ColorWHITE);
canvas.flush();
PixelPtr pixels4 = getSurfacePixelPtr(surface, useGpu);
canvas.drawPaint(paint);
canvas.flush();
PixelPtr pixels5 = getSurfacePixelPtr(surface, useGpu);
REPORTER_ASSERT(reporter, pixels4 == pixels5);
}
static void TestDeferredCanvas(skiatest::Reporter* reporter, GrContextFactory* factory) {
TestDeferredCanvasBitmapAccess(reporter);
TestDeferredCanvasFlush(reporter);
TestDeferredCanvasFreshFrame(reporter);
TestDeferredCanvasMemoryLimit(reporter);
TestDeferredCanvasBitmapCaching(reporter);
TestDeferredCanvasSkip(reporter);
TestDeferredCanvasBitmapShaderNoLeak(reporter);
TestDeferredCanvasBitmapSizeThreshold(reporter);
TestDeferredCanvasSurface(reporter, NULL);
if (NULL != factory) {
TestDeferredCanvasSurface(reporter, factory);
}
}
#include "TestClassDef.h"
DEFINE_GPUTESTCLASS("DeferredCanvas", TestDeferredCanvasClass, TestDeferredCanvas)