| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "GrGLProgram.h" |
| |
| #include "GrAllocator.h" |
| #include "GrCustomStage.h" |
| #include "GrGLProgramStage.h" |
| #include "gl/GrGLShaderBuilder.h" |
| #include "GrGLShaderVar.h" |
| #include "GrProgramStageFactory.h" |
| #include "SkTrace.h" |
| #include "SkXfermode.h" |
| |
| SK_DEFINE_INST_COUNT(GrGLProgram) |
| |
| #define GL_CALL(X) GR_GL_CALL(fContextInfo.interface(), X) |
| #define GL_CALL_RET(R, X) GR_GL_CALL_RET(fContextInfo.interface(), R, X) |
| |
| #define PRINT_SHADERS 0 |
| |
| typedef GrGLProgram::Desc::StageDesc StageDesc; |
| |
| #define POS_ATTR_NAME "aPosition" |
| #define COL_ATTR_NAME "aColor" |
| #define COV_ATTR_NAME "aCoverage" |
| #define EDGE_ATTR_NAME "aEdge" |
| |
| namespace { |
| inline void tex_attr_name(int coordIdx, SkString* s) { |
| *s = "aTexCoord"; |
| s->appendS32(coordIdx); |
| } |
| |
| inline const char* float_vector_type_str(int count) { |
| return GrGLShaderVar::TypeString(GrSLFloatVectorType(count)); |
| } |
| |
| inline const char* vector_all_coords(int count) { |
| static const char* ALL[] = {"ERROR", "", ".xy", ".xyz", ".xyzw"}; |
| GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ALL)); |
| return ALL[count]; |
| } |
| |
| inline const char* declared_color_output_name() { return "fsColorOut"; } |
| inline const char* dual_source_output_name() { return "dualSourceOut"; } |
| |
| } |
| |
| GrGLProgram* GrGLProgram::Create(const GrGLContextInfo& gl, |
| const Desc& desc, |
| const GrCustomStage** customStages) { |
| GrGLProgram* program = SkNEW_ARGS(GrGLProgram, (gl, desc, customStages)); |
| if (!program->succeeded()) { |
| delete program; |
| program = NULL; |
| } |
| return program; |
| } |
| |
| GrGLProgram::GrGLProgram(const GrGLContextInfo& gl, |
| const Desc& desc, |
| const GrCustomStage** customStages) |
| : fContextInfo(gl) |
| , fUniformManager(gl) { |
| fDesc = desc; |
| fVShaderID = 0; |
| fGShaderID = 0; |
| fFShaderID = 0; |
| fProgramID = 0; |
| |
| fViewMatrix = GrMatrix::InvalidMatrix(); |
| fViewportSize.set(-1, -1); |
| fColor = GrColor_ILLEGAL; |
| fColorFilterColor = GrColor_ILLEGAL; |
| |
| for (int s = 0; s < GrDrawState::kNumStages; ++s) { |
| fProgramStage[s] = NULL; |
| fTextureMatrices[s] = GrMatrix::InvalidMatrix(); |
| // this is arbitrary, just initialize to something |
| fTextureOrientation[s] = GrGLTexture::kBottomUp_Orientation; |
| } |
| |
| this->genProgram(customStages); |
| } |
| |
| GrGLProgram::~GrGLProgram() { |
| if (fVShaderID) { |
| GL_CALL(DeleteShader(fVShaderID)); |
| } |
| if (fGShaderID) { |
| GL_CALL(DeleteShader(fGShaderID)); |
| } |
| if (fFShaderID) { |
| GL_CALL(DeleteShader(fFShaderID)); |
| } |
| if (fProgramID) { |
| GL_CALL(DeleteProgram(fProgramID)); |
| } |
| |
| for (int i = 0; i < GrDrawState::kNumStages; ++i) { |
| delete fProgramStage[i]; |
| } |
| } |
| |
| void GrGLProgram::abandon() { |
| fVShaderID = 0; |
| fGShaderID = 0; |
| fFShaderID = 0; |
| fProgramID = 0; |
| } |
| |
| void GrGLProgram::overrideBlend(GrBlendCoeff* srcCoeff, |
| GrBlendCoeff* dstCoeff) const { |
| switch (fDesc.fDualSrcOutput) { |
| case Desc::kNone_DualSrcOutput: |
| break; |
| // the prog will write a coverage value to the secondary |
| // output and the dst is blended by one minus that value. |
| case Desc::kCoverage_DualSrcOutput: |
| case Desc::kCoverageISA_DualSrcOutput: |
| case Desc::kCoverageISC_DualSrcOutput: |
| *dstCoeff = (GrBlendCoeff)GrGpu::kIS2C_GrBlendCoeff; |
| break; |
| default: |
| GrCrash("Unexpected dual source blend output"); |
| break; |
| } |
| } |
| |
| // given two blend coeffecients determine whether the src |
| // and/or dst computation can be omitted. |
| static inline void needBlendInputs(SkXfermode::Coeff srcCoeff, |
| SkXfermode::Coeff dstCoeff, |
| bool* needSrcValue, |
| bool* needDstValue) { |
| if (SkXfermode::kZero_Coeff == srcCoeff) { |
| switch (dstCoeff) { |
| // these all read the src |
| case SkXfermode::kSC_Coeff: |
| case SkXfermode::kISC_Coeff: |
| case SkXfermode::kSA_Coeff: |
| case SkXfermode::kISA_Coeff: |
| *needSrcValue = true; |
| break; |
| default: |
| *needSrcValue = false; |
| break; |
| } |
| } else { |
| *needSrcValue = true; |
| } |
| if (SkXfermode::kZero_Coeff == dstCoeff) { |
| switch (srcCoeff) { |
| // these all read the dst |
| case SkXfermode::kDC_Coeff: |
| case SkXfermode::kIDC_Coeff: |
| case SkXfermode::kDA_Coeff: |
| case SkXfermode::kIDA_Coeff: |
| *needDstValue = true; |
| break; |
| default: |
| *needDstValue = false; |
| break; |
| } |
| } else { |
| *needDstValue = true; |
| } |
| } |
| |
| /** |
| * Create a blend_coeff * value string to be used in shader code. Sets empty |
| * string if result is trivially zero. |
| */ |
| static void blendTermString(SkString* str, SkXfermode::Coeff coeff, |
| const char* src, const char* dst, |
| const char* value) { |
| switch (coeff) { |
| case SkXfermode::kZero_Coeff: /** 0 */ |
| *str = ""; |
| break; |
| case SkXfermode::kOne_Coeff: /** 1 */ |
| *str = value; |
| break; |
| case SkXfermode::kSC_Coeff: |
| str->printf("(%s * %s)", src, value); |
| break; |
| case SkXfermode::kISC_Coeff: |
| str->printf("((%s - %s) * %s)", GrGLSLOnesVecf(4), src, value); |
| break; |
| case SkXfermode::kDC_Coeff: |
| str->printf("(%s * %s)", dst, value); |
| break; |
| case SkXfermode::kIDC_Coeff: |
| str->printf("((%s - %s) * %s)", GrGLSLOnesVecf(4), dst, value); |
| break; |
| case SkXfermode::kSA_Coeff: /** src alpha */ |
| str->printf("(%s.a * %s)", src, value); |
| break; |
| case SkXfermode::kISA_Coeff: /** inverse src alpha (i.e. 1 - sa) */ |
| str->printf("((1.0 - %s.a) * %s)", src, value); |
| break; |
| case SkXfermode::kDA_Coeff: /** dst alpha */ |
| str->printf("(%s.a * %s)", dst, value); |
| break; |
| case SkXfermode::kIDA_Coeff: /** inverse dst alpha (i.e. 1 - da) */ |
| str->printf("((1.0 - %s.a) * %s)", dst, value); |
| break; |
| default: |
| GrCrash("Unexpected xfer coeff."); |
| break; |
| } |
| } |
| /** |
| * Adds a line to the fragment shader code which modifies the color by |
| * the specified color filter. |
| */ |
| static void addColorFilter(SkString* fsCode, const char * outputVar, |
| SkXfermode::Coeff uniformCoeff, |
| SkXfermode::Coeff colorCoeff, |
| const char* filterColor, |
| const char* inColor) { |
| SkString colorStr, constStr; |
| blendTermString(&colorStr, colorCoeff, filterColor, inColor, inColor); |
| blendTermString(&constStr, uniformCoeff, filterColor, inColor, filterColor); |
| |
| fsCode->appendf("\t%s = ", outputVar); |
| GrGLSLAdd4f(fsCode, colorStr.c_str(), constStr.c_str()); |
| fsCode->append(";\n"); |
| } |
| |
| bool GrGLProgram::genEdgeCoverage(SkString* coverageVar, |
| GrGLShaderBuilder* segments) const { |
| if (fDesc.fVertexLayout & GrDrawTarget::kEdge_VertexLayoutBit) { |
| const char *vsName, *fsName; |
| segments->addVarying(kVec4f_GrSLType, "Edge", &vsName, &fsName); |
| segments->fVSAttrs.push_back().set(kVec4f_GrSLType, |
| GrGLShaderVar::kAttribute_TypeModifier, EDGE_ATTR_NAME); |
| segments->fVSCode.appendf("\t%s = " EDGE_ATTR_NAME ";\n", vsName); |
| switch (fDesc.fVertexEdgeType) { |
| case GrDrawState::kHairLine_EdgeType: |
| segments->fFSCode.appendf("\tfloat edgeAlpha = abs(dot(vec3(gl_FragCoord.xy,1), %s.xyz));\n", fsName); |
| segments->fFSCode.append("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n"); |
| break; |
| case GrDrawState::kQuad_EdgeType: |
| segments->fFSCode.append("\tfloat edgeAlpha;\n"); |
| // keep the derivative instructions outside the conditional |
| segments->fFSCode.appendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName); |
| segments->fFSCode.appendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName); |
| segments->fFSCode.appendf("\tif (%s.z > 0.0 && %s.w > 0.0) {\n", fsName, fsName); |
| // today we know z and w are in device space. We could use derivatives |
| segments->fFSCode.appendf("\t\tedgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);\n", fsName, fsName); |
| segments->fFSCode.append ("\t} else {\n"); |
| segments->fFSCode.appendf("\t\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n" |
| "\t\t 2.0*%s.x*duvdy.x - duvdy.y);\n", |
| fsName, fsName); |
| segments->fFSCode.appendf("\t\tedgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName); |
| segments->fFSCode.append("\t\tedgeAlpha = clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);\n" |
| "\t}\n"); |
| if (kES2_GrGLBinding == fContextInfo.binding()) { |
| segments->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n"); |
| } |
| break; |
| case GrDrawState::kHairQuad_EdgeType: |
| segments->fFSCode.appendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName); |
| segments->fFSCode.appendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName); |
| segments->fFSCode.appendf("\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n" |
| "\t 2.0*%s.x*duvdy.x - duvdy.y);\n", |
| fsName, fsName); |
| segments->fFSCode.appendf("\tfloat edgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName); |
| segments->fFSCode.append("\tedgeAlpha = sqrt(edgeAlpha*edgeAlpha / dot(gF, gF));\n"); |
| segments->fFSCode.append("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n"); |
| if (kES2_GrGLBinding == fContextInfo.binding()) { |
| segments->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n"); |
| } |
| break; |
| case GrDrawState::kCircle_EdgeType: |
| segments->fFSCode.append("\tfloat edgeAlpha;\n"); |
| segments->fFSCode.appendf("\tfloat d = distance(gl_FragCoord.xy, %s.xy);\n", fsName); |
| segments->fFSCode.appendf("\tfloat outerAlpha = smoothstep(d - 0.5, d + 0.5, %s.z);\n", fsName); |
| segments->fFSCode.appendf("\tfloat innerAlpha = %s.w == 0.0 ? 1.0 : smoothstep(%s.w - 0.5, %s.w + 0.5, d);\n", fsName, fsName, fsName); |
| segments->fFSCode.append("\tedgeAlpha = outerAlpha * innerAlpha;\n"); |
| break; |
| default: |
| GrCrash("Unknown Edge Type!"); |
| break; |
| } |
| *coverageVar = "edgeAlpha"; |
| return true; |
| } else { |
| coverageVar->reset(); |
| return false; |
| } |
| } |
| |
| void GrGLProgram::genInputColor(GrGLShaderBuilder* builder, SkString* inColor) { |
| switch (fDesc.fColorInput) { |
| case GrGLProgram::Desc::kAttribute_ColorInput: { |
| builder->fVSAttrs.push_back().set(kVec4f_GrSLType, |
| GrGLShaderVar::kAttribute_TypeModifier, |
| COL_ATTR_NAME); |
| const char *vsName, *fsName; |
| builder->addVarying(kVec4f_GrSLType, "Color", &vsName, &fsName); |
| builder->fVSCode.appendf("\t%s = " COL_ATTR_NAME ";\n", vsName); |
| *inColor = fsName; |
| } break; |
| case GrGLProgram::Desc::kUniform_ColorInput: { |
| const char* name; |
| fUniforms.fColorUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType, |
| kVec4f_GrSLType, "Color", &name); |
| *inColor = name; |
| break; |
| } |
| case GrGLProgram::Desc::kTransBlack_ColorInput: |
| GrAssert(!"needComputedColor should be false."); |
| break; |
| case GrGLProgram::Desc::kSolidWhite_ColorInput: |
| break; |
| default: |
| GrCrash("Unknown color type."); |
| break; |
| } |
| } |
| |
| void GrGLProgram::genUniformCoverage(GrGLShaderBuilder* builder, SkString* inOutCoverage) { |
| const char* covUniName; |
| fUniforms.fCoverageUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType, |
| kVec4f_GrSLType, "Coverage", &covUniName); |
| if (inOutCoverage->size()) { |
| builder->fFSCode.appendf("\tvec4 uniCoverage = %s * %s;\n", |
| covUniName, inOutCoverage->c_str()); |
| *inOutCoverage = "uniCoverage"; |
| } else { |
| *inOutCoverage = covUniName; |
| } |
| } |
| |
| namespace { |
| void gen_attribute_coverage(GrGLShaderBuilder* segments, |
| SkString* inOutCoverage) { |
| segments->fVSAttrs.push_back().set(kVec4f_GrSLType, |
| GrGLShaderVar::kAttribute_TypeModifier, |
| COV_ATTR_NAME); |
| const char *vsName, *fsName; |
| segments->addVarying(kVec4f_GrSLType, "Coverage", &vsName, &fsName); |
| segments->fVSCode.appendf("\t%s = " COV_ATTR_NAME ";\n", vsName); |
| if (inOutCoverage->size()) { |
| segments->fFSCode.appendf("\tvec4 attrCoverage = %s * %s;\n", |
| fsName, inOutCoverage->c_str()); |
| *inOutCoverage = "attrCoverage"; |
| } else { |
| *inOutCoverage = fsName; |
| } |
| } |
| } |
| |
| void GrGLProgram::genGeometryShader(GrGLShaderBuilder* segments) const { |
| #if GR_GL_EXPERIMENTAL_GS |
| if (fDesc.fExperimentalGS) { |
| GrAssert(fContextInfo.glslGeneration() >= k150_GrGLSLGeneration); |
| segments->fGSHeader.append("layout(triangles) in;\n" |
| "layout(triangle_strip, max_vertices = 6) out;\n"); |
| segments->fGSCode.append("void main() {\n" |
| "\tfor (int i = 0; i < 3; ++i) {\n" |
| "\t\tgl_Position = gl_in[i].gl_Position;\n"); |
| if (fDesc.fEmitsPointSize) { |
| segments->fGSCode.append("\t\tgl_PointSize = 1.0;\n"); |
| } |
| GrAssert(segments->fGSInputs.count() == segments->fGSOutputs.count()); |
| int count = segments->fGSInputs.count(); |
| for (int i = 0; i < count; ++i) { |
| segments->fGSCode.appendf("\t\t%s = %s[i];\n", |
| segments->fGSOutputs[i].getName().c_str(), |
| segments->fGSInputs[i].getName().c_str()); |
| } |
| segments->fGSCode.append("\t\tEmitVertex();\n" |
| "\t}\n" |
| "\tEndPrimitive();\n" |
| "}\n"); |
| } |
| #endif |
| } |
| |
| const char* GrGLProgram::adjustInColor(const SkString& inColor) const { |
| if (inColor.size()) { |
| return inColor.c_str(); |
| } else { |
| if (Desc::kSolidWhite_ColorInput == fDesc.fColorInput) { |
| return GrGLSLOnesVecf(4); |
| } else { |
| return GrGLSLZerosVecf(4); |
| } |
| } |
| } |
| |
| namespace { |
| // prints a shader using params similar to glShaderSource |
| void print_shader(GrGLint stringCnt, |
| const GrGLchar** strings, |
| GrGLint* stringLengths) { |
| for (int i = 0; i < stringCnt; ++i) { |
| if (NULL == stringLengths || stringLengths[i] < 0) { |
| GrPrintf(strings[i]); |
| } else { |
| GrPrintf("%.*s", stringLengths[i], strings[i]); |
| } |
| } |
| } |
| |
| // Compiles a GL shader, returns shader ID or 0 if failed params have same meaning as glShaderSource |
| GrGLuint compile_shader(const GrGLContextInfo& gl, |
| GrGLenum type, |
| int stringCnt, |
| const char** strings, |
| int* stringLengths) { |
| SK_TRACE_EVENT1("GrGLProgram::CompileShader", |
| "stringCount", SkStringPrintf("%i", stringCnt).c_str()); |
| |
| GrGLuint shader; |
| GR_GL_CALL_RET(gl.interface(), shader, CreateShader(type)); |
| if (0 == shader) { |
| return 0; |
| } |
| |
| const GrGLInterface* gli = gl.interface(); |
| GrGLint compiled = GR_GL_INIT_ZERO; |
| GR_GL_CALL(gli, ShaderSource(shader, stringCnt, strings, stringLengths)); |
| GR_GL_CALL(gli, CompileShader(shader)); |
| GR_GL_CALL(gli, GetShaderiv(shader, GR_GL_COMPILE_STATUS, &compiled)); |
| |
| if (!compiled) { |
| GrGLint infoLen = GR_GL_INIT_ZERO; |
| GR_GL_CALL(gli, GetShaderiv(shader, GR_GL_INFO_LOG_LENGTH, &infoLen)); |
| SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger |
| if (infoLen > 0) { |
| // retrieve length even though we don't need it to workaround bug in chrome cmd buffer |
| // param validation. |
| GrGLsizei length = GR_GL_INIT_ZERO; |
| GR_GL_CALL(gli, GetShaderInfoLog(shader, infoLen+1, |
| &length, (char*)log.get())); |
| print_shader(stringCnt, strings, stringLengths); |
| GrPrintf("\n%s", log.get()); |
| } |
| GrAssert(!"Shader compilation failed!"); |
| GR_GL_CALL(gli, DeleteShader(shader)); |
| return 0; |
| } |
| return shader; |
| } |
| |
| // helper version of above for when shader is already flattened into a single SkString |
| GrGLuint compile_shader(const GrGLContextInfo& gl, GrGLenum type, const SkString& shader) { |
| const GrGLchar* str = shader.c_str(); |
| int length = shader.size(); |
| return compile_shader(gl, type, 1, &str, &length); |
| } |
| |
| } |
| |
| // compiles all the shaders from builder and stores the shader IDs |
| bool GrGLProgram::compileShaders(const GrGLShaderBuilder& builder) { |
| |
| SkString shader; |
| |
| builder.getShader(GrGLShaderBuilder::kVertex_ShaderType, &shader); |
| #if PRINT_SHADERS |
| GrPrintf(shader.c_str()); |
| GrPrintf("\n"); |
| #endif |
| if (!(fVShaderID = compile_shader(fContextInfo, GR_GL_VERTEX_SHADER, shader))) { |
| return false; |
| } |
| |
| if (builder.fUsesGS) { |
| builder.getShader(GrGLShaderBuilder::kGeometry_ShaderType, &shader); |
| #if PRINT_SHADERS |
| GrPrintf(shader.c_str()); |
| GrPrintf("\n"); |
| #endif |
| if (!(fGShaderID = compile_shader(fContextInfo, GR_GL_GEOMETRY_SHADER, shader))) { |
| return false; |
| } |
| } else { |
| fGShaderID = 0; |
| } |
| |
| builder.getShader(GrGLShaderBuilder::kFragment_ShaderType, &shader); |
| #if PRINT_SHADERS |
| GrPrintf(shader.c_str()); |
| GrPrintf("\n"); |
| #endif |
| if (!(fFShaderID = compile_shader(fContextInfo, GR_GL_FRAGMENT_SHADER, shader))) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool GrGLProgram::genProgram(const GrCustomStage** customStages) { |
| GrAssert(0 == fProgramID); |
| |
| GrGLShaderBuilder builder(fContextInfo, fUniformManager); |
| const uint32_t& layout = fDesc.fVertexLayout; |
| |
| #if GR_GL_EXPERIMENTAL_GS |
| builder.fUsesGS = fDesc.fExperimentalGS; |
| #endif |
| |
| SkXfermode::Coeff colorCoeff, uniformCoeff; |
| bool applyColorMatrix = SkToBool(fDesc.fColorMatrixEnabled); |
| // The rest of transfer mode color filters have not been implemented |
| if (fDesc.fColorFilterXfermode < SkXfermode::kCoeffModesCnt) { |
| GR_DEBUGCODE(bool success =) |
| SkXfermode::ModeAsCoeff(static_cast<SkXfermode::Mode> |
| (fDesc.fColorFilterXfermode), |
| &uniformCoeff, &colorCoeff); |
| GR_DEBUGASSERT(success); |
| } else { |
| colorCoeff = SkXfermode::kOne_Coeff; |
| uniformCoeff = SkXfermode::kZero_Coeff; |
| } |
| |
| // no need to do the color filter / matrix at all if coverage is 0. The |
| // output color is scaled by the coverage. All the dual source outputs are |
| // scaled by the coverage as well. |
| if (Desc::kTransBlack_ColorInput == fDesc.fCoverageInput) { |
| colorCoeff = SkXfermode::kZero_Coeff; |
| uniformCoeff = SkXfermode::kZero_Coeff; |
| applyColorMatrix = false; |
| } |
| |
| // If we know the final color is going to be all zeros then we can |
| // simplify the color filter coeffecients. needComputedColor will then |
| // come out false below. |
| if (Desc::kTransBlack_ColorInput == fDesc.fColorInput) { |
| colorCoeff = SkXfermode::kZero_Coeff; |
| if (SkXfermode::kDC_Coeff == uniformCoeff || |
| SkXfermode::kDA_Coeff == uniformCoeff) { |
| uniformCoeff = SkXfermode::kZero_Coeff; |
| } else if (SkXfermode::kIDC_Coeff == uniformCoeff || |
| SkXfermode::kIDA_Coeff == uniformCoeff) { |
| uniformCoeff = SkXfermode::kOne_Coeff; |
| } |
| } |
| |
| bool needColorFilterUniform; |
| bool needComputedColor; |
| needBlendInputs(uniformCoeff, colorCoeff, |
| &needColorFilterUniform, &needComputedColor); |
| |
| // the dual source output has no canonical var name, have to |
| // declare an output, which is incompatible with gl_FragColor/gl_FragData. |
| bool dualSourceOutputWritten = false; |
| builder.fHeader.append(GrGetGLSLVersionDecl(fContextInfo.binding(), |
| fContextInfo.glslGeneration())); |
| |
| GrGLShaderVar colorOutput; |
| bool isColorDeclared = GrGLSLSetupFSColorOuput(fContextInfo.glslGeneration(), |
| declared_color_output_name(), |
| &colorOutput); |
| if (isColorDeclared) { |
| builder.fFSOutputs.push_back(colorOutput); |
| } |
| |
| const char* viewMName; |
| fUniforms.fViewMatrixUni = builder.addUniform(GrGLShaderBuilder::kVertex_ShaderType, |
| kMat33f_GrSLType, "ViewM", &viewMName); |
| |
| builder.fVSAttrs.push_back().set(kVec2f_GrSLType, |
| GrGLShaderVar::kAttribute_TypeModifier, |
| POS_ATTR_NAME); |
| |
| builder.fVSCode.appendf("void main() {\n" |
| "\tvec3 pos3 = %s * vec3("POS_ATTR_NAME", 1);\n" |
| "\tgl_Position = vec4(pos3.xy, 0, pos3.z);\n", |
| viewMName); |
| |
| // incoming color to current stage being processed. |
| SkString inColor; |
| |
| if (needComputedColor) { |
| this->genInputColor(&builder, &inColor); |
| } |
| |
| // we output point size in the GS if present |
| if (fDesc.fEmitsPointSize && !builder.fUsesGS){ |
| builder.fVSCode.append("\tgl_PointSize = 1.0;\n"); |
| } |
| |
| builder.fFSCode.append("void main() {\n"); |
| |
| // add texture coordinates that are used to the list of vertex attr decls |
| SkString texCoordAttrs[GrDrawState::kMaxTexCoords]; |
| for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) { |
| if (GrDrawTarget::VertexUsesTexCoordIdx(t, layout)) { |
| tex_attr_name(t, texCoordAttrs + t); |
| builder.fVSAttrs.push_back().set(kVec2f_GrSLType, |
| GrGLShaderVar::kAttribute_TypeModifier, |
| texCoordAttrs[t].c_str()); |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////// |
| // compute the final color |
| |
| // if we have color stages string them together, feeding the output color |
| // of each to the next and generating code for each stage. |
| if (needComputedColor) { |
| SkString outColor; |
| for (int s = 0; s < fDesc.fFirstCoverageStage; ++s) { |
| if (fDesc.fStages[s].isEnabled()) { |
| // create var to hold stage result |
| outColor = "color"; |
| outColor.appendS32(s); |
| builder.fFSCode.appendf("\tvec4 %s;\n", outColor.c_str()); |
| |
| const char* inCoords; |
| // figure out what our input coords are |
| int tcIdx = GrDrawTarget::VertexTexCoordsForStage(s, layout); |
| if (tcIdx < 0) { |
| inCoords = POS_ATTR_NAME; |
| } else { |
| // must have input tex coordinates if stage is enabled. |
| GrAssert(texCoordAttrs[tcIdx].size()); |
| inCoords = texCoordAttrs[tcIdx].c_str(); |
| } |
| |
| if (NULL != customStages[s]) { |
| const GrProgramStageFactory& factory = customStages[s]->getFactory(); |
| fProgramStage[s] = factory.createGLInstance(*customStages[s]); |
| } |
| this->genStageCode(s, |
| inColor.size() ? inColor.c_str() : NULL, |
| outColor.c_str(), |
| inCoords, |
| &builder); |
| inColor = outColor; |
| } |
| } |
| } |
| |
| // if have all ones or zeros for the "dst" input to the color filter then we |
| // may be able to make additional optimizations. |
| if (needColorFilterUniform && needComputedColor && !inColor.size()) { |
| GrAssert(Desc::kSolidWhite_ColorInput == fDesc.fColorInput); |
| bool uniformCoeffIsZero = SkXfermode::kIDC_Coeff == uniformCoeff || |
| SkXfermode::kIDA_Coeff == uniformCoeff; |
| if (uniformCoeffIsZero) { |
| uniformCoeff = SkXfermode::kZero_Coeff; |
| bool bogus; |
| needBlendInputs(SkXfermode::kZero_Coeff, colorCoeff, |
| &needColorFilterUniform, &bogus); |
| } |
| } |
| const char* colorFilterColorUniName = NULL; |
| if (needColorFilterUniform) { |
| fUniforms.fColorFilterUni = builder.addUniform(GrGLShaderBuilder::kFragment_ShaderType, |
| kVec4f_GrSLType, "FilterColor", |
| &colorFilterColorUniName); |
| } |
| bool wroteFragColorZero = false; |
| if (SkXfermode::kZero_Coeff == uniformCoeff && |
| SkXfermode::kZero_Coeff == colorCoeff && |
| !applyColorMatrix) { |
| builder.fFSCode.appendf("\t%s = %s;\n", |
| colorOutput.getName().c_str(), |
| GrGLSLZerosVecf(4)); |
| wroteFragColorZero = true; |
| } else if (SkXfermode::kDst_Mode != fDesc.fColorFilterXfermode) { |
| builder.fFSCode.append("\tvec4 filteredColor;\n"); |
| const char* color = adjustInColor(inColor); |
| addColorFilter(&builder.fFSCode, "filteredColor", uniformCoeff, |
| colorCoeff, colorFilterColorUniName, color); |
| inColor = "filteredColor"; |
| } |
| if (applyColorMatrix) { |
| const char* colMatrixName; |
| const char* colMatrixVecName; |
| fUniforms.fColorMatrixUni = builder.addUniform(GrGLShaderBuilder::kFragment_ShaderType, |
| kMat44f_GrSLType, "ColorMatrix", |
| &colMatrixName); |
| fUniforms.fColorMatrixVecUni = builder.addUniform(GrGLShaderBuilder::kFragment_ShaderType, |
| kVec4f_GrSLType, "ColorMatrixVec", |
| &colMatrixVecName); |
| const char* color = adjustInColor(inColor); |
| builder.fFSCode.appendf("\tvec4 matrixedColor = %s * vec4(%s.rgb / %s.a, %s.a) + %s;\n", |
| colMatrixName, color, color, color, colMatrixVecName); |
| builder.fFSCode.append("\tmatrixedColor.rgb *= matrixedColor.a;\n"); |
| |
| inColor = "matrixedColor"; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////// |
| // compute the partial coverage (coverage stages and edge aa) |
| |
| SkString inCoverage; |
| bool coverageIsZero = Desc::kTransBlack_ColorInput == fDesc.fCoverageInput; |
| // we don't need to compute coverage at all if we know the final shader |
| // output will be zero and we don't have a dual src blend output. |
| if (!wroteFragColorZero || Desc::kNone_DualSrcOutput != fDesc.fDualSrcOutput) { |
| |
| if (!coverageIsZero) { |
| bool inCoverageIsScalar = this->genEdgeCoverage(&inCoverage, &builder); |
| |
| switch (fDesc.fCoverageInput) { |
| case Desc::kSolidWhite_ColorInput: |
| // empty string implies solid white |
| break; |
| case Desc::kAttribute_ColorInput: |
| gen_attribute_coverage(&builder, &inCoverage); |
| inCoverageIsScalar = false; |
| break; |
| case Desc::kUniform_ColorInput: |
| this->genUniformCoverage(&builder, &inCoverage); |
| inCoverageIsScalar = false; |
| break; |
| default: |
| GrCrash("Unexpected input coverage."); |
| } |
| |
| SkString outCoverage; |
| const int& startStage = fDesc.fFirstCoverageStage; |
| for (int s = startStage; s < GrDrawState::kNumStages; ++s) { |
| if (fDesc.fStages[s].isEnabled()) { |
| // create var to hold stage output |
| outCoverage = "coverage"; |
| outCoverage.appendS32(s); |
| builder.fFSCode.appendf("\tvec4 %s;\n", outCoverage.c_str()); |
| |
| const char* inCoords; |
| // figure out what our input coords are |
| int tcIdx = |
| GrDrawTarget::VertexTexCoordsForStage(s, layout); |
| if (tcIdx < 0) { |
| inCoords = POS_ATTR_NAME; |
| } else { |
| // must have input tex coordinates if stage is |
| // enabled. |
| GrAssert(texCoordAttrs[tcIdx].size()); |
| inCoords = texCoordAttrs[tcIdx].c_str(); |
| } |
| |
| if (NULL != customStages[s]) { |
| const GrProgramStageFactory& factory = customStages[s]->getFactory(); |
| fProgramStage[s] = factory.createGLInstance(*customStages[s]); |
| } |
| // stages don't know how to deal with a scalar input. (Maybe they should. We |
| // could pass a GrGLShaderVar) |
| if (inCoverageIsScalar) { |
| builder.fFSCode.appendf("\tvec4 %s4 = vec4(%s);\n", |
| inCoverage.c_str(), inCoverage.c_str()); |
| inCoverage.append("4"); |
| } |
| this->genStageCode(s, |
| inCoverage.size() ? inCoverage.c_str() : NULL, |
| outCoverage.c_str(), |
| inCoords, |
| &builder); |
| inCoverage = outCoverage; |
| } |
| } |
| } |
| |
| if (Desc::kNone_DualSrcOutput != fDesc.fDualSrcOutput) { |
| builder.fFSOutputs.push_back().set(kVec4f_GrSLType, |
| GrGLShaderVar::kOut_TypeModifier, |
| dual_source_output_name()); |
| bool outputIsZero = coverageIsZero; |
| SkString coeff; |
| if (!outputIsZero && |
| Desc::kCoverage_DualSrcOutput != fDesc.fDualSrcOutput && !wroteFragColorZero) { |
| if (!inColor.size()) { |
| outputIsZero = true; |
| } else { |
| if (Desc::kCoverageISA_DualSrcOutput == fDesc.fDualSrcOutput) { |
| coeff.printf("(1 - %s.a)", inColor.c_str()); |
| } else { |
| coeff.printf("(vec4(1,1,1,1) - %s)", inColor.c_str()); |
| } |
| } |
| } |
| if (outputIsZero) { |
| builder.fFSCode.appendf("\t%s = %s;\n", |
| dual_source_output_name(), |
| GrGLSLZerosVecf(4)); |
| } else { |
| builder.fFSCode.appendf("\t%s =", dual_source_output_name()); |
| GrGLSLModulate4f(&builder.fFSCode, coeff.c_str(), inCoverage.c_str()); |
| builder.fFSCode.append(";\n"); |
| } |
| dualSourceOutputWritten = true; |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////// |
| // combine color and coverage as frag color |
| |
| if (!wroteFragColorZero) { |
| if (coverageIsZero) { |
| builder.fFSCode.appendf("\t%s = %s;\n", |
| colorOutput.getName().c_str(), |
| GrGLSLZerosVecf(4)); |
| } else { |
| builder.fFSCode.appendf("\t%s = ", colorOutput.getName().c_str()); |
| GrGLSLModulate4f(&builder.fFSCode, inColor.c_str(), inCoverage.c_str()); |
| builder.fFSCode.append(";\n"); |
| } |
| } |
| |
| builder.fVSCode.append("}\n"); |
| builder.fFSCode.append("}\n"); |
| |
| /////////////////////////////////////////////////////////////////////////// |
| // insert GS |
| #if GR_DEBUG |
| this->genGeometryShader(&builder); |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////// |
| // compile and setup attribs and unis |
| |
| if (!this->compileShaders(builder)) { |
| return false; |
| } |
| |
| if (!this->bindOutputsAttribsAndLinkProgram(texCoordAttrs, |
| isColorDeclared, |
| dualSourceOutputWritten)) { |
| return false; |
| } |
| |
| builder.finished(fProgramID); |
| this->initSamplerUniforms(); |
| |
| return true; |
| } |
| |
| bool GrGLProgram::bindOutputsAttribsAndLinkProgram(SkString texCoordAttrNames[], |
| bool bindColorOut, |
| bool bindDualSrcOut) { |
| GL_CALL_RET(fProgramID, CreateProgram()); |
| if (!fProgramID) { |
| return false; |
| } |
| |
| GL_CALL(AttachShader(fProgramID, fVShaderID)); |
| if (fGShaderID) { |
| GL_CALL(AttachShader(fProgramID, fGShaderID)); |
| } |
| GL_CALL(AttachShader(fProgramID, fFShaderID)); |
| |
| if (bindColorOut) { |
| GL_CALL(BindFragDataLocation(fProgramID, 0, declared_color_output_name())); |
| } |
| if (bindDualSrcOut) { |
| GL_CALL(BindFragDataLocationIndexed(fProgramID, 0, 1, dual_source_output_name())); |
| } |
| |
| // Bind the attrib locations to same values for all shaders |
| GL_CALL(BindAttribLocation(fProgramID, PositionAttributeIdx(), POS_ATTR_NAME)); |
| for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) { |
| if (texCoordAttrNames[t].size()) { |
| GL_CALL(BindAttribLocation(fProgramID, |
| TexCoordAttributeIdx(t), |
| texCoordAttrNames[t].c_str())); |
| } |
| } |
| |
| GL_CALL(BindAttribLocation(fProgramID, ColorAttributeIdx(), COL_ATTR_NAME)); |
| GL_CALL(BindAttribLocation(fProgramID, CoverageAttributeIdx(), COV_ATTR_NAME)); |
| GL_CALL(BindAttribLocation(fProgramID, EdgeAttributeIdx(), EDGE_ATTR_NAME)); |
| |
| GL_CALL(LinkProgram(fProgramID)); |
| |
| GrGLint linked = GR_GL_INIT_ZERO; |
| GL_CALL(GetProgramiv(fProgramID, GR_GL_LINK_STATUS, &linked)); |
| if (!linked) { |
| GrGLint infoLen = GR_GL_INIT_ZERO; |
| GL_CALL(GetProgramiv(fProgramID, GR_GL_INFO_LOG_LENGTH, &infoLen)); |
| SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger |
| if (infoLen > 0) { |
| // retrieve length even though we don't need it to workaround |
| // bug in chrome cmd buffer param validation. |
| GrGLsizei length = GR_GL_INIT_ZERO; |
| GL_CALL(GetProgramInfoLog(fProgramID, |
| infoLen+1, |
| &length, |
| (char*)log.get())); |
| GrPrintf((char*)log.get()); |
| } |
| GrAssert(!"Error linking program"); |
| GL_CALL(DeleteProgram(fProgramID)); |
| fProgramID = 0; |
| return false; |
| } |
| return true; |
| } |
| |
| void GrGLProgram::initSamplerUniforms() { |
| GL_CALL(UseProgram(fProgramID)); |
| for (int s = 0; s < GrDrawState::kNumStages; ++s) { |
| int count = fUniforms.fStages[s].fSamplerUniforms.count(); |
| // FIXME: We're still always reserving one texture per stage. After GrTextureParams are |
| // expressed by the custom stage rather than the GrSamplerState we can move texture binding |
| // into GrGLProgram and it should be easier to fix this. |
| GrAssert(count <= 1); |
| for (int t = 0; t < count; ++t) { |
| UniformHandle uh = fUniforms.fStages[s].fSamplerUniforms[t]; |
| if (GrGLUniformManager::kInvalidUniformHandle != uh) { |
| fUniformManager.setSampler(uh, s); |
| } |
| } |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // Stage code generation |
| |
| void GrGLProgram::genStageCode(int stageNum, |
| const char* fsInColor, // NULL means no incoming color |
| const char* fsOutColor, |
| const char* vsInCoord, |
| GrGLShaderBuilder* builder) { |
| GrAssert(stageNum >= 0 && stageNum <= GrDrawState::kNumStages); |
| |
| const GrGLProgram::StageDesc& desc = fDesc.fStages[stageNum]; |
| StageUniforms& uniforms = fUniforms.fStages[stageNum]; |
| GrGLProgramStage* customStage = fProgramStage[stageNum]; |
| GrAssert(NULL != customStage); |
| |
| GrAssert((desc.fInConfigFlags & StageDesc::kInConfigBitMask) == desc.fInConfigFlags); |
| |
| builder->setCurrentStage(stageNum); |
| |
| /// Vertex Shader Stuff |
| |
| // decide whether we need a matrix to transform texture coords and whether the varying needs a |
| // perspective coord. |
| const char* matName = NULL; |
| GrSLType texCoordVaryingType; |
| if (desc.fOptFlags & StageDesc::kIdentityMatrix_OptFlagBit) { |
| texCoordVaryingType = kVec2f_GrSLType; |
| } else { |
| uniforms.fTextureMatrixUni = builder->addUniform(GrGLShaderBuilder::kVertex_ShaderType, |
| kMat33f_GrSLType, "TexM", &matName); |
| const GrGLShaderVar& mat = builder->getUniformVariable(uniforms.fTextureMatrixUni); |
| |
| if (desc.fOptFlags & StageDesc::kNoPerspective_OptFlagBit) { |
| texCoordVaryingType = kVec2f_GrSLType; |
| } else { |
| texCoordVaryingType = kVec3f_GrSLType; |
| } |
| } |
| const char *varyingVSName, *varyingFSName; |
| builder->addVarying(texCoordVaryingType, |
| "Stage", |
| &varyingVSName, |
| &varyingFSName); |
| builder->setupTextureAccess(varyingFSName, texCoordVaryingType); |
| |
| // Must setup variables after calling setupTextureAccess |
| customStage->setupVariables(builder); |
| |
| const char* samplerName; |
| uniforms.fSamplerUniforms.push_back(builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType, |
| kSampler2D_GrSLType, |
| "Sampler", |
| &samplerName)); |
| |
| if (!matName) { |
| GrAssert(kVec2f_GrSLType == texCoordVaryingType); |
| builder->fVSCode.appendf("\t%s = %s;\n", varyingVSName, vsInCoord); |
| } else { |
| // varying = texMatrix * texCoord |
| builder->fVSCode.appendf("\t%s = (%s * vec3(%s, 1))%s;\n", |
| varyingVSName, matName, vsInCoord, |
| vector_all_coords(GrSLTypeToVecLength(texCoordVaryingType))); |
| } |
| |
| builder->fVSCode.appendf("\t{ // stage %d %s\n", |
| stageNum, customStage->name()); |
| customStage->emitVS(builder, varyingVSName); |
| builder->fVSCode.appendf("\t}\n"); |
| |
| builder->computeSwizzle(desc.fInConfigFlags); |
| |
| // Enclose custom code in a block to avoid namespace conflicts |
| builder->fFSCode.appendf("\t{ // stage %d %s \n", |
| stageNum, customStage->name()); |
| customStage->emitFS(builder, fsOutColor, fsInColor, |
| samplerName); |
| builder->fFSCode.appendf("\t}\n"); |
| builder->setNonStage(); |
| } |