blob: 20226e7d56a5865c3b7b618168ebbc6f8a7f41ed [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Test.h"
#include "SkCanvas.h"
#include "SkColorPriv.h"
#include "SkData.h"
#include "SkError.h"
#include "SkPaint.h"
#include "SkPicture.h"
#include "SkRandom.h"
#include "SkRRect.h"
#include "SkShader.h"
#include "SkStream.h"
#include "SkPictureUtils.h"
static void make_bm(SkBitmap* bm, int w, int h, SkColor color, bool immutable) {
bm->setConfig(SkBitmap::kARGB_8888_Config, w, h);
bm->allocPixels();
bm->eraseColor(color);
if (immutable) {
bm->setImmutable();
}
}
typedef void (*DrawBitmapProc)(SkCanvas*, const SkBitmap&, const SkPoint&);
static void drawbitmap_proc(SkCanvas* canvas, const SkBitmap& bm,
const SkPoint& pos) {
canvas->drawBitmap(bm, pos.fX, pos.fY, NULL);
}
static void drawbitmaprect_proc(SkCanvas* canvas, const SkBitmap& bm,
const SkPoint& pos) {
SkRect r = {
0, 0, SkIntToScalar(bm.width()), SkIntToScalar(bm.height())
};
r.offset(pos.fX, pos.fY);
canvas->drawBitmapRectToRect(bm, NULL, r, NULL);
}
static void drawshader_proc(SkCanvas* canvas, const SkBitmap& bm,
const SkPoint& pos) {
SkRect r = {
0, 0, SkIntToScalar(bm.width()), SkIntToScalar(bm.height())
};
r.offset(pos.fX, pos.fY);
SkShader* s = SkShader::CreateBitmapShader(bm,
SkShader::kClamp_TileMode,
SkShader::kClamp_TileMode);
SkPaint paint;
paint.setShader(s)->unref();
canvas->drawRect(r, paint);
canvas->drawOval(r, paint);
SkRRect rr;
rr.setRectXY(r, 10, 10);
canvas->drawRRect(rr, paint);
}
// Return a picture with the bitmaps drawn at the specified positions.
static SkPicture* record_bitmaps(const SkBitmap bm[], const SkPoint pos[],
int count, DrawBitmapProc proc) {
SkPicture* pic = new SkPicture;
SkCanvas* canvas = pic->beginRecording(1000, 1000);
for (int i = 0; i < count; ++i) {
proc(canvas, bm[i], pos[i]);
}
pic->endRecording();
return pic;
}
static void rand_rect(SkRect* rect, SkMWCRandom& rand, SkScalar W, SkScalar H) {
rect->fLeft = rand.nextRangeScalar(-W, 2*W);
rect->fTop = rand.nextRangeScalar(-H, 2*H);
rect->fRight = rect->fLeft + rand.nextRangeScalar(0, W);
rect->fBottom = rect->fTop + rand.nextRangeScalar(0, H);
// we integralize rect to make our tests more predictable, since Gather is
// a little sloppy.
SkIRect ir;
rect->round(&ir);
rect->set(ir);
}
// Allocate result to be large enough to hold subset, and then draw the picture
// into it, offsetting by subset's top/left corner.
static void draw(SkPicture* pic, const SkRect& subset, SkBitmap* result) {
SkIRect ir;
subset.roundOut(&ir);
int w = ir.width();
int h = ir.height();
make_bm(result, w, h, 0, false);
SkCanvas canvas(*result);
canvas.translate(-SkIntToScalar(ir.left()), -SkIntToScalar(ir.top()));
canvas.drawPicture(*pic);
}
template <typename T> int find_index(const T* array, T elem, int count) {
for (int i = 0; i < count; ++i) {
if (array[i] == elem) {
return i;
}
}
return -1;
}
// Return true if 'ref' is found in array[]
static bool find(SkPixelRef const * const * array, SkPixelRef const * ref, int count) {
return find_index<const SkPixelRef*>(array, ref, count) >= 0;
}
// Look at each pixel in bm, and if its color appears in colors[], find the
// corresponding value in refs[] and append that ref into array, skipping
// duplicates of the same value.
static void gather_from_colors(const SkBitmap& bm, SkPixelRef* const refs[],
int count, SkTDArray<SkPixelRef*>* array) {
// Since we only want to return unique values in array, when we scan we just
// set a bit for each index'd color found. In practice we only have a few
// distinct colors, so we just use an int's bits as our array. Hence the
// assert that count <= number-of-bits-in-our-int.
SkASSERT((unsigned)count <= 32);
uint32_t bitarray = 0;
SkAutoLockPixels alp(bm);
for (int y = 0; y < bm.height(); ++y) {
for (int x = 0; x < bm.width(); ++x) {
SkPMColor pmc = *bm.getAddr32(x, y);
// the only good case where the color is not found would be if
// the color is transparent, meaning no bitmap was drawn in that
// pixel.
if (pmc) {
uint32_t index = SkGetPackedR32(pmc);
SkASSERT(SkGetPackedG32(pmc) == index);
SkASSERT(SkGetPackedB32(pmc) == index);
SkASSERT(static_cast<int>(index) < count);
bitarray |= 1 << index;
}
}
}
for (int i = 0; i < count; ++i) {
if (bitarray & (1 << i)) {
*array->append() = refs[i];
}
}
}
static void test_gatherpixelrefs(skiatest::Reporter* reporter) {
const int IW = 8;
const int IH = IW;
const SkScalar W = SkIntToScalar(IW);
const SkScalar H = W;
static const int N = 4;
SkBitmap bm[N];
SkPixelRef* refs[N];
const SkPoint pos[] = {
{ 0, 0 }, { W, 0 }, { 0, H }, { W, H }
};
// Our convention is that the color components contain the index of their
// corresponding bitmap/pixelref
for (int i = 0; i < N; ++i) {
make_bm(&bm[i], IW, IH, SkColorSetARGB(0xFF, i, i, i), true);
refs[i] = bm[i].pixelRef();
}
static const DrawBitmapProc procs[] = {
drawbitmap_proc, drawbitmaprect_proc, drawshader_proc
};
SkMWCRandom rand;
for (size_t k = 0; k < SK_ARRAY_COUNT(procs); ++k) {
SkAutoTUnref<SkPicture> pic(record_bitmaps(bm, pos, N, procs[k]));
// quick check for a small piece of each quadrant, which should just
// contain 1 bitmap.
for (size_t i = 0; i < SK_ARRAY_COUNT(pos); ++i) {
SkRect r;
r.set(2, 2, W - 2, H - 2);
r.offset(pos[i].fX, pos[i].fY);
SkAutoDataUnref data(SkPictureUtils::GatherPixelRefs(pic, r));
REPORTER_ASSERT(reporter, data);
int count = data->size() / sizeof(SkPixelRef*);
REPORTER_ASSERT(reporter, 1 == count);
REPORTER_ASSERT(reporter, *(SkPixelRef**)data->data() == refs[i]);
}
// Test a bunch of random (mostly) rects, and compare the gather results
// with a deduced list of refs by looking at the colors drawn.
for (int j = 0; j < 100; ++j) {
SkRect r;
rand_rect(&r, rand, 2*W, 2*H);
SkBitmap result;
draw(pic, r, &result);
SkTDArray<SkPixelRef*> array;
SkData* data = SkPictureUtils::GatherPixelRefs(pic, r);
size_t dataSize = data ? data->size() : 0;
int gatherCount = dataSize / sizeof(SkPixelRef*);
SkASSERT(gatherCount * sizeof(SkPixelRef*) == dataSize);
SkPixelRef** gatherRefs = data ? (SkPixelRef**)(data->data()) : NULL;
SkAutoDataUnref adu(data);
gather_from_colors(result, refs, N, &array);
/*
* GatherPixelRefs is conservative, so it can return more bitmaps
* that we actually can see (usually because of conservative bounds
* inflation for antialiasing). Thus our check here is only that
* Gather didn't miss any that we actually saw. Even that isn't
* a strict requirement on Gather, which is meant to be quick and
* only mostly-correct, but at the moment this test should work.
*/
for (int i = 0; i < array.count(); ++i) {
bool found = find(gatherRefs, array[i], gatherCount);
REPORTER_ASSERT(reporter, found);
#if 0
// enable this block of code to debug failures, as it will rerun
// the case that failed.
if (!found) {
SkData* data = SkPictureUtils::GatherPixelRefs(pic, r);
size_t dataSize = data ? data->size() : 0;
}
#endif
}
}
}
}
#ifdef SK_DEBUG
// Ensure that deleting SkPicturePlayback does not assert. Asserts only fire in debug mode, so only
// run in debug mode.
static void test_deleting_empty_playback() {
SkPicture picture;
// Creates an SkPictureRecord
picture.beginRecording(0, 0);
// Turns that into an SkPicturePlayback
picture.endRecording();
// Deletes the old SkPicturePlayback, and creates a new SkPictureRecord
picture.beginRecording(0, 0);
}
// Ensure that serializing an empty picture does not assert. Likewise only runs in debug mode.
static void test_serializing_empty_picture() {
SkPicture picture;
picture.beginRecording(0, 0);
picture.endRecording();
SkDynamicMemoryWStream stream;
picture.serialize(&stream);
}
#endif
static void rand_op(SkCanvas* canvas, SkMWCRandom& rand) {
SkPaint paint;
SkRect rect = SkRect::MakeWH(50, 50);
SkScalar unit = rand.nextUScalar1();
if (unit <= 0.3) {
// SkDebugf("save\n");
canvas->save();
} else if (unit <= 0.6) {
// SkDebugf("restore\n");
canvas->restore();
} else if (unit <= 0.9) {
// SkDebugf("clip\n");
canvas->clipRect(rect);
} else {
// SkDebugf("draw\n");
canvas->drawPaint(paint);
}
}
static void test_peephole() {
SkMWCRandom rand;
for (int j = 0; j < 100; j++) {
SkMWCRandom rand2(rand); // remember the seed
SkPicture picture;
SkCanvas* canvas = picture.beginRecording(100, 100);
for (int i = 0; i < 1000; ++i) {
rand_op(canvas, rand);
}
picture.endRecording();
rand = rand2;
}
{
SkPicture picture;
SkCanvas* canvas = picture.beginRecording(100, 100);
SkRect rect = SkRect::MakeWH(50, 50);
for (int i = 0; i < 100; ++i) {
canvas->save();
}
while (canvas->getSaveCount() > 1) {
canvas->clipRect(rect);
canvas->restore();
}
picture.endRecording();
}
}
#ifndef SK_DEBUG
// Only test this is in release mode. We deliberately crash in debug mode, since a valid caller
// should never do this.
static void test_bad_bitmap() {
// This bitmap has a width and height but no pixels. As a result, attempting to record it will
// fail.
SkBitmap bm;
bm.setConfig(SkBitmap::kARGB_8888_Config, 100, 100);
SkPicture picture;
SkCanvas* recordingCanvas = picture.beginRecording(100, 100);
recordingCanvas->drawBitmap(bm, 0, 0);
picture.endRecording();
SkCanvas canvas;
canvas.drawPicture(picture);
}
#endif
#include "SkData.h"
#include "SkImageRef_GlobalPool.h"
// Class to test SkPixelRef::onRefEncodedData, since there are currently no implementations in skia.
class SkDataImageRef : public SkImageRef_GlobalPool {
public:
SkDataImageRef(SkMemoryStream* stream)
: SkImageRef_GlobalPool(stream, SkBitmap::kNo_Config) {
SkASSERT(stream != NULL);
fData = stream->copyToData();
this->setImmutable();
}
~SkDataImageRef() {
fData->unref();
}
virtual SkData* onRefEncodedData() SK_OVERRIDE {
fData->ref();
return fData;
}
private:
SkData* fData;
};
#include "SkImageEncoder.h"
static bool PNGEncodeBitmapToStream(SkWStream* wStream, const SkBitmap& bm) {
return SkImageEncoder::EncodeStream(wStream, bm, SkImageEncoder::kPNG_Type, 100);
}
static SkData* serialized_picture_from_bitmap(const SkBitmap& bitmap) {
SkPicture picture;
SkCanvas* canvas = picture.beginRecording(bitmap.width(), bitmap.height());
canvas->drawBitmap(bitmap, 0, 0);
SkDynamicMemoryWStream wStream;
picture.serialize(&wStream, &PNGEncodeBitmapToStream);
return wStream.copyToData();
}
struct ErrorContext {
int fErrors;
skiatest::Reporter* fReporter;
};
static void assert_one_parse_error_cb(SkError error, void* context) {
ErrorContext* errorContext = static_cast<ErrorContext*>(context);
errorContext->fErrors++;
// This test only expects one error, and that is a kParseError. If there are others,
// there is some unknown problem.
REPORTER_ASSERT_MESSAGE(errorContext->fReporter, 1 == errorContext->fErrors,
"This threw more errors than expected.");
REPORTER_ASSERT_MESSAGE(errorContext->fReporter, kParseError_SkError == error,
SkGetLastErrorString());
}
static void test_bitmap_with_encoded_data(skiatest::Reporter* reporter) {
// Create a bitmap that will be encoded.
SkBitmap original;
make_bm(&original, 100, 100, SK_ColorBLUE, true);
SkDynamicMemoryWStream wStream;
if (!SkImageEncoder::EncodeStream(&wStream, original, SkImageEncoder::kPNG_Type, 100)) {
return;
}
SkAutoDataUnref data(wStream.copyToData());
SkMemoryStream memStream;
memStream.setData(data);
// Use the encoded bitmap as the data for an image ref.
SkBitmap bm;
SkAutoTUnref<SkDataImageRef> imageRef(SkNEW_ARGS(SkDataImageRef, (&memStream)));
imageRef->getInfo(&bm);
bm.setPixelRef(imageRef);
// Write both bitmaps to pictures, and ensure that the resulting data streams are the same.
// Flattening original will follow the old path of performing an encode, while flattening bm
// will use the already encoded data.
SkAutoDataUnref picture1(serialized_picture_from_bitmap(original));
SkAutoDataUnref picture2(serialized_picture_from_bitmap(bm));
REPORTER_ASSERT(reporter, picture1->equals(picture2));
// Now test that a parse error was generated when trying to create a new SkPicture without
// providing a function to decode the bitmap.
ErrorContext context;
context.fErrors = 0;
context.fReporter = reporter;
SkSetErrorCallback(assert_one_parse_error_cb, &context);
SkMemoryStream pictureStream(picture1);
bool success;
SkClearLastError();
SkPicture pictureFromStream(&pictureStream, &success, NULL);
REPORTER_ASSERT(reporter, success);
SkClearLastError();
SkSetErrorCallback(NULL, NULL);
}
static void test_clone_empty(skiatest::Reporter* reporter) {
// This is a regression test for crbug.com/172062
// Before the fix, we used to crash accessing a null pointer when we
// had a picture with no paints. This test passes by not crashing.
{
SkPicture picture;
picture.beginRecording(1, 1);
picture.endRecording();
SkPicture* destPicture = picture.clone();
REPORTER_ASSERT(reporter, NULL != destPicture);
destPicture->unref();
}
{
// Test without call to endRecording
SkPicture picture;
picture.beginRecording(1, 1);
SkPicture* destPicture = picture.clone();
REPORTER_ASSERT(reporter, NULL != destPicture);
destPicture->unref();
}
}
static void test_clip_bound_opt(skiatest::Reporter* reporter) {
// Test for crbug.com/229011
SkRect rect1 = SkRect::MakeXYWH(SkIntToScalar(4), SkIntToScalar(4),
SkIntToScalar(2), SkIntToScalar(2));
SkRect rect2 = SkRect::MakeXYWH(SkIntToScalar(7), SkIntToScalar(7),
SkIntToScalar(1), SkIntToScalar(1));
SkRect rect3 = SkRect::MakeXYWH(SkIntToScalar(6), SkIntToScalar(6),
SkIntToScalar(1), SkIntToScalar(1));
SkPath invPath;
invPath.addOval(rect1);
invPath.setFillType(SkPath::kInverseEvenOdd_FillType);
SkPath path;
path.addOval(rect2);
SkPath path2;
path2.addOval(rect3);
SkIRect clipBounds;
// Minimalist test set for 100% code coverage of
// SkPictureRecord::updateClipConservativelyUsingBounds
{
SkPicture picture;
SkCanvas* canvas = picture.beginRecording(10, 10,
SkPicture::kUsePathBoundsForClip_RecordingFlag);
canvas->clipPath(invPath, SkRegion::kIntersect_Op);
bool nonEmpty = canvas->getClipDeviceBounds(&clipBounds);
REPORTER_ASSERT(reporter, true == nonEmpty);
REPORTER_ASSERT(reporter, 0 == clipBounds.fLeft);
REPORTER_ASSERT(reporter, 0 == clipBounds.fTop);
REPORTER_ASSERT(reporter, 10 == clipBounds.fBottom);
REPORTER_ASSERT(reporter, 10 == clipBounds.fRight);
}
{
SkPicture picture;
SkCanvas* canvas = picture.beginRecording(10, 10,
SkPicture::kUsePathBoundsForClip_RecordingFlag);
canvas->clipPath(path, SkRegion::kIntersect_Op);
canvas->clipPath(invPath, SkRegion::kIntersect_Op);
bool nonEmpty = canvas->getClipDeviceBounds(&clipBounds);
REPORTER_ASSERT(reporter, true == nonEmpty);
REPORTER_ASSERT(reporter, 7 == clipBounds.fLeft);
REPORTER_ASSERT(reporter, 7 == clipBounds.fTop);
REPORTER_ASSERT(reporter, 8 == clipBounds.fBottom);
REPORTER_ASSERT(reporter, 8 == clipBounds.fRight);
}
{
SkPicture picture;
SkCanvas* canvas = picture.beginRecording(10, 10,
SkPicture::kUsePathBoundsForClip_RecordingFlag);
canvas->clipPath(path, SkRegion::kIntersect_Op);
canvas->clipPath(invPath, SkRegion::kUnion_Op);
bool nonEmpty = canvas->getClipDeviceBounds(&clipBounds);
REPORTER_ASSERT(reporter, true == nonEmpty);
REPORTER_ASSERT(reporter, 0 == clipBounds.fLeft);
REPORTER_ASSERT(reporter, 0 == clipBounds.fTop);
REPORTER_ASSERT(reporter, 10 == clipBounds.fBottom);
REPORTER_ASSERT(reporter, 10 == clipBounds.fRight);
}
{
SkPicture picture;
SkCanvas* canvas = picture.beginRecording(10, 10,
SkPicture::kUsePathBoundsForClip_RecordingFlag);
canvas->clipPath(path, SkRegion::kDifference_Op);
bool nonEmpty = canvas->getClipDeviceBounds(&clipBounds);
REPORTER_ASSERT(reporter, true == nonEmpty);
REPORTER_ASSERT(reporter, 0 == clipBounds.fLeft);
REPORTER_ASSERT(reporter, 0 == clipBounds.fTop);
REPORTER_ASSERT(reporter, 10 == clipBounds.fBottom);
REPORTER_ASSERT(reporter, 10 == clipBounds.fRight);
}
{
SkPicture picture;
SkCanvas* canvas = picture.beginRecording(10, 10,
SkPicture::kUsePathBoundsForClip_RecordingFlag);
canvas->clipPath(path, SkRegion::kReverseDifference_Op);
bool nonEmpty = canvas->getClipDeviceBounds(&clipBounds);
// True clip is actually empty in this case, but the best
// determination we can make using only bounds as input is that the
// clip is included in the bounds of 'path'.
REPORTER_ASSERT(reporter, true == nonEmpty);
REPORTER_ASSERT(reporter, 7 == clipBounds.fLeft);
REPORTER_ASSERT(reporter, 7 == clipBounds.fTop);
REPORTER_ASSERT(reporter, 8 == clipBounds.fBottom);
REPORTER_ASSERT(reporter, 8 == clipBounds.fRight);
}
{
SkPicture picture;
SkCanvas* canvas = picture.beginRecording(10, 10,
SkPicture::kUsePathBoundsForClip_RecordingFlag);
canvas->clipPath(path, SkRegion::kIntersect_Op);
canvas->clipPath(path2, SkRegion::kXOR_Op);
bool nonEmpty = canvas->getClipDeviceBounds(&clipBounds);
REPORTER_ASSERT(reporter, true == nonEmpty);
REPORTER_ASSERT(reporter, 6 == clipBounds.fLeft);
REPORTER_ASSERT(reporter, 6 == clipBounds.fTop);
REPORTER_ASSERT(reporter, 8 == clipBounds.fBottom);
REPORTER_ASSERT(reporter, 8 == clipBounds.fRight);
}
}
static void TestPicture(skiatest::Reporter* reporter) {
#ifdef SK_DEBUG
test_deleting_empty_playback();
test_serializing_empty_picture();
#else
test_bad_bitmap();
#endif
test_peephole();
test_gatherpixelrefs(reporter);
test_bitmap_with_encoded_data(reporter);
test_clone_empty(reporter);
test_clip_bound_opt(reporter);
}
#include "TestClassDef.h"
DEFINE_TESTCLASS("Pictures", PictureTestClass, TestPicture)