| /* |
| * Copyright 2016 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/sksl/codegen/SkSLMetalCodeGenerator.h" |
| |
| #include "src/core/SkScopeExit.h" |
| #include "src/sksl/SkSLCompiler.h" |
| #include "src/sksl/SkSLMemoryLayout.h" |
| #include "src/sksl/ir/SkSLBinaryExpression.h" |
| #include "src/sksl/ir/SkSLBlock.h" |
| #include "src/sksl/ir/SkSLConstructorArray.h" |
| #include "src/sksl/ir/SkSLConstructorArrayCast.h" |
| #include "src/sksl/ir/SkSLConstructorCompound.h" |
| #include "src/sksl/ir/SkSLConstructorCompoundCast.h" |
| #include "src/sksl/ir/SkSLConstructorDiagonalMatrix.h" |
| #include "src/sksl/ir/SkSLConstructorMatrixResize.h" |
| #include "src/sksl/ir/SkSLConstructorSplat.h" |
| #include "src/sksl/ir/SkSLConstructorStruct.h" |
| #include "src/sksl/ir/SkSLDoStatement.h" |
| #include "src/sksl/ir/SkSLExpressionStatement.h" |
| #include "src/sksl/ir/SkSLExtension.h" |
| #include "src/sksl/ir/SkSLFieldAccess.h" |
| #include "src/sksl/ir/SkSLForStatement.h" |
| #include "src/sksl/ir/SkSLFunctionCall.h" |
| #include "src/sksl/ir/SkSLFunctionDeclaration.h" |
| #include "src/sksl/ir/SkSLFunctionDefinition.h" |
| #include "src/sksl/ir/SkSLFunctionPrototype.h" |
| #include "src/sksl/ir/SkSLIfStatement.h" |
| #include "src/sksl/ir/SkSLIndexExpression.h" |
| #include "src/sksl/ir/SkSLInterfaceBlock.h" |
| #include "src/sksl/ir/SkSLModifiersDeclaration.h" |
| #include "src/sksl/ir/SkSLNop.h" |
| #include "src/sksl/ir/SkSLPostfixExpression.h" |
| #include "src/sksl/ir/SkSLPrefixExpression.h" |
| #include "src/sksl/ir/SkSLReturnStatement.h" |
| #include "src/sksl/ir/SkSLSetting.h" |
| #include "src/sksl/ir/SkSLStructDefinition.h" |
| #include "src/sksl/ir/SkSLSwitchStatement.h" |
| #include "src/sksl/ir/SkSLSwizzle.h" |
| #include "src/sksl/ir/SkSLVarDeclarations.h" |
| #include "src/sksl/ir/SkSLVariableReference.h" |
| |
| #include <algorithm> |
| |
| namespace SkSL { |
| |
| const char* MetalCodeGenerator::OperatorName(Operator op) { |
| switch (op.kind()) { |
| case Token::Kind::TK_LOGICALXOR: return "!="; |
| default: return op.operatorName(); |
| } |
| } |
| |
| class MetalCodeGenerator::GlobalStructVisitor { |
| public: |
| virtual ~GlobalStructVisitor() = default; |
| virtual void visitInterfaceBlock(const InterfaceBlock& block, skstd::string_view blockName) = 0; |
| virtual void visitTexture(const Type& type, skstd::string_view name) = 0; |
| virtual void visitSampler(const Type& type, skstd::string_view name) = 0; |
| virtual void visitVariable(const Variable& var, const Expression* value) = 0; |
| }; |
| |
| void MetalCodeGenerator::write(skstd::string_view s) { |
| if (s.empty()) { |
| return; |
| } |
| if (fAtLineStart) { |
| for (int i = 0; i < fIndentation; i++) { |
| fOut->writeText(" "); |
| } |
| } |
| fOut->writeText(String(s).c_str()); |
| fAtLineStart = false; |
| } |
| |
| void MetalCodeGenerator::writeLine(skstd::string_view s) { |
| this->write(s); |
| fOut->writeText(fLineEnding); |
| fAtLineStart = true; |
| } |
| |
| void MetalCodeGenerator::finishLine() { |
| if (!fAtLineStart) { |
| this->writeLine(); |
| } |
| } |
| |
| void MetalCodeGenerator::writeExtension(const Extension& ext) { |
| this->writeLine("#extension " + ext.name() + " : enable"); |
| } |
| |
| String MetalCodeGenerator::typeName(const Type& type) { |
| switch (type.typeKind()) { |
| case Type::TypeKind::kArray: |
| SkASSERTF(type.columns() > 0, "invalid array size: %s", type.description().c_str()); |
| return String::printf("array<%s, %d>", |
| this->typeName(type.componentType()).c_str(), type.columns()); |
| |
| case Type::TypeKind::kVector: |
| return this->typeName(type.componentType()) + to_string(type.columns()); |
| |
| case Type::TypeKind::kMatrix: |
| return this->typeName(type.componentType()) + to_string(type.columns()) + "x" + |
| to_string(type.rows()); |
| |
| case Type::TypeKind::kSampler: |
| return "texture2d<float>"; // FIXME - support other texture types |
| |
| default: |
| // We currently only support full-precision types in MSL to avoid type coercion issues. |
| if (type == *fContext.fTypes.fHalf) { |
| return "float"; |
| } |
| if (type == *fContext.fTypes.fShort) { |
| return "int"; |
| } |
| if (type == *fContext.fTypes.fUShort) { |
| return "uint"; |
| } |
| return String(type.name()); |
| } |
| } |
| |
| void MetalCodeGenerator::writeStructDefinition(const StructDefinition& s) { |
| const Type& type = s.type(); |
| this->writeLine("struct " + type.name() + " {"); |
| fIndentation++; |
| this->writeFields(type.fields(), type.fLine); |
| fIndentation--; |
| this->writeLine("};"); |
| } |
| |
| void MetalCodeGenerator::writeType(const Type& type) { |
| this->write(this->typeName(type)); |
| } |
| |
| void MetalCodeGenerator::writeExpression(const Expression& expr, Precedence parentPrecedence) { |
| switch (expr.kind()) { |
| case Expression::Kind::kBinary: |
| this->writeBinaryExpression(expr.as<BinaryExpression>(), parentPrecedence); |
| break; |
| case Expression::Kind::kConstructorArray: |
| case Expression::Kind::kConstructorStruct: |
| this->writeAnyConstructor(expr.asAnyConstructor(), "{", "}", parentPrecedence); |
| break; |
| case Expression::Kind::kConstructorArrayCast: |
| this->writeConstructorArrayCast(expr.as<ConstructorArrayCast>(), parentPrecedence); |
| break; |
| case Expression::Kind::kConstructorCompound: |
| this->writeConstructorCompound(expr.as<ConstructorCompound>(), parentPrecedence); |
| break; |
| case Expression::Kind::kConstructorDiagonalMatrix: |
| case Expression::Kind::kConstructorSplat: |
| this->writeAnyConstructor(expr.asAnyConstructor(), "(", ")", parentPrecedence); |
| break; |
| case Expression::Kind::kConstructorMatrixResize: |
| this->writeConstructorMatrixResize(expr.as<ConstructorMatrixResize>(), |
| parentPrecedence); |
| break; |
| case Expression::Kind::kConstructorScalarCast: |
| case Expression::Kind::kConstructorCompoundCast: |
| this->writeCastConstructor(expr.asAnyConstructor(), "(", ")", parentPrecedence); |
| break; |
| case Expression::Kind::kFieldAccess: |
| this->writeFieldAccess(expr.as<FieldAccess>()); |
| break; |
| case Expression::Kind::kLiteral: |
| this->writeLiteral(expr.as<Literal>()); |
| break; |
| case Expression::Kind::kFunctionCall: |
| this->writeFunctionCall(expr.as<FunctionCall>()); |
| break; |
| case Expression::Kind::kPrefix: |
| this->writePrefixExpression(expr.as<PrefixExpression>(), parentPrecedence); |
| break; |
| case Expression::Kind::kPostfix: |
| this->writePostfixExpression(expr.as<PostfixExpression>(), parentPrecedence); |
| break; |
| case Expression::Kind::kSetting: |
| this->writeSetting(expr.as<Setting>()); |
| break; |
| case Expression::Kind::kSwizzle: |
| this->writeSwizzle(expr.as<Swizzle>()); |
| break; |
| case Expression::Kind::kVariableReference: |
| this->writeVariableReference(expr.as<VariableReference>()); |
| break; |
| case Expression::Kind::kTernary: |
| this->writeTernaryExpression(expr.as<TernaryExpression>(), parentPrecedence); |
| break; |
| case Expression::Kind::kIndex: |
| this->writeIndexExpression(expr.as<IndexExpression>()); |
| break; |
| default: |
| SkDEBUGFAILF("unsupported expression: %s", expr.description().c_str()); |
| break; |
| } |
| } |
| |
| String MetalCodeGenerator::getOutParamHelper(const FunctionCall& call, |
| const ExpressionArray& arguments, |
| const SkTArray<VariableReference*>& outVars) { |
| AutoOutputStream outputToExtraFunctions(this, &fExtraFunctions, &fIndentation); |
| const FunctionDeclaration& function = call.function(); |
| |
| String name = "_skOutParamHelper" + to_string(fSwizzleHelperCount++) + |
| "_" + function.mangledName(); |
| const char* separator = ""; |
| |
| // Emit a prototype for the function we'll be calling through to in our helper. |
| if (!function.isBuiltin()) { |
| this->writeFunctionDeclaration(function); |
| this->writeLine(";"); |
| } |
| |
| // Synthesize a helper function that takes the same inputs as `function`, except in places where |
| // `outVars` is non-null; in those places, we take the type of the VariableReference. |
| // |
| // float _skOutParamHelper0_originalFuncName(float _var0, float _var1, float& outParam) { |
| this->writeType(call.type()); |
| this->write(" "); |
| this->write(name); |
| this->write("("); |
| this->writeFunctionRequirementParams(function, separator); |
| |
| SkASSERT(outVars.size() == arguments.size()); |
| SkASSERT(outVars.size() == function.parameters().size()); |
| |
| // We need to detect cases where the caller passes the same variable as an out-param more than |
| // once, and avoid reusing the variable name. (In those cases we can actually just ignore the |
| // redundant input parameter entirely, and not give it any name.) |
| std::unordered_set<const Variable*> writtenVars; |
| |
| for (int index = 0; index < arguments.count(); ++index) { |
| this->write(separator); |
| separator = ", "; |
| |
| const Variable* param = function.parameters()[index]; |
| this->writeModifiers(param->modifiers()); |
| |
| const Type* type = outVars[index] ? &outVars[index]->type() : &arguments[index]->type(); |
| this->writeType(*type); |
| |
| if (param->modifiers().fFlags & Modifiers::kOut_Flag) { |
| this->write("&"); |
| } |
| if (outVars[index]) { |
| auto [iter, didInsert] = writtenVars.insert(outVars[index]->variable()); |
| if (didInsert) { |
| this->write(" "); |
| fIgnoreVariableReferenceModifiers = true; |
| this->writeVariableReference(*outVars[index]); |
| fIgnoreVariableReferenceModifiers = false; |
| } |
| } else { |
| this->write(" _var"); |
| this->write(to_string(index)); |
| } |
| } |
| this->writeLine(") {"); |
| |
| ++fIndentation; |
| for (int index = 0; index < outVars.count(); ++index) { |
| if (!outVars[index]) { |
| continue; |
| } |
| // float3 _var2[ = outParam.zyx]; |
| this->writeType(arguments[index]->type()); |
| this->write(" _var"); |
| this->write(to_string(index)); |
| |
| const Variable* param = function.parameters()[index]; |
| if (param->modifiers().fFlags & Modifiers::kIn_Flag) { |
| this->write(" = "); |
| fIgnoreVariableReferenceModifiers = true; |
| this->writeExpression(*arguments[index], Precedence::kAssignment); |
| fIgnoreVariableReferenceModifiers = false; |
| } |
| |
| this->writeLine(";"); |
| } |
| |
| // [int _skResult = ] myFunction(inputs, outputs, _globals, _var0, _var1, _var2, _var3); |
| bool hasResult = (call.type().name() != "void"); |
| if (hasResult) { |
| this->writeType(call.type()); |
| this->write(" _skResult = "); |
| } |
| |
| this->writeName(function.mangledName()); |
| this->write("("); |
| separator = ""; |
| this->writeFunctionRequirementArgs(function, separator); |
| |
| for (int index = 0; index < arguments.count(); ++index) { |
| this->write(separator); |
| separator = ", "; |
| |
| this->write("_var"); |
| this->write(to_string(index)); |
| } |
| this->writeLine(");"); |
| |
| for (int index = 0; index < outVars.count(); ++index) { |
| if (!outVars[index]) { |
| continue; |
| } |
| // outParam.zyx = _var2; |
| fIgnoreVariableReferenceModifiers = true; |
| this->writeExpression(*arguments[index], Precedence::kAssignment); |
| fIgnoreVariableReferenceModifiers = false; |
| this->write(" = _var"); |
| this->write(to_string(index)); |
| this->writeLine(";"); |
| } |
| |
| if (hasResult) { |
| this->writeLine("return _skResult;"); |
| } |
| |
| --fIndentation; |
| this->writeLine("}"); |
| |
| return name; |
| } |
| |
| String MetalCodeGenerator::getBitcastIntrinsic(const Type& outType) { |
| return "as_type<" + outType.displayName() + ">"; |
| } |
| |
| void MetalCodeGenerator::writeFunctionCall(const FunctionCall& c) { |
| const FunctionDeclaration& function = c.function(); |
| |
| // Many intrinsics need to be rewritten in Metal. |
| if (function.isIntrinsic()) { |
| if (this->writeIntrinsicCall(c, function.intrinsicKind())) { |
| return; |
| } |
| } |
| |
| // Determine whether or not we need to emulate GLSL's out-param semantics for Metal using a |
| // helper function. (Specifically, out-parameters in GLSL are only written back to the original |
| // variable at the end of the function call; also, swizzles are supported, whereas Metal doesn't |
| // allow a swizzle to be passed to a `floatN&`.) |
| const ExpressionArray& arguments = c.arguments(); |
| const std::vector<const Variable*>& parameters = function.parameters(); |
| SkASSERT(arguments.size() == parameters.size()); |
| |
| bool foundOutParam = false; |
| SkSTArray<16, VariableReference*> outVars; |
| outVars.push_back_n(arguments.count(), (VariableReference*)nullptr); |
| |
| for (int index = 0; index < arguments.count(); ++index) { |
| // If this is an out parameter... |
| if (parameters[index]->modifiers().fFlags & Modifiers::kOut_Flag) { |
| // Find the expression's inner variable being written to. |
| Analysis::AssignmentInfo info; |
| // Assignability was verified at IRGeneration time, so this should always succeed. |
| SkAssertResult(Analysis::IsAssignable(*arguments[index], &info)); |
| outVars[index] = info.fAssignedVar; |
| foundOutParam = true; |
| } |
| } |
| |
| if (foundOutParam) { |
| // Out parameters need to be written back to at the end of the function. To do this, we |
| // synthesize a helper function which evaluates the out-param expression into a temporary |
| // variable, calls the original function, then writes the temp var back into the out param |
| // using the original out-param expression. (This lets us support things like swizzles and |
| // array indices.) |
| this->write(getOutParamHelper(c, arguments, outVars)); |
| } else { |
| this->write(function.mangledName()); |
| } |
| |
| this->write("("); |
| const char* separator = ""; |
| this->writeFunctionRequirementArgs(function, separator); |
| for (int i = 0; i < arguments.count(); ++i) { |
| this->write(separator); |
| separator = ", "; |
| |
| if (outVars[i]) { |
| this->writeExpression(*outVars[i], Precedence::kSequence); |
| } else { |
| this->writeExpression(*arguments[i], Precedence::kSequence); |
| } |
| } |
| this->write(")"); |
| } |
| |
| static constexpr char kInverse2x2[] = R"( |
| template <typename T> |
| matrix<T, 2, 2> mat2_inverse(matrix<T, 2, 2> m) { |
| return matrix<T, 2, 2>(m[1][1], -m[0][1], -m[1][0], m[0][0]) * (1/determinant(m)); |
| } |
| )"; |
| |
| static constexpr char kInverse3x3[] = R"( |
| template <typename T> |
| matrix<T, 3, 3> mat3_inverse(matrix<T, 3, 3> m) { |
| T a00 = m[0][0], a01 = m[0][1], a02 = m[0][2]; |
| T a10 = m[1][0], a11 = m[1][1], a12 = m[1][2]; |
| T a20 = m[2][0], a21 = m[2][1], a22 = m[2][2]; |
| T b01 = a22*a11 - a12*a21; |
| T b11 = -a22*a10 + a12*a20; |
| T b21 = a21*a10 - a11*a20; |
| T det = a00*b01 + a01*b11 + a02*b21; |
| return matrix<T, 3, 3>(b01, (-a22*a01 + a02*a21), ( a12*a01 - a02*a11), |
| b11, ( a22*a00 - a02*a20), (-a12*a00 + a02*a10), |
| b21, (-a21*a00 + a01*a20), ( a11*a00 - a01*a10)) * (1/det); |
| } |
| )"; |
| |
| static constexpr char kInverse4x4[] = R"( |
| template <typename T> |
| matrix<T, 4, 4> mat4_inverse(matrix<T, 4, 4> m) { |
| T a00 = m[0][0], a01 = m[0][1], a02 = m[0][2], a03 = m[0][3]; |
| T a10 = m[1][0], a11 = m[1][1], a12 = m[1][2], a13 = m[1][3]; |
| T a20 = m[2][0], a21 = m[2][1], a22 = m[2][2], a23 = m[2][3]; |
| T a30 = m[3][0], a31 = m[3][1], a32 = m[3][2], a33 = m[3][3]; |
| T b00 = a00*a11 - a01*a10; |
| T b01 = a00*a12 - a02*a10; |
| T b02 = a00*a13 - a03*a10; |
| T b03 = a01*a12 - a02*a11; |
| T b04 = a01*a13 - a03*a11; |
| T b05 = a02*a13 - a03*a12; |
| T b06 = a20*a31 - a21*a30; |
| T b07 = a20*a32 - a22*a30; |
| T b08 = a20*a33 - a23*a30; |
| T b09 = a21*a32 - a22*a31; |
| T b10 = a21*a33 - a23*a31; |
| T b11 = a22*a33 - a23*a32; |
| T det = b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06; |
| return matrix<T, 4, 4>(a11*b11 - a12*b10 + a13*b09, |
| a02*b10 - a01*b11 - a03*b09, |
| a31*b05 - a32*b04 + a33*b03, |
| a22*b04 - a21*b05 - a23*b03, |
| a12*b08 - a10*b11 - a13*b07, |
| a00*b11 - a02*b08 + a03*b07, |
| a32*b02 - a30*b05 - a33*b01, |
| a20*b05 - a22*b02 + a23*b01, |
| a10*b10 - a11*b08 + a13*b06, |
| a01*b08 - a00*b10 - a03*b06, |
| a30*b04 - a31*b02 + a33*b00, |
| a21*b02 - a20*b04 - a23*b00, |
| a11*b07 - a10*b09 - a12*b06, |
| a00*b09 - a01*b07 + a02*b06, |
| a31*b01 - a30*b03 - a32*b00, |
| a20*b03 - a21*b01 + a22*b00) * (1/det); |
| } |
| )"; |
| |
| String MetalCodeGenerator::getInversePolyfill(const ExpressionArray& arguments) { |
| // Only use polyfills for a function taking a single-argument square matrix. |
| if (arguments.size() == 1) { |
| const Type& type = arguments.front()->type(); |
| if (type.isMatrix() && type.rows() == type.columns()) { |
| // Inject the correct polyfill based on the matrix size. |
| auto name = String::printf("mat%d_inverse", type.columns()); |
| auto [iter, didInsert] = fWrittenIntrinsics.insert(name); |
| if (didInsert) { |
| switch (type.rows()) { |
| case 2: |
| fExtraFunctions.writeText(kInverse2x2); |
| break; |
| case 3: |
| fExtraFunctions.writeText(kInverse3x3); |
| break; |
| case 4: |
| fExtraFunctions.writeText(kInverse4x4); |
| break; |
| } |
| } |
| return name; |
| } |
| } |
| // This isn't the built-in `inverse`. We don't want to polyfill it at all. |
| return "inverse"; |
| } |
| |
| void MetalCodeGenerator::writeMatrixCompMult() { |
| static constexpr char kMatrixCompMult[] = R"( |
| template <typename T, int C, int R> |
| matrix<T, C, R> matrixCompMult(matrix<T, C, R> a, const matrix<T, C, R> b) { |
| for (int c = 0; c < C; ++c) { |
| a[c] *= b[c]; |
| } |
| return a; |
| } |
| )"; |
| |
| String name = "matrixCompMult"; |
| if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) { |
| fWrittenIntrinsics.insert(name); |
| fExtraFunctions.writeText(kMatrixCompMult); |
| } |
| } |
| |
| void MetalCodeGenerator::writeOuterProduct() { |
| static constexpr char kOuterProduct[] = R"( |
| template <typename T, int C, int R> |
| matrix<T, C, R> outerProduct(const vec<T, R> a, const vec<T, C> b) { |
| matrix<T, C, R> result; |
| for (int c = 0; c < C; ++c) { |
| result[c] = a * b[c]; |
| } |
| return result; |
| } |
| )"; |
| |
| String name = "outerProduct"; |
| if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) { |
| fWrittenIntrinsics.insert(name); |
| fExtraFunctions.writeText(kOuterProduct); |
| } |
| } |
| |
| String MetalCodeGenerator::getTempVariable(const Type& type) { |
| String tempVar = "_skTemp" + to_string(fVarCount++); |
| this->fFunctionHeader += " " + this->typeName(type) + " " + tempVar + ";\n"; |
| return tempVar; |
| } |
| |
| void MetalCodeGenerator::writeSimpleIntrinsic(const FunctionCall& c) { |
| // Write out an intrinsic function call exactly as-is. No muss no fuss. |
| this->write(c.function().name()); |
| this->writeArgumentList(c.arguments()); |
| } |
| |
| void MetalCodeGenerator::writeArgumentList(const ExpressionArray& arguments) { |
| this->write("("); |
| const char* separator = ""; |
| for (const std::unique_ptr<Expression>& arg : arguments) { |
| this->write(separator); |
| separator = ", "; |
| this->writeExpression(*arg, Precedence::kSequence); |
| } |
| this->write(")"); |
| } |
| |
| bool MetalCodeGenerator::writeIntrinsicCall(const FunctionCall& c, IntrinsicKind kind) { |
| const ExpressionArray& arguments = c.arguments(); |
| switch (kind) { |
| case k_sample_IntrinsicKind: { |
| this->writeExpression(*arguments[0], Precedence::kSequence); |
| this->write(".sample("); |
| this->writeExpression(*arguments[0], Precedence::kSequence); |
| this->write(SAMPLER_SUFFIX); |
| this->write(", "); |
| const Type& arg1Type = arguments[1]->type(); |
| if (arg1Type.columns() == 3) { |
| // have to store the vector in a temp variable to avoid double evaluating it |
| String tmpVar = this->getTempVariable(arg1Type); |
| this->write("(" + tmpVar + " = "); |
| this->writeExpression(*arguments[1], Precedence::kSequence); |
| this->write(", " + tmpVar + ".xy / " + tmpVar + ".z))"); |
| } else { |
| SkASSERT(arg1Type.columns() == 2); |
| this->writeExpression(*arguments[1], Precedence::kSequence); |
| this->write(")"); |
| } |
| return true; |
| } |
| case k_mod_IntrinsicKind: { |
| // fmod(x, y) in metal calculates x - y * trunc(x / y) instead of x - y * floor(x / y) |
| String tmpX = this->getTempVariable(arguments[0]->type()); |
| String tmpY = this->getTempVariable(arguments[1]->type()); |
| this->write("(" + tmpX + " = "); |
| this->writeExpression(*arguments[0], Precedence::kSequence); |
| this->write(", " + tmpY + " = "); |
| this->writeExpression(*arguments[1], Precedence::kSequence); |
| this->write(", " + tmpX + " - " + tmpY + " * floor(" + tmpX + " / " + tmpY + "))"); |
| return true; |
| } |
| // GLSL declares scalar versions of most geometric intrinsics, but these don't exist in MSL |
| case k_distance_IntrinsicKind: { |
| if (arguments[0]->type().columns() == 1) { |
| this->write("abs("); |
| this->writeExpression(*arguments[0], Precedence::kAdditive); |
| this->write(" - "); |
| this->writeExpression(*arguments[1], Precedence::kAdditive); |
| this->write(")"); |
| } else { |
| this->writeSimpleIntrinsic(c); |
| } |
| return true; |
| } |
| case k_dot_IntrinsicKind: { |
| if (arguments[0]->type().columns() == 1) { |
| this->write("("); |
| this->writeExpression(*arguments[0], Precedence::kMultiplicative); |
| this->write(" * "); |
| this->writeExpression(*arguments[1], Precedence::kMultiplicative); |
| this->write(")"); |
| } else { |
| this->writeSimpleIntrinsic(c); |
| } |
| return true; |
| } |
| case k_faceforward_IntrinsicKind: { |
| if (arguments[0]->type().columns() == 1) { |
| // ((((Nref) * (I) < 0) ? 1 : -1) * (N)) |
| this->write("(((("); |
| this->writeExpression(*arguments[2], Precedence::kSequence); |
| this->write(") * ("); |
| this->writeExpression(*arguments[1], Precedence::kSequence); |
| this->write(") < 0) ? 1 : -1) * ("); |
| this->writeExpression(*arguments[0], Precedence::kSequence); |
| this->write("))"); |
| } else { |
| this->writeSimpleIntrinsic(c); |
| } |
| return true; |
| } |
| case k_length_IntrinsicKind: { |
| this->write(arguments[0]->type().columns() == 1 ? "abs(" : "length("); |
| this->writeExpression(*arguments[0], Precedence::kSequence); |
| this->write(")"); |
| return true; |
| } |
| case k_normalize_IntrinsicKind: { |
| this->write(arguments[0]->type().columns() == 1 ? "sign(" : "normalize("); |
| this->writeExpression(*arguments[0], Precedence::kSequence); |
| this->write(")"); |
| return true; |
| } |
| case k_packUnorm2x16_IntrinsicKind: { |
| this->write("pack_float_to_unorm2x16("); |
| this->writeExpression(*arguments[0], Precedence::kSequence); |
| this->write(")"); |
| return true; |
| } |
| case k_unpackUnorm2x16_IntrinsicKind: { |
| this->write("unpack_unorm2x16_to_float("); |
| this->writeExpression(*arguments[0], Precedence::kSequence); |
| this->write(")"); |
| return true; |
| } |
| case k_packSnorm2x16_IntrinsicKind: { |
| this->write("pack_float_to_snorm2x16("); |
| this->writeExpression(*arguments[0], Precedence::kSequence); |
| this->write(")"); |
| return true; |
| } |
| case k_unpackSnorm2x16_IntrinsicKind: { |
| this->write("unpack_snorm2x16_to_float("); |
| this->writeExpression(*arguments[0], Precedence::kSequence); |
| this->write(")"); |
| return true; |
| } |
| case k_packUnorm4x8_IntrinsicKind: { |
| this->write("pack_float_to_unorm4x8("); |
| this->writeExpression(*arguments[0], Precedence::kSequence); |
| this->write(")"); |
| return true; |
| } |
| case k_unpackUnorm4x8_IntrinsicKind: { |
| this->write("unpack_unorm4x8_to_float("); |
| this->writeExpression(*arguments[0], Precedence::kSequence); |
| this->write(")"); |
| return true; |
| } |
| case k_packSnorm4x8_IntrinsicKind: { |
| this->write("pack_float_to_snorm4x8("); |
| this->writeExpression(*arguments[0], Precedence::kSequence); |
| this->write(")"); |
| return true; |
| } |
| case k_unpackSnorm4x8_IntrinsicKind: { |
| this->write("unpack_snorm4x8_to_float("); |
| this->writeExpression(*arguments[0], Precedence::kSequence); |
| this->write(")"); |
| return true; |
| } |
| case k_packHalf2x16_IntrinsicKind: { |
| this->write("as_type<uint>(half2("); |
| this->writeExpression(*arguments[0], Precedence::kSequence); |
| this->write("))"); |
| return true; |
| } |
| case k_unpackHalf2x16_IntrinsicKind: { |
| this->write("float2(as_type<half2>("); |
| this->writeExpression(*arguments[0], Precedence::kSequence); |
| this->write("))"); |
| return true; |
| } |
| case k_floatBitsToInt_IntrinsicKind: |
| case k_floatBitsToUint_IntrinsicKind: |
| case k_intBitsToFloat_IntrinsicKind: |
| case k_uintBitsToFloat_IntrinsicKind: { |
| this->write(this->getBitcastIntrinsic(c.type())); |
| this->write("("); |
| this->writeExpression(*arguments[0], Precedence::kSequence); |
| this->write(")"); |
| return true; |
| } |
| case k_degrees_IntrinsicKind: { |
| this->write("(("); |
| this->writeExpression(*arguments[0], Precedence::kSequence); |
| this->write(") * 57.2957795)"); |
| return true; |
| } |
| case k_radians_IntrinsicKind: { |
| this->write("(("); |
| this->writeExpression(*arguments[0], Precedence::kSequence); |
| this->write(") * 0.0174532925)"); |
| return true; |
| } |
| case k_dFdx_IntrinsicKind: { |
| this->write("dfdx"); |
| this->writeArgumentList(c.arguments()); |
| return true; |
| } |
| case k_dFdy_IntrinsicKind: { |
| this->write(fRTFlipName + ".y*dfdy"); |
| this->writeArgumentList(c.arguments()); |
| return true; |
| } |
| case k_inverse_IntrinsicKind: { |
| this->write(this->getInversePolyfill(arguments)); |
| this->writeArgumentList(c.arguments()); |
| return true; |
| } |
| case k_inversesqrt_IntrinsicKind: { |
| this->write("rsqrt"); |
| this->writeArgumentList(c.arguments()); |
| return true; |
| } |
| case k_atan_IntrinsicKind: { |
| this->write(c.arguments().size() == 2 ? "atan2" : "atan"); |
| this->writeArgumentList(c.arguments()); |
| return true; |
| } |
| case k_reflect_IntrinsicKind: { |
| if (arguments[0]->type().columns() == 1) { |
| // We need to synthesize `I - 2 * N * I * N`. |
| String tmpI = this->getTempVariable(arguments[0]->type()); |
| String tmpN = this->getTempVariable(arguments[1]->type()); |
| |
| // (_skTempI = ... |
| this->write("(" + tmpI + " = "); |
| this->writeExpression(*arguments[0], Precedence::kSequence); |
| |
| // , _skTempN = ... |
| this->write(", " + tmpN + " = "); |
| this->writeExpression(*arguments[1], Precedence::kSequence); |
| |
| // , _skTempI - 2 * _skTempN * _skTempI * _skTempN) |
| this->write(", " + tmpI + " - 2 * " + tmpN + " * " + tmpI + " * " + tmpN + ")"); |
| } else { |
| this->writeSimpleIntrinsic(c); |
| } |
| return true; |
| } |
| case k_refract_IntrinsicKind: { |
| if (arguments[0]->type().columns() == 1) { |
| // Metal does implement refract for vectors; rather than reimplementing refract from |
| // scratch, we can replace the call with `refract(float2(I,0), float2(N,0), eta).x`. |
| this->write("(refract(float2("); |
| this->writeExpression(*arguments[0], Precedence::kSequence); |
| this->write(", 0), float2("); |
| this->writeExpression(*arguments[1], Precedence::kSequence); |
| this->write(", 0), "); |
| this->writeExpression(*arguments[2], Precedence::kSequence); |
| this->write(").x)"); |
| } else { |
| this->writeSimpleIntrinsic(c); |
| } |
| return true; |
| } |
| case k_roundEven_IntrinsicKind: { |
| this->write("rint"); |
| this->writeArgumentList(c.arguments()); |
| return true; |
| } |
| case k_bitCount_IntrinsicKind: { |
| this->write("popcount("); |
| this->writeExpression(*arguments[0], Precedence::kSequence); |
| this->write(")"); |
| return true; |
| } |
| case k_findLSB_IntrinsicKind: { |
| // Create a temp variable to store the expression, to avoid double-evaluating it. |
| String skTemp = this->getTempVariable(arguments[0]->type()); |
| String exprType = this->typeName(arguments[0]->type()); |
| |
| // ctz returns numbits(type) on zero inputs; GLSL documents it as generating -1 instead. |
| // Use select to detect zero inputs and force a -1 result. |
| |
| // (_skTemp1 = (.....), select(ctz(_skTemp1), int4(-1), _skTemp1 == int4(0))) |
| this->write("("); |
| this->write(skTemp); |
| this->write(" = ("); |
| this->writeExpression(*arguments[0], Precedence::kSequence); |
| this->write("), select(ctz("); |
| this->write(skTemp); |
| this->write("), "); |
| this->write(exprType); |
| this->write("(-1), "); |
| this->write(skTemp); |
| this->write(" == "); |
| this->write(exprType); |
| this->write("(0)))"); |
| return true; |
| } |
| case k_findMSB_IntrinsicKind: { |
| // Create a temp variable to store the expression, to avoid double-evaluating it. |
| String skTemp1 = this->getTempVariable(arguments[0]->type()); |
| String exprType = this->typeName(arguments[0]->type()); |
| |
| // GLSL findMSB is actually quite different from Metal's clz: |
| // - For signed negative numbers, it returns the first zero bit, not the first one bit! |
| // - For an empty input (0/~0 depending on sign), findMSB gives -1; clz is numbits(type) |
| |
| // (_skTemp1 = (.....), |
| this->write("("); |
| this->write(skTemp1); |
| this->write(" = ("); |
| this->writeExpression(*arguments[0], Precedence::kSequence); |
| this->write("), "); |
| |
| // Signed input types might be negative; we need another helper variable to negate the |
| // input (since we can only find one bits, not zero bits). |
| String skTemp2; |
| if (arguments[0]->type().isSigned()) { |
| // ... _skTemp2 = (select(_skTemp1, ~_skTemp1, _skTemp1 < 0)), |
| skTemp2 = this->getTempVariable(arguments[0]->type()); |
| this->write(skTemp2); |
| this->write(" = (select("); |
| this->write(skTemp1); |
| this->write(", ~"); |
| this->write(skTemp1); |
| this->write(", "); |
| this->write(skTemp1); |
| this->write(" < 0)), "); |
| } else { |
| skTemp2 = skTemp1; |
| } |
| |
| // ... select(int4(clz(_skTemp2)), int4(-1), _skTemp2 == int4(0))) |
| this->write("select("); |
| this->write(this->typeName(c.type())); |
| this->write("(clz("); |
| this->write(skTemp2); |
| this->write(")), "); |
| this->write(this->typeName(c.type())); |
| this->write("(-1), "); |
| this->write(skTemp2); |
| this->write(" == "); |
| this->write(exprType); |
| this->write("(0)))"); |
| return true; |
| } |
| case k_matrixCompMult_IntrinsicKind: { |
| this->writeMatrixCompMult(); |
| this->writeSimpleIntrinsic(c); |
| return true; |
| } |
| case k_outerProduct_IntrinsicKind: { |
| this->writeOuterProduct(); |
| this->writeSimpleIntrinsic(c); |
| return true; |
| } |
| case k_mix_IntrinsicKind: { |
| SkASSERT(c.arguments().size() == 3); |
| if (arguments[2]->type().componentType().isBoolean()) { |
| // The Boolean forms of GLSL mix() use the select() intrinsic in Metal. |
| this->write("select"); |
| this->writeArgumentList(c.arguments()); |
| return true; |
| } |
| // The basic form of mix() is supported by Metal as-is. |
| this->writeSimpleIntrinsic(c); |
| return true; |
| } |
| case k_equal_IntrinsicKind: |
| case k_greaterThan_IntrinsicKind: |
| case k_greaterThanEqual_IntrinsicKind: |
| case k_lessThan_IntrinsicKind: |
| case k_lessThanEqual_IntrinsicKind: |
| case k_notEqual_IntrinsicKind: { |
| this->write("("); |
| this->writeExpression(*c.arguments()[0], Precedence::kRelational); |
| switch (kind) { |
| case k_equal_IntrinsicKind: |
| this->write(" == "); |
| break; |
| case k_notEqual_IntrinsicKind: |
| this->write(" != "); |
| break; |
| case k_lessThan_IntrinsicKind: |
| this->write(" < "); |
| break; |
| case k_lessThanEqual_IntrinsicKind: |
| this->write(" <= "); |
| break; |
| case k_greaterThan_IntrinsicKind: |
| this->write(" > "); |
| break; |
| case k_greaterThanEqual_IntrinsicKind: |
| this->write(" >= "); |
| break; |
| default: |
| SK_ABORT("unsupported comparison intrinsic kind"); |
| } |
| this->writeExpression(*c.arguments()[1], Precedence::kRelational); |
| this->write(")"); |
| return true; |
| } |
| default: |
| return false; |
| } |
| } |
| |
| // Assembles a matrix of type floatRxC by resizing another matrix named `x0`. |
| // Cells that don't exist in the source matrix will be populated with identity-matrix values. |
| void MetalCodeGenerator::assembleMatrixFromMatrix(const Type& sourceMatrix, int rows, int columns) { |
| SkASSERT(rows <= 4); |
| SkASSERT(columns <= 4); |
| |
| std::string matrixType = this->typeName(sourceMatrix.componentType()); |
| |
| const char* separator = ""; |
| for (int c = 0; c < columns; ++c) { |
| fExtraFunctions.printf("%s%s%d(", separator, matrixType.c_str(), rows); |
| separator = "), "; |
| |
| // Determine how many values to take from the source matrix for this row. |
| int swizzleLength = 0; |
| if (c < sourceMatrix.columns()) { |
| swizzleLength = std::min<>(rows, sourceMatrix.rows()); |
| } |
| |
| // Emit all the values from the source matrix row. |
| bool firstItem; |
| switch (swizzleLength) { |
| case 0: firstItem = true; break; |
| case 1: firstItem = false; fExtraFunctions.printf("x0[%d].x", c); break; |
| case 2: firstItem = false; fExtraFunctions.printf("x0[%d].xy", c); break; |
| case 3: firstItem = false; fExtraFunctions.printf("x0[%d].xyz", c); break; |
| case 4: firstItem = false; fExtraFunctions.printf("x0[%d].xyzw", c); break; |
| default: SkUNREACHABLE; |
| } |
| |
| // Emit the placeholder identity-matrix cells. |
| for (int r = swizzleLength; r < rows; ++r) { |
| fExtraFunctions.printf("%s%s", firstItem ? "" : ", ", (r == c) ? "1.0" : "0.0"); |
| firstItem = false; |
| } |
| } |
| |
| fExtraFunctions.writeText(")"); |
| } |
| |
| // Assembles a matrix of type floatCxR by concatenating an arbitrary mix of values, named `x0`, |
| // `x1`, etc. An error is written if the expression list don't contain exactly C*R scalars. |
| void MetalCodeGenerator::assembleMatrixFromExpressions(const AnyConstructor& ctor, |
| int columns, int rows) { |
| SkASSERT(rows <= 4); |
| SkASSERT(columns <= 4); |
| |
| std::string matrixType = this->typeName(ctor.type().componentType()); |
| size_t argIndex = 0; |
| int argPosition = 0; |
| auto args = ctor.argumentSpan(); |
| |
| static constexpr char kSwizzle[] = "xyzw"; |
| const char* separator = ""; |
| for (int c = 0; c < columns; ++c) { |
| fExtraFunctions.printf("%s%s%d(", separator, matrixType.c_str(), rows); |
| separator = "), "; |
| |
| const char* columnSeparator = ""; |
| for (int r = 0; r < rows;) { |
| fExtraFunctions.writeText(columnSeparator); |
| columnSeparator = ", "; |
| |
| if (argIndex < args.size()) { |
| const Type& argType = args[argIndex]->type(); |
| switch (argType.typeKind()) { |
| case Type::TypeKind::kScalar: { |
| fExtraFunctions.printf("x%zu", argIndex); |
| ++r; |
| ++argPosition; |
| break; |
| } |
| case Type::TypeKind::kVector: { |
| fExtraFunctions.printf("x%zu.", argIndex); |
| do { |
| fExtraFunctions.write8(kSwizzle[argPosition]); |
| ++r; |
| ++argPosition; |
| } while (r < rows && argPosition < argType.columns()); |
| break; |
| } |
| case Type::TypeKind::kMatrix: { |
| fExtraFunctions.printf("x%zu[%d].", argIndex, argPosition / argType.rows()); |
| do { |
| fExtraFunctions.write8(kSwizzle[argPosition]); |
| ++r; |
| ++argPosition; |
| } while (r < rows && (argPosition % argType.rows()) != 0); |
| break; |
| } |
| default: { |
| SkDEBUGFAIL("incorrect type of argument for matrix constructor"); |
| fExtraFunctions.writeText("<error>"); |
| break; |
| } |
| } |
| |
| if (argPosition >= argType.columns() * argType.rows()) { |
| ++argIndex; |
| argPosition = 0; |
| } |
| } else { |
| SkDEBUGFAIL("not enough arguments for matrix constructor"); |
| fExtraFunctions.writeText("<error>"); |
| } |
| } |
| } |
| |
| if (argPosition != 0 || argIndex != args.size()) { |
| SkDEBUGFAIL("incorrect number of arguments for matrix constructor"); |
| fExtraFunctions.writeText(", <error>"); |
| } |
| |
| fExtraFunctions.writeText(")"); |
| } |
| |
| // Generates a constructor for 'matrix' which reorganizes the input arguments into the proper shape. |
| // Keeps track of previously generated constructors so that we won't generate more than one |
| // constructor for any given permutation of input argument types. Returns the name of the |
| // generated constructor method. |
| String MetalCodeGenerator::getMatrixConstructHelper(const AnyConstructor& c) { |
| const Type& type = c.type(); |
| int columns = type.columns(); |
| int rows = type.rows(); |
| auto args = c.argumentSpan(); |
| String typeName = this->typeName(type); |
| |
| // Create the helper-method name and use it as our lookup key. |
| String name; |
| name.appendf("%s_from", typeName.c_str()); |
| for (const std::unique_ptr<Expression>& expr : args) { |
| name.appendf("_%s", this->typeName(expr->type()).c_str()); |
| } |
| |
| // If a helper-method has already been synthesized, we don't need to synthesize it again. |
| auto [iter, newlyCreated] = fHelpers.insert(name); |
| if (!newlyCreated) { |
| return name; |
| } |
| |
| // Unlike GLSL, Metal requires that matrices are initialized with exactly R vectors of C |
| // components apiece. (In Metal 2.0, you can also supply R*C scalars, but you still cannot |
| // supply a mixture of scalars and vectors.) |
| fExtraFunctions.printf("%s %s(", typeName.c_str(), name.c_str()); |
| |
| size_t argIndex = 0; |
| const char* argSeparator = ""; |
| for (const std::unique_ptr<Expression>& expr : args) { |
| fExtraFunctions.printf("%s%s x%zu", argSeparator, |
| this->typeName(expr->type()).c_str(), argIndex++); |
| argSeparator = ", "; |
| } |
| |
| fExtraFunctions.printf(") {\n return %s(", typeName.c_str()); |
| |
| if (args.size() == 1 && args.front()->type().isMatrix()) { |
| this->assembleMatrixFromMatrix(args.front()->type(), rows, columns); |
| } else { |
| this->assembleMatrixFromExpressions(c, columns, rows); |
| } |
| |
| fExtraFunctions.writeText(");\n}\n"); |
| return name; |
| } |
| |
| bool MetalCodeGenerator::canCoerce(const Type& t1, const Type& t2) { |
| if (t1.columns() != t2.columns() || t1.rows() != t2.rows()) { |
| return false; |
| } |
| if (t1.columns() > 1) { |
| return this->canCoerce(t1.componentType(), t2.componentType()); |
| } |
| return t1.isFloat() && t2.isFloat(); |
| } |
| |
| bool MetalCodeGenerator::matrixConstructHelperIsNeeded(const ConstructorCompound& c) { |
| SkASSERT(c.type().isMatrix()); |
| |
| // GLSL is fairly free-form about inputs to its matrix constructors, but Metal is not; it |
| // expects exactly R vectors of C components apiece. (Metal 2.0 also allows a list of R*C |
| // scalars.) Some cases are simple to translate and so we handle those inline--e.g. a list of |
| // scalars can be constructed trivially. In more complex cases, we generate a helper function |
| // that converts our inputs into a properly-shaped matrix. |
| // A matrix construct helper method is always used if any input argument is a matrix. |
| // Helper methods are also necessary when any argument would span multiple rows. For instance: |
| // |
| // float2 x = (1, 2); |
| // float3x2(x, 3, 4, 5, 6) = | 1 3 5 | = no helper needed; conversion can be done inline |
| // | 2 4 6 | |
| // |
| // float2 x = (2, 3); |
| // float3x2(1, x, 4, 5, 6) = | 1 3 5 | = x spans multiple rows; a helper method will be used |
| // | 2 4 6 | |
| // |
| // float4 x = (1, 2, 3, 4); |
| // float2x2(x) = | 1 3 | = x spans multiple rows; a helper method will be used |
| // | 2 4 | |
| // |
| |
| int position = 0; |
| for (const std::unique_ptr<Expression>& expr : c.arguments()) { |
| // If an input argument is a matrix, we need a helper function. |
| if (expr->type().isMatrix()) { |
| return true; |
| } |
| position += expr->type().columns(); |
| if (position > c.type().rows()) { |
| // An input argument would span multiple rows; a helper function is required. |
| return true; |
| } |
| if (position == c.type().rows()) { |
| // We've advanced to the end of a row. Wrap to the start of the next row. |
| position = 0; |
| } |
| } |
| |
| return false; |
| } |
| |
| void MetalCodeGenerator::writeConstructorMatrixResize(const ConstructorMatrixResize& c, |
| Precedence parentPrecedence) { |
| // Matrix-resize via casting doesn't natively exist in Metal at all, so we always need to use a |
| // matrix-construct helper here. |
| this->write(this->getMatrixConstructHelper(c)); |
| this->write("("); |
| this->writeExpression(*c.argument(), Precedence::kSequence); |
| this->write(")"); |
| } |
| |
| void MetalCodeGenerator::writeConstructorCompound(const ConstructorCompound& c, |
| Precedence parentPrecedence) { |
| if (c.type().isVector()) { |
| this->writeConstructorCompoundVector(c, parentPrecedence); |
| } else if (c.type().isMatrix()) { |
| this->writeConstructorCompoundMatrix(c, parentPrecedence); |
| } else { |
| fContext.fErrors->error(c.fLine, "unsupported compound constructor"); |
| } |
| } |
| |
| void MetalCodeGenerator::writeConstructorArrayCast(const ConstructorArrayCast& c, |
| Precedence parentPrecedence) { |
| const Type& inType = c.argument()->type().componentType(); |
| const Type& outType = c.type().componentType(); |
| String inTypeName = this->typeName(inType); |
| String outTypeName = this->typeName(outType); |
| |
| String name = "array_of_" + outTypeName + "_from_" + inTypeName; |
| auto [iter, didInsert] = fHelpers.insert(name); |
| if (didInsert) { |
| fExtraFunctions.printf(R"( |
| template <size_t N> |
| array<%s, N> %s(thread const array<%s, N>& x) { |
| array<%s, N> result; |
| for (int i = 0; i < N; ++i) { |
| result[i] = %s(x[i]); |
| } |
| return result; |
| } |
| )", |
| outTypeName.c_str(), name.c_str(), inTypeName.c_str(), |
| outTypeName.c_str(), |
| outTypeName.c_str()); |
| } |
| |
| this->write(name); |
| this->write("("); |
| this->writeExpression(*c.argument(), Precedence::kSequence); |
| this->write(")"); |
| } |
| |
| String MetalCodeGenerator::getVectorFromMat2x2ConstructorHelper(const Type& matrixType) { |
| SkASSERT(matrixType.isMatrix()); |
| SkASSERT(matrixType.rows() == 2); |
| SkASSERT(matrixType.columns() == 2); |
| |
| String baseType = this->typeName(matrixType.componentType()); |
| String name = String::printf("%s4_from_%s2x2", baseType.c_str(), baseType.c_str()); |
| if (fHelpers.find(name) == fHelpers.end()) { |
| fHelpers.insert(name); |
| |
| fExtraFunctions.printf(R"( |
| %s4 %s(%s2x2 x) { |
| return %s4(x[0].xy, x[1].xy); |
| } |
| )", baseType.c_str(), name.c_str(), baseType.c_str(), baseType.c_str()); |
| } |
| |
| return name; |
| } |
| |
| void MetalCodeGenerator::writeConstructorCompoundVector(const ConstructorCompound& c, |
| Precedence parentPrecedence) { |
| SkASSERT(c.type().isVector()); |
| |
| // Metal supports constructing vectors from a mix of scalars and vectors, but not matrices. |
| // GLSL supports vec4(mat2x2), so we detect that case here and emit a helper function. |
| if (c.type().columns() == 4 && c.argumentSpan().size() == 1) { |
| const Expression& expr = *c.argumentSpan().front(); |
| if (expr.type().isMatrix()) { |
| this->write(this->getVectorFromMat2x2ConstructorHelper(expr.type())); |
| this->write("("); |
| this->writeExpression(expr, Precedence::kSequence); |
| this->write(")"); |
| return; |
| } |
| } |
| |
| this->writeAnyConstructor(c, "(", ")", parentPrecedence); |
| } |
| |
| void MetalCodeGenerator::writeConstructorCompoundMatrix(const ConstructorCompound& c, |
| Precedence parentPrecedence) { |
| SkASSERT(c.type().isMatrix()); |
| |
| // Emit and invoke a matrix-constructor helper method if one is necessary. |
| if (this->matrixConstructHelperIsNeeded(c)) { |
| this->write(this->getMatrixConstructHelper(c)); |
| this->write("("); |
| const char* separator = ""; |
| for (const std::unique_ptr<Expression>& expr : c.arguments()) { |
| this->write(separator); |
| separator = ", "; |
| this->writeExpression(*expr, Precedence::kSequence); |
| } |
| this->write(")"); |
| return; |
| } |
| |
| // Metal doesn't allow creating matrices by passing in scalars and vectors in a jumble; it |
| // requires your scalars to be grouped up into columns. Because `matrixConstructHelperIsNeeded` |
| // returned false, we know that none of our scalars/vectors "wrap" across across a column, so we |
| // can group our inputs up and synthesize a constructor for each column. |
| const Type& matrixType = c.type(); |
| const Type& columnType = matrixType.componentType().toCompound( |
| fContext, /*columns=*/matrixType.rows(), /*rows=*/1); |
| |
| this->writeType(matrixType); |
| this->write("("); |
| const char* separator = ""; |
| int scalarCount = 0; |
| for (const std::unique_ptr<Expression>& arg : c.arguments()) { |
| this->write(separator); |
| separator = ", "; |
| if (arg->type().columns() < matrixType.rows()) { |
| // Write a `floatN(` constructor to group scalars and smaller vectors together. |
| if (!scalarCount) { |
| this->writeType(columnType); |
| this->write("("); |
| } |
| scalarCount += arg->type().columns(); |
| } |
| this->writeExpression(*arg, Precedence::kSequence); |
| if (scalarCount && scalarCount == matrixType.rows()) { |
| // Close our `floatN(...` constructor block from above. |
| this->write(")"); |
| scalarCount = 0; |
| } |
| } |
| this->write(")"); |
| } |
| |
| void MetalCodeGenerator::writeAnyConstructor(const AnyConstructor& c, |
| const char* leftBracket, |
| const char* rightBracket, |
| Precedence parentPrecedence) { |
| this->writeType(c.type()); |
| this->write(leftBracket); |
| const char* separator = ""; |
| for (const std::unique_ptr<Expression>& arg : c.argumentSpan()) { |
| this->write(separator); |
| separator = ", "; |
| this->writeExpression(*arg, Precedence::kSequence); |
| } |
| this->write(rightBracket); |
| } |
| |
| void MetalCodeGenerator::writeCastConstructor(const AnyConstructor& c, |
| const char* leftBracket, |
| const char* rightBracket, |
| Precedence parentPrecedence) { |
| // If the type is coercible, emit it directly without the cast. |
| auto args = c.argumentSpan(); |
| if (args.size() == 1) { |
| if (this->canCoerce(c.type(), args.front()->type())) { |
| this->writeExpression(*args.front(), parentPrecedence); |
| return; |
| } |
| } |
| |
| return this->writeAnyConstructor(c, leftBracket, rightBracket, parentPrecedence); |
| } |
| |
| void MetalCodeGenerator::writeFragCoord() { |
| SkASSERT(fRTFlipName.length()); |
| this->write("float4(_fragCoord.x, "); |
| this->write(fRTFlipName.c_str()); |
| this->write(".x + "); |
| this->write(fRTFlipName.c_str()); |
| this->write(".y * _fragCoord.y, 0.0, _fragCoord.w)"); |
| } |
| |
| void MetalCodeGenerator::writeVariableReference(const VariableReference& ref) { |
| // When assembling out-param helper functions, we copy variables into local clones with matching |
| // names. We never want to prepend "_in." or "_globals." when writing these variables since |
| // we're actually targeting the clones. |
| if (fIgnoreVariableReferenceModifiers) { |
| this->writeName(ref.variable()->name()); |
| return; |
| } |
| |
| switch (ref.variable()->modifiers().fLayout.fBuiltin) { |
| case SK_FRAGCOLOR_BUILTIN: |
| this->write("_out.sk_FragColor"); |
| break; |
| case SK_FRAGCOORD_BUILTIN: |
| this->writeFragCoord(); |
| break; |
| case SK_VERTEXID_BUILTIN: |
| this->write("sk_VertexID"); |
| break; |
| case SK_INSTANCEID_BUILTIN: |
| this->write("sk_InstanceID"); |
| break; |
| case SK_CLOCKWISE_BUILTIN: |
| // We'd set the front facing winding in the MTLRenderCommandEncoder to be counter |
| // clockwise to match Skia convention. |
| this->write("(" + fRTFlipName + ".y < 0 ? _frontFacing : !_frontFacing)"); |
| break; |
| default: |
| const Variable& var = *ref.variable(); |
| if (var.storage() == Variable::Storage::kGlobal) { |
| if (var.modifiers().fFlags & Modifiers::kIn_Flag) { |
| this->write("_in."); |
| } else if (var.modifiers().fFlags & Modifiers::kOut_Flag) { |
| this->write("_out."); |
| } else if (var.modifiers().fFlags & Modifiers::kUniform_Flag && |
| var.type().typeKind() != Type::TypeKind::kSampler) { |
| this->write("_uniforms."); |
| } else { |
| this->write("_globals."); |
| } |
| } |
| this->writeName(var.name()); |
| } |
| } |
| |
| void MetalCodeGenerator::writeIndexExpression(const IndexExpression& expr) { |
| this->writeExpression(*expr.base(), Precedence::kPostfix); |
| this->write("["); |
| this->writeExpression(*expr.index(), Precedence::kTopLevel); |
| this->write("]"); |
| } |
| |
| void MetalCodeGenerator::writeFieldAccess(const FieldAccess& f) { |
| const Type::Field* field = &f.base()->type().fields()[f.fieldIndex()]; |
| if (FieldAccess::OwnerKind::kDefault == f.ownerKind()) { |
| this->writeExpression(*f.base(), Precedence::kPostfix); |
| this->write("."); |
| } |
| switch (field->fModifiers.fLayout.fBuiltin) { |
| case SK_POSITION_BUILTIN: |
| this->write("_out.sk_Position"); |
| break; |
| default: |
| if (field->fName == "sk_PointSize") { |
| this->write("_out.sk_PointSize"); |
| } else { |
| if (FieldAccess::OwnerKind::kAnonymousInterfaceBlock == f.ownerKind()) { |
| this->write("_globals."); |
| this->write(fInterfaceBlockNameMap[fInterfaceBlockMap[field]]); |
| this->write("->"); |
| } |
| this->writeName(field->fName); |
| } |
| } |
| } |
| |
| void MetalCodeGenerator::writeSwizzle(const Swizzle& swizzle) { |
| this->writeExpression(*swizzle.base(), Precedence::kPostfix); |
| this->write("."); |
| for (int c : swizzle.components()) { |
| SkASSERT(c >= 0 && c <= 3); |
| this->write(&("x\0y\0z\0w\0"[c * 2])); |
| } |
| } |
| |
| void MetalCodeGenerator::writeMatrixTimesEqualHelper(const Type& left, const Type& right, |
| const Type& result) { |
| SkASSERT(left.isMatrix()); |
| SkASSERT(right.isMatrix()); |
| SkASSERT(result.isMatrix()); |
| SkASSERT(left.rows() == right.rows()); |
| SkASSERT(left.columns() == right.columns()); |
| SkASSERT(left.rows() == result.rows()); |
| SkASSERT(left.columns() == result.columns()); |
| |
| String key = "Matrix *= " + this->typeName(left) + ":" + this->typeName(right); |
| |
| auto [iter, wasInserted] = fHelpers.insert(key); |
| if (wasInserted) { |
| fExtraFunctions.printf("thread %s& operator*=(thread %s& left, thread const %s& right) {\n" |
| " left = left * right;\n" |
| " return left;\n" |
| "}\n", |
| this->typeName(result).c_str(), this->typeName(left).c_str(), |
| this->typeName(right).c_str()); |
| } |
| } |
| |
| void MetalCodeGenerator::writeMatrixEqualityHelpers(const Type& left, const Type& right) { |
| SkASSERT(left.isMatrix()); |
| SkASSERT(right.isMatrix()); |
| SkASSERT(left.rows() == right.rows()); |
| SkASSERT(left.columns() == right.columns()); |
| |
| String key = "Matrix == " + this->typeName(left) + ":" + this->typeName(right); |
| |
| auto [iter, wasInserted] = fHelpers.insert(key); |
| if (wasInserted) { |
| fExtraFunctionPrototypes.printf(R"( |
| thread bool operator==(const %s left, const %s right); |
| thread bool operator!=(const %s left, const %s right); |
| )", |
| this->typeName(left).c_str(), |
| this->typeName(right).c_str(), |
| this->typeName(left).c_str(), |
| this->typeName(right).c_str()); |
| |
| fExtraFunctions.printf( |
| "thread bool operator==(const %s left, const %s right) {\n" |
| " return ", |
| this->typeName(left).c_str(), this->typeName(right).c_str()); |
| |
| const char* separator = ""; |
| for (int index=0; index<left.columns(); ++index) { |
| fExtraFunctions.printf("%sall(left[%d] == right[%d])", separator, index, index); |
| separator = " &&\n "; |
| } |
| |
| fExtraFunctions.printf( |
| ";\n" |
| "}\n" |
| "thread bool operator!=(const %s left, const %s right) {\n" |
| " return !(left == right);\n" |
| "}\n", |
| this->typeName(left).c_str(), this->typeName(right).c_str()); |
| } |
| } |
| |
| void MetalCodeGenerator::writeMatrixDivisionHelpers(const Type& type) { |
| SkASSERT(type.isMatrix()); |
| |
| String key = "Matrix / " + this->typeName(type); |
| |
| auto [iter, wasInserted] = fHelpers.insert(key); |
| if (wasInserted) { |
| String typeName = this->typeName(type); |
| |
| fExtraFunctions.printf( |
| "thread %s operator/(const %s left, const %s right) {\n" |
| " return %s(", |
| typeName.c_str(), typeName.c_str(), typeName.c_str(), typeName.c_str()); |
| |
| const char* separator = ""; |
| for (int index=0; index<type.columns(); ++index) { |
| fExtraFunctions.printf("%sleft[%d] / right[%d]", separator, index, index); |
| separator = ", "; |
| } |
| |
| fExtraFunctions.printf(");\n" |
| "}\n" |
| "thread %s& operator/=(thread %s& left, thread const %s& right) {\n" |
| " left = left / right;\n" |
| " return left;\n" |
| "}\n", |
| typeName.c_str(), typeName.c_str(), typeName.c_str()); |
| } |
| } |
| |
| void MetalCodeGenerator::writeArrayEqualityHelpers(const Type& type) { |
| SkASSERT(type.isArray()); |
| |
| // If the array's component type needs a helper as well, we need to emit that one first. |
| this->writeEqualityHelpers(type.componentType(), type.componentType()); |
| |
| auto [iter, wasInserted] = fHelpers.insert("ArrayEquality []"); |
| if (wasInserted) { |
| fExtraFunctionPrototypes.writeText(R"( |
| template <typename T1, typename T2, size_t N> |
| bool operator==(thread const array<T1, N>& left, thread const array<T2, N>& right); |
| template <typename T1, typename T2, size_t N> |
| bool operator!=(thread const array<T1, N>& left, thread const array<T2, N>& right); |
| )"); |
| fExtraFunctions.writeText(R"( |
| template <typename T1, typename T2, size_t N> |
| bool operator==(thread const array<T1, N>& left, thread const array<T2, N>& right) { |
| for (size_t index = 0; index < N; ++index) { |
| if (!all(left[index] == right[index])) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| template <typename T1, typename T2, size_t N> |
| bool operator!=(thread const array<T1, N>& left, thread const array<T2, N>& right) { |
| return !(left == right); |
| } |
| )"); |
| } |
| } |
| |
| void MetalCodeGenerator::writeStructEqualityHelpers(const Type& type) { |
| SkASSERT(type.isStruct()); |
| String key = "StructEquality " + this->typeName(type); |
| |
| auto [iter, wasInserted] = fHelpers.insert(key); |
| if (wasInserted) { |
| // If one of the struct's fields needs a helper as well, we need to emit that one first. |
| for (const Type::Field& field : type.fields()) { |
| this->writeEqualityHelpers(*field.fType, *field.fType); |
| } |
| |
| // Write operator== and operator!= for this struct, since those are assumed to exist in SkSL |
| // and GLSL but do not exist by default in Metal. |
| fExtraFunctionPrototypes.printf(R"( |
| thread bool operator==(thread const %s& left, thread const %s& right); |
| thread bool operator!=(thread const %s& left, thread const %s& right); |
| )", |
| this->typeName(type).c_str(), |
| this->typeName(type).c_str(), |
| this->typeName(type).c_str(), |
| this->typeName(type).c_str()); |
| |
| fExtraFunctions.printf( |
| "thread bool operator==(thread const %s& left, thread const %s& right) {\n" |
| " return ", |
| this->typeName(type).c_str(), |
| this->typeName(type).c_str()); |
| |
| const char* separator = ""; |
| for (const Type::Field& field : type.fields()) { |
| fExtraFunctions.printf("%s(left.%.*s == right.%.*s)", |
| separator, |
| (int)field.fName.size(), field.fName.data(), |
| (int)field.fName.size(), field.fName.data()); |
| separator = " &&\n "; |
| } |
| fExtraFunctions.printf( |
| ";\n" |
| "}\n" |
| "thread bool operator!=(thread const %s& left, thread const %s& right) {\n" |
| " return !(left == right);\n" |
| "}\n", |
| this->typeName(type).c_str(), |
| this->typeName(type).c_str()); |
| } |
| } |
| |
| void MetalCodeGenerator::writeEqualityHelpers(const Type& leftType, const Type& rightType) { |
| if (leftType.isArray() && rightType.isArray()) { |
| this->writeArrayEqualityHelpers(leftType); |
| return; |
| } |
| if (leftType.isStruct() && rightType.isStruct()) { |
| this->writeStructEqualityHelpers(leftType); |
| return; |
| } |
| if (leftType.isMatrix() && rightType.isMatrix()) { |
| this->writeMatrixEqualityHelpers(leftType, rightType); |
| return; |
| } |
| } |
| |
| void MetalCodeGenerator::writeNumberAsMatrix(const Expression& expr, const Type& matrixType) { |
| SkASSERT(expr.type().isNumber()); |
| SkASSERT(matrixType.isMatrix()); |
| |
| // Componentwise multiply the scalar against a matrix of the desired size which contains all 1s. |
| this->write("("); |
| this->writeType(matrixType); |
| this->write("("); |
| |
| const char* separator = ""; |
| for (int index = matrixType.slotCount(); index--;) { |
| this->write(separator); |
| this->write("1.0"); |
| separator = ", "; |
| } |
| |
| this->write(") * "); |
| this->writeExpression(expr, Precedence::kMultiplicative); |
| this->write(")"); |
| } |
| |
| void MetalCodeGenerator::writeBinaryExpression(const BinaryExpression& b, |
| Precedence parentPrecedence) { |
| const Expression& left = *b.left(); |
| const Expression& right = *b.right(); |
| const Type& leftType = left.type(); |
| const Type& rightType = right.type(); |
| Operator op = b.getOperator(); |
| Precedence precedence = op.getBinaryPrecedence(); |
| bool needParens = precedence >= parentPrecedence; |
| switch (op.kind()) { |
| case Token::Kind::TK_EQEQ: |
| this->writeEqualityHelpers(leftType, rightType); |
| if (leftType.isVector()) { |
| this->write("all"); |
| needParens = true; |
| } |
| break; |
| case Token::Kind::TK_NEQ: |
| this->writeEqualityHelpers(leftType, rightType); |
| if (leftType.isVector()) { |
| this->write("any"); |
| needParens = true; |
| } |
| break; |
| default: |
| break; |
| } |
| if (leftType.isMatrix() && rightType.isMatrix() && op.kind() == Token::Kind::TK_STAREQ) { |
| this->writeMatrixTimesEqualHelper(leftType, rightType, b.type()); |
| } |
| if (op.removeAssignment().kind() == Token::Kind::TK_SLASH && |
| ((leftType.isMatrix() && rightType.isMatrix()) || |
| (leftType.isScalar() && rightType.isMatrix()) || |
| (leftType.isMatrix() && rightType.isScalar()))) { |
| this->writeMatrixDivisionHelpers(leftType.isMatrix() ? leftType : rightType); |
| } |
| if (needParens) { |
| this->write("("); |
| } |
| bool needMatrixSplatOnScalar = rightType.isMatrix() && leftType.isNumber() && |
| op.isValidForMatrixOrVector() && |
| op.removeAssignment().kind() != Token::Kind::TK_STAR; |
| if (needMatrixSplatOnScalar) { |
| this->writeNumberAsMatrix(left, rightType); |
| } else { |
| this->writeExpression(left, precedence); |
| } |
| if (op.kind() != Token::Kind::TK_EQ && op.isAssignment() && |
| left.kind() == Expression::Kind::kSwizzle && !left.hasSideEffects()) { |
| // This doesn't compile in Metal: |
| // float4 x = float4(1); |
| // x.xy *= float2x2(...); |
| // with the error message "non-const reference cannot bind to vector element", |
| // but switching it to x.xy = x.xy * float2x2(...) fixes it. We perform this tranformation |
| // as long as the LHS has no side effects, and hope for the best otherwise. |
| this->write(" = "); |
| this->writeExpression(left, Precedence::kAssignment); |
| this->write(" "); |
| this->write(OperatorName(op.removeAssignment())); |
| this->write(" "); |
| } else { |
| this->write(String(" ") + OperatorName(op) + " "); |
| } |
| |
| needMatrixSplatOnScalar = leftType.isMatrix() && rightType.isNumber() && |
| op.isValidForMatrixOrVector() && |
| op.removeAssignment().kind() != Token::Kind::TK_STAR; |
| if (needMatrixSplatOnScalar) { |
| this->writeNumberAsMatrix(right, leftType); |
| } else { |
| this->writeExpression(right, precedence); |
| } |
| if (needParens) { |
| this->write(")"); |
| } |
| } |
| |
| void MetalCodeGenerator::writeTernaryExpression(const TernaryExpression& t, |
| Precedence parentPrecedence) { |
| if (Precedence::kTernary >= parentPrecedence) { |
| this->write("("); |
| } |
| this->writeExpression(*t.test(), Precedence::kTernary); |
| this->write(" ? "); |
| this->writeExpression(*t.ifTrue(), Precedence::kTernary); |
| this->write(" : "); |
| this->writeExpression(*t.ifFalse(), Precedence::kTernary); |
| if (Precedence::kTernary >= parentPrecedence) { |
| this->write(")"); |
| } |
| } |
| |
| void MetalCodeGenerator::writePrefixExpression(const PrefixExpression& p, |
| Precedence parentPrecedence) { |
| if (Precedence::kPrefix >= parentPrecedence) { |
| this->write("("); |
| } |
| this->write(OperatorName(p.getOperator())); |
| this->writeExpression(*p.operand(), Precedence::kPrefix); |
| if (Precedence::kPrefix >= parentPrecedence) { |
| this->write(")"); |
| } |
| } |
| |
| void MetalCodeGenerator::writePostfixExpression(const PostfixExpression& p, |
| Precedence parentPrecedence) { |
| if (Precedence::kPostfix >= parentPrecedence) { |
| this->write("("); |
| } |
| this->writeExpression(*p.operand(), Precedence::kPostfix); |
| this->write(OperatorName(p.getOperator())); |
| if (Precedence::kPostfix >= parentPrecedence) { |
| this->write(")"); |
| } |
| } |
| |
| void MetalCodeGenerator::writeLiteral(const Literal& l) { |
| const Type& type = l.type(); |
| if (type.isFloat()) { |
| this->write(to_string(l.floatValue())); |
| return; |
| } |
| if (type.isInteger()) { |
| if (type == *fContext.fTypes.fUInt) { |
| this->write(to_string(l.intValue() & 0xffffffff) + "u"); |
| } else if (type == *fContext.fTypes.fUShort) { |
| this->write(to_string(l.intValue() & 0xffff) + "u"); |
| } else { |
| this->write(to_string(l.intValue())); |
| } |
| return; |
| } |
| SkASSERT(type.isBoolean()); |
| this->write(l.boolValue() ? "true" : "false"); |
| } |
| |
| void MetalCodeGenerator::writeSetting(const Setting& s) { |
| SK_ABORT("internal error; setting was not folded to a constant during compilation\n"); |
| } |
| |
| void MetalCodeGenerator::writeFunctionRequirementArgs(const FunctionDeclaration& f, |
| const char*& separator) { |
| Requirements requirements = this->requirements(f); |
| if (requirements & kInputs_Requirement) { |
| this->write(separator); |
| this->write("_in"); |
| separator = ", "; |
| } |
| if (requirements & kOutputs_Requirement) { |
| this->write(separator); |
| this->write("_out"); |
| separator = ", "; |
| } |
| if (requirements & kUniforms_Requirement) { |
| this->write(separator); |
| this->write("_uniforms"); |
| separator = ", "; |
| } |
| if (requirements & kGlobals_Requirement) { |
| this->write(separator); |
| this->write("_globals"); |
| separator = ", "; |
| } |
| if (requirements & kFragCoord_Requirement) { |
| this->write(separator); |
| this->write("_fragCoord"); |
| separator = ", "; |
| } |
| } |
| |
| void MetalCodeGenerator::writeFunctionRequirementParams(const FunctionDeclaration& f, |
| const char*& separator) { |
| Requirements requirements = this->requirements(f); |
| if (requirements & kInputs_Requirement) { |
| this->write(separator); |
| this->write("Inputs _in"); |
| separator = ", "; |
| } |
| if (requirements & kOutputs_Requirement) { |
| this->write(separator); |
| this->write("thread Outputs& _out"); |
| separator = ", "; |
| } |
| if (requirements & kUniforms_Requirement) { |
| this->write(separator); |
| this->write("Uniforms _uniforms"); |
| separator = ", "; |
| } |
| if (requirements & kGlobals_Requirement) { |
| this->write(separator); |
| this->write("thread Globals& _globals"); |
| separator = ", "; |
| } |
| if (requirements & kFragCoord_Requirement) { |
| this->write(separator); |
| this->write("float4 _fragCoord"); |
| separator = ", "; |
| } |
| } |
| |
| int MetalCodeGenerator::getUniformBinding(const Modifiers& m) { |
| return (m.fLayout.fBinding >= 0) ? m.fLayout.fBinding |
| : fProgram.fConfig->fSettings.fDefaultUniformBinding; |
| } |
| |
| int MetalCodeGenerator::getUniformSet(const Modifiers& m) { |
| return (m.fLayout.fSet >= 0) ? m.fLayout.fSet |
| : fProgram.fConfig->fSettings.fDefaultUniformSet; |
| } |
| |
| bool MetalCodeGenerator::writeFunctionDeclaration(const FunctionDeclaration& f) { |
| fRTFlipName = fProgram.fInputs.fUseFlipRTUniform |
| ? "_globals._anonInterface0->" SKSL_RTFLIP_NAME |
| : ""; |
| const char* separator = ""; |
| if (f.isMain()) { |
| switch (fProgram.fConfig->fKind) { |
| case ProgramKind::kFragment: |
| this->write("fragment Outputs fragmentMain"); |
| break; |
| case ProgramKind::kVertex: |
| this->write("vertex Outputs vertexMain"); |
| break; |
| default: |
| fContext.fErrors->error(-1, "unsupported kind of program"); |
| return false; |
| } |
| this->write("(Inputs _in [[stage_in]]"); |
| if (-1 != fUniformBuffer) { |
| this->write(", constant Uniforms& _uniforms [[buffer(" + |
| to_string(fUniformBuffer) + ")]]"); |
| } |
| for (const ProgramElement* e : fProgram.elements()) { |
| if (e->is<GlobalVarDeclaration>()) { |
| const GlobalVarDeclaration& decls = e->as<GlobalVarDeclaration>(); |
| const VarDeclaration& var = decls.declaration()->as<VarDeclaration>(); |
| if (var.var().type().typeKind() == Type::TypeKind::kSampler) { |
| if (var.var().modifiers().fLayout.fBinding < 0) { |
| fContext.fErrors->error(decls.fLine, |
| "Metal samplers must have 'layout(binding=...)'"); |
| return false; |
| } |
| if (var.var().type().dimensions() != SpvDim2D) { |
| // Not yet implemented--Skia currently only uses 2D textures. |
| fContext.fErrors->error(decls.fLine, "Unsupported texture dimensions"); |
| return false; |
| } |
| this->write(", texture2d<float> "); |
| this->writeName(var.var().name()); |
| this->write("[[texture("); |
| this->write(to_string(var.var().modifiers().fLayout.fBinding)); |
| this->write(")]]"); |
| this->write(", sampler "); |
| this->writeName(var.var().name()); |
| this->write(SAMPLER_SUFFIX); |
| this->write("[[sampler("); |
| this->write(to_string(var.var().modifiers().fLayout.fBinding)); |
| this->write(")]]"); |
| } |
| } else if (e->is<InterfaceBlock>()) { |
| const InterfaceBlock& intf = e->as<InterfaceBlock>(); |
| if (intf.typeName() == "sk_PerVertex") { |
| continue; |
| } |
| this->write(", constant "); |
| this->writeType(intf.variable().type()); |
| this->write("& " ); |
| this->write(fInterfaceBlockNameMap[&intf]); |
| this->write(" [[buffer("); |
| this->write(to_string(this->getUniformBinding(intf.variable().modifiers()))); |
| this->write(")]]"); |
| } |
| } |
| if (fProgram.fConfig->fKind == ProgramKind::kFragment) { |
| if (fProgram.fInputs.fUseFlipRTUniform && fInterfaceBlockNameMap.empty()) { |
| this->write(", constant sksl_synthetic_uniforms& _anonInterface0 [[buffer(1)]]"); |
| fRTFlipName = "_anonInterface0." SKSL_RTFLIP_NAME; |
| } |
| this->write(", bool _frontFacing [[front_facing]]"); |
| this->write(", float4 _fragCoord [[position]]"); |
| } else if (fProgram.fConfig->fKind == ProgramKind::kVertex) { |
| this->write(", uint sk_VertexID [[vertex_id]], uint sk_InstanceID [[instance_id]]"); |
| } |
| separator = ", "; |
| } else { |
| this->writeType(f.returnType()); |
| this->write(" "); |
| this->writeName(f.mangledName()); |
| this->write("("); |
| this->writeFunctionRequirementParams(f, separator); |
| } |
| for (const auto& param : f.parameters()) { |
| if (f.isMain() && param->modifiers().fLayout.fBuiltin != -1) { |
| continue; |
| } |
| this->write(separator); |
| separator = ", "; |
| this->writeModifiers(param->modifiers()); |
| const Type* type = ¶m->type(); |
| this->writeType(*type); |
| if (param->modifiers().fFlags & Modifiers::kOut_Flag) { |
| this->write("&"); |
| } |
| this->write(" "); |
| this->writeName(param->name()); |
| } |
| this->write(")"); |
| return true; |
| } |
| |
| void MetalCodeGenerator::writeFunctionPrototype(const FunctionPrototype& f) { |
| this->writeFunctionDeclaration(f.declaration()); |
| this->writeLine(";"); |
| } |
| |
| static bool is_block_ending_with_return(const Statement* stmt) { |
| // This function detects (potentially nested) blocks that end in a return statement. |
| if (!stmt->is<Block>()) { |
| return false; |
| } |
| const StatementArray& block = stmt->as<Block>().children(); |
| for (int index = block.count(); index--; ) { |
| stmt = block[index].get(); |
| if (stmt->is<ReturnStatement>()) { |
| return true; |
| } |
| if (stmt->is<Block>()) { |
| return is_block_ending_with_return(stmt); |
| } |
| if (!stmt->is<Nop>()) { |
| break; |
| } |
| } |
| return false; |
| } |
| |
| void MetalCodeGenerator::writeFunction(const FunctionDefinition& f) { |
| SkASSERT(!fProgram.fConfig->fSettings.fFragColorIsInOut); |
| |
| if (!this->writeFunctionDeclaration(f.declaration())) { |
| return; |
| } |
| |
| fCurrentFunction = &f.declaration(); |
| SkScopeExit clearCurrentFunction([&] { fCurrentFunction = nullptr; }); |
| |
| this->writeLine(" {"); |
| |
| if (f.declaration().isMain()) { |
| this->writeGlobalInit(); |
| this->writeLine(" Outputs _out;"); |
| this->writeLine(" (void)_out;"); |
| } |
| |
| fFunctionHeader.clear(); |
| StringStream buffer; |
| { |
| AutoOutputStream outputToBuffer(this, &buffer); |
| fIndentation++; |
| for (const std::unique_ptr<Statement>& stmt : f.body()->as<Block>().children()) { |
| if (!stmt->isEmpty()) { |
| this->writeStatement(*stmt); |
| this->finishLine(); |
| } |
| } |
| if (f.declaration().isMain()) { |
| // If the main function doesn't end with a return, we need to synthesize one here. |
| if (!is_block_ending_with_return(f.body().get())) { |
| this->writeReturnStatementFromMain(); |
| this->finishLine(); |
| } |
| } |
| fIndentation--; |
| this->writeLine("}"); |
| } |
| this->write(fFunctionHeader); |
| this->write(buffer.str()); |
| } |
| |
| void MetalCodeGenerator::writeModifiers(const Modifiers& modifiers) { |
| if (modifiers.fFlags & Modifiers::kOut_Flag) { |
| this->write("thread "); |
| } |
| if (modifiers.fFlags & Modifiers::kConst_Flag) { |
| this->write("const "); |
| } |
| } |
| |
| void MetalCodeGenerator::writeInterfaceBlock(const InterfaceBlock& intf) { |
| if ("sk_PerVertex" == intf.typeName()) { |
| return; |
| } |
| this->writeModifiers(intf.variable().modifiers()); |
| this->write("struct "); |
| this->writeLine(intf.typeName() + " {"); |
| const Type* structType = &intf.variable().type(); |
| if (structType->isArray()) { |
| structType = &structType->componentType(); |
| } |
| fIndentation++; |
| this->writeFields(structType->fields(), structType->fLine, &intf); |
| if (fProgram.fInputs.fUseFlipRTUniform) { |
| this->writeLine("float2 " SKSL_RTFLIP_NAME ";"); |
| } |
| fIndentation--; |
| this->write("}"); |
| if (intf.instanceName().size()) { |
| this->write(" "); |
| this->write(intf.instanceName()); |
| if (intf.arraySize() > 0) { |
| this->write("["); |
| this->write(to_string(intf.arraySize())); |
| this->write("]"); |
| } |
| fInterfaceBlockNameMap[&intf] = intf.instanceName(); |
| } else { |
| fInterfaceBlockNameMap[&intf] = *fProgram.fSymbols->takeOwnershipOfString("_anonInterface" + |
| to_string(fAnonInterfaceCount++)); |
| } |
| this->writeLine(";"); |
| } |
| |
| void MetalCodeGenerator::writeFields(const std::vector<Type::Field>& fields, int parentLine, |
| const InterfaceBlock* parentIntf) { |
| MemoryLayout memoryLayout(MemoryLayout::kMetal_Standard); |
| int currentOffset = 0; |
| for (const Type::Field& field : fields) { |
| int fieldOffset = field.fModifiers.fLayout.fOffset; |
| const Type* fieldType = field.fType; |
| if (!MemoryLayout::LayoutIsSupported(*fieldType)) { |
| fContext.fErrors->error(parentLine, "type '" + fieldType->name() + |
| "' is not permitted here"); |
| return; |
| } |
| if (fieldOffset != -1) { |
| if (currentOffset > fieldOffset) { |
| fContext.fErrors->error(parentLine, |
| "offset of field '" + field.fName + "' must be at least " + |
| to_string((int) currentOffset)); |
| return; |
| } else if (currentOffset < fieldOffset) { |
| this->write("char pad"); |
| this->write(to_string(fPaddingCount++)); |
| this->write("["); |
| this->write(to_string(fieldOffset - currentOffset)); |
| this->writeLine("];"); |
| currentOffset = fieldOffset; |
| } |
| int alignment = memoryLayout.alignment(*fieldType); |
| if (fieldOffset % alignment) { |
| fContext.fErrors->error(parentLine, |
| "offset of field '" + field.fName + "' must be a multiple of " + |
| to_string((int) alignment)); |
| return; |
| } |
| } |
| size_t fieldSize = memoryLayout.size(*fieldType); |
| if (fieldSize > static_cast<size_t>(std::numeric_limits<int>::max() - currentOffset)) { |
| fContext.fErrors->error(parentLine, "field offset overflow"); |
| return; |
| } |
| currentOffset += fieldSize; |
| this->writeModifiers(field.fModifiers); |
| this->writeType(*fieldType); |
| this->write(" "); |
| this->writeName(field.fName); |
| this->writeLine(";"); |
| if (parentIntf) { |
| fInterfaceBlockMap[&field] = parentIntf; |
| } |
| } |
| } |
| |
| void MetalCodeGenerator::writeVarInitializer(const Variable& var, const Expression& value) { |
| this->writeExpression(value, Precedence::kTopLevel); |
| } |
| |
| void MetalCodeGenerator::writeName(skstd::string_view name) { |
| if (fReservedWords.find(name) != fReservedWords.end()) { |
| this->write("_"); // adding underscore before name to avoid conflict with reserved words |
| } |
| this->write(name); |
| } |
| |
| void MetalCodeGenerator::writeVarDeclaration(const VarDeclaration& varDecl) { |
| this->writeModifiers(varDecl.var().modifiers()); |
| this->writeType(varDecl.var().type()); |
| this->write(" "); |
| this->writeName(varDecl.var().name()); |
| if (varDecl.value()) { |
| this->write(" = "); |
| this->writeVarInitializer(varDecl.var(), *varDecl.value()); |
| } |
| this->write(";"); |
| } |
| |
| void MetalCodeGenerator::writeStatement(const Statement& s) { |
| switch (s.kind()) { |
| case Statement::Kind::kBlock: |
| this->writeBlock(s.as<Block>()); |
| break; |
| case Statement::Kind::kExpression: |
| this->writeExpression(*s.as<ExpressionStatement>().expression(), Precedence::kTopLevel); |
| this->write(";"); |
| break; |
| case Statement::Kind::kReturn: |
| this->writeReturnStatement(s.as<ReturnStatement>()); |
| break; |
| case Statement::Kind::kVarDeclaration: |
| this->writeVarDeclaration(s.as<VarDeclaration>()); |
| break; |
| case Statement::Kind::kIf: |
| this->writeIfStatement(s.as<IfStatement>()); |
| break; |
| case Statement::Kind::kFor: |
| this->writeForStatement(s.as<ForStatement>()); |
| break; |
| case Statement::Kind::kDo: |
| this->writeDoStatement(s.as<DoStatement>()); |
| break; |
| case Statement::Kind::kSwitch: |
| this->writeSwitchStatement(s.as<SwitchStatement>()); |
| break; |
| case Statement::Kind::kBreak: |
| this->write("break;"); |
| break; |
| case Statement::Kind::kContinue: |
| this->write("continue;"); |
| break; |
| case Statement::Kind::kDiscard: |
| this->write("discard_fragment();"); |
| break; |
| case Statement::Kind::kInlineMarker: |
| case Statement::Kind::kNop: |
| this->write(";"); |
| break; |
| default: |
| SkDEBUGFAILF("unsupported statement: %s", s.description().c_str()); |
| break; |
| } |
| } |
| |
| void MetalCodeGenerator::writeBlock(const Block& b) { |
| // Write scope markers if this block is a scope, or if the block is empty (since we need to emit |
| // something here to make the code valid). |
| bool isScope = b.isScope() || b.isEmpty(); |
| if (isScope) { |
| this->writeLine("{"); |
| fIndentation++; |
| } |
| for (const std::unique_ptr<Statement>& stmt : b.children()) { |
| if (!stmt->isEmpty()) { |
| this->writeStatement(*stmt); |
| this->finishLine(); |
| } |
| } |
| if (isScope) { |
| fIndentation--; |
| this->write("}"); |
| } |
| } |
| |
| void MetalCodeGenerator::writeIfStatement(const IfStatement& stmt) { |
| this->write("if ("); |
| this->writeExpression(*stmt.test(), Precedence::kTopLevel); |
| this->write(") "); |
| this->writeStatement(*stmt.ifTrue()); |
| if (stmt.ifFalse()) { |
| this->write(" else "); |
| this->writeStatement(*stmt.ifFalse()); |
| } |
| } |
| |
| void MetalCodeGenerator::writeForStatement(const ForStatement& f) { |
| // Emit loops of the form 'for(;test;)' as 'while(test)', which is probably how they started |
| if (!f.initializer() && f.test() && !f.next()) { |
| this->write("while ("); |
| this->writeExpression(*f.test(), Precedence::kTopLevel); |
| this->write(") "); |
| this->writeStatement(*f.statement()); |
| return; |
| } |
| |
| this->write("for ("); |
| if (f.initializer() && !f.initializer()->isEmpty()) { |
| this->writeStatement(*f.initializer()); |
| } else { |
| this->write("; "); |
| } |
| if (f.test()) { |
| this->writeExpression(*f.test(), Precedence::kTopLevel); |
| } |
| this->write("; "); |
| if (f.next()) { |
| this->writeExpression(*f.next(), Precedence::kTopLevel); |
| } |
| this->write(") "); |
| this->writeStatement(*f.statement()); |
| } |
| |
| void MetalCodeGenerator::writeDoStatement(const DoStatement& d) { |
| this->write("do "); |
| this->writeStatement(*d.statement()); |
| this->write(" while ("); |
| this->writeExpression(*d.test(), Precedence::kTopLevel); |
| this->write(");"); |
| } |
| |
| void MetalCodeGenerator::writeSwitchStatement(const SwitchStatement& s) { |
| this->write("switch ("); |
| this->writeExpression(*s.value(), Precedence::kTopLevel); |
| this->writeLine(") {"); |
| fIndentation++; |
| for (const std::unique_ptr<Statement>& stmt : s.cases()) { |
| const SwitchCase& c = stmt->as<SwitchCase>(); |
| if (c.value()) { |
| this->write("case "); |
| this->writeExpression(*c.value(), Precedence::kTopLevel); |
| this->writeLine(":"); |
| } else { |
| this->writeLine("default:"); |
| } |
| if (!c.statement()->isEmpty()) { |
| fIndentation++; |
| this->writeStatement(*c.statement()); |
| this->finishLine(); |
| fIndentation--; |
| } |
| } |
| fIndentation--; |
| this->write("}"); |
| } |
| |
| void MetalCodeGenerator::writeReturnStatementFromMain() { |
| // main functions in Metal return a magic _out parameter that doesn't exist in SkSL. |
| switch (fProgram.fConfig->fKind) { |
| case ProgramKind::kVertex: |
| case ProgramKind::kFragment: |
| this->write("return _out;"); |
| break; |
| default: |
| SkDEBUGFAIL("unsupported kind of program"); |
| } |
| } |
| |
| void MetalCodeGenerator::writeReturnStatement(const ReturnStatement& r) { |
| if (fCurrentFunction && fCurrentFunction->isMain()) { |
| if (r.expression()) { |
| if (r.expression()->type() == *fContext.fTypes.fHalf4) { |
| this->write("_out.sk_FragColor = "); |
| this->writeExpression(*r.expression(), Precedence::kTopLevel); |
| this->writeLine(";"); |
| } else { |
| fContext.fErrors->error(r.fLine, |
| "Metal does not support returning '" + |
| r.expression()->type().description() + "' from main()"); |
| } |
| } |
| this->writeReturnStatementFromMain(); |
| return; |
| } |
| |
| this->write("return"); |
| if (r.expression()) { |
| this->write(" "); |
| this->writeExpression(*r.expression(), Precedence::kTopLevel); |
| } |
| this->write(";"); |
| } |
| |
| void MetalCodeGenerator::writeHeader() { |
| this->write("#include <metal_stdlib>\n"); |
| this->write("#include <simd/simd.h>\n"); |
| this->write("using namespace metal;\n"); |
| } |
| |
| void MetalCodeGenerator::writeUniformStruct() { |
| for (const ProgramElement* e : fProgram.elements()) { |
| if (e->is<GlobalVarDeclaration>()) { |
| const GlobalVarDeclaration& decls = e->as<GlobalVarDeclaration>(); |
| const Variable& var = decls.declaration()->as<VarDeclaration>().var(); |
| if (var.modifiers().fFlags & Modifiers::kUniform_Flag && |
| var.type().typeKind() != Type::TypeKind::kSampler) { |
| int uniformSet = this->getUniformSet(var.modifiers()); |
| // Make sure that the program's uniform-set value is consistent throughout. |
| if (-1 == fUniformBuffer) { |
| this->write("struct Uniforms {\n"); |
| fUniformBuffer = uniformSet; |
| } else if (uniformSet != fUniformBuffer) { |
| fContext.fErrors->error(decls.fLine, |
| "Metal backend requires all uniforms to have the same " |
| "'layout(set=...)'"); |
| } |
| this->write(" "); |
| this->writeType(var.type()); |
| this->write(" "); |
| this->writeName(var.name()); |
| this->write(";\n"); |
| } |
| } |
| } |
| if (-1 != fUniformBuffer) { |
| this->write("};\n"); |
| } |
| } |
| |
| void MetalCodeGenerator::writeInputStruct() { |
| this->write("struct Inputs {\n"); |
| for (const ProgramElement* e : fProgram.elements()) { |
| if (e->is<GlobalVarDeclaration>()) { |
| const GlobalVarDeclaration& decls = e->as<GlobalVarDeclaration>(); |
| const Variable& var = decls.declaration()->as<VarDeclaration>().var(); |
| if (var.modifiers().fFlags & Modifiers::kIn_Flag && |
| -1 == var.modifiers().fLayout.fBuiltin) { |
| this->write(" "); |
| this->writeType(var.type()); |
| this->write(" "); |
| this->writeName(var.name()); |
| if (-1 != var.modifiers().fLayout.fLocation) { |
| if (fProgram.fConfig->fKind == ProgramKind::kVertex) { |
| this->write(" [[attribute(" + |
| to_string(var.modifiers().fLayout.fLocation) + ")]]"); |
| } else if (fProgram.fConfig->fKind == ProgramKind::kFragment) { |
| this->write(" [[user(locn" + |
| to_string(var.modifiers().fLayout.fLocation) + ")]]"); |
| } |
| } |
| this->write(";\n"); |
| } |
| } |
| } |
| this->write("};\n"); |
| } |
| |
| void MetalCodeGenerator::writeOutputStruct() { |
| this->write("struct Outputs {\n"); |
| if (fProgram.fConfig->fKind == ProgramKind::kVertex) { |
| this->write(" float4 sk_Position [[position]];\n"); |
| } else if (fProgram.fConfig->fKind == ProgramKind::kFragment) { |
| this->write(" float4 sk_FragColor [[color(0)]];\n"); |
| } |
| for (const ProgramElement* e : fProgram.elements()) { |
| if (e->is<GlobalVarDeclaration>()) { |
| const GlobalVarDeclaration& decls = e->as<GlobalVarDeclaration>(); |
| const Variable& var = decls.declaration()->as<VarDeclaration>().var(); |
| if (var.modifiers().fFlags & Modifiers::kOut_Flag && |
| -1 == var.modifiers().fLayout.fBuiltin) { |
| this->write(" "); |
| this->writeType(var.type()); |
| this->write(" "); |
| this->writeName(var.name()); |
| |
| int location = var.modifiers().fLayout.fLocation; |
| if (location < 0) { |
| fContext.fErrors->error(var.fLine, |
| "Metal out variables must have 'layout(location=...)'"); |
| } else if (fProgram.fConfig->fKind == ProgramKind::kVertex) { |
| this->write(" [[user(locn" + to_string(location) + ")]]"); |
| } else if (fProgram.fConfig->fKind == ProgramKind::kFragment) { |
| this->write(" [[color(" + to_string(location) + ")"); |
| int colorIndex = var.modifiers().fLayout.fIndex; |
| if (colorIndex) { |
| this->write(", index(" + to_string(colorIndex) + ")"); |
| } |
| this->write("]]"); |
| } |
| this->write(";\n"); |
| } |
| } |
| } |
| if (fProgram.fConfig->fKind == ProgramKind::kVertex) { |
| this->write(" float sk_PointSize [[point_size]];\n"); |
| } |
| this->write("};\n"); |
| } |
| |
| void MetalCodeGenerator::writeInterfaceBlocks() { |
| bool wroteInterfaceBlock = false; |
| for (const ProgramElement* e : fProgram.elements()) { |
| if (e->is<InterfaceBlock>()) { |
| this->writeInterfaceBlock(e->as<InterfaceBlock>()); |
| wroteInterfaceBlock = true; |
| } |
| } |
| if (!wroteInterfaceBlock && fProgram.fInputs.fUseFlipRTUniform) { |
| this->writeLine("struct sksl_synthetic_uniforms {"); |
| this->writeLine(" float2 " SKSL_RTFLIP_NAME ";"); |
| this->writeLine("};"); |
| } |
| } |
| |
| void MetalCodeGenerator::writeStructDefinitions() { |
| for (const ProgramElement* e : fProgram.elements()) { |
| if (e->is<StructDefinition>()) { |
| this->writeStructDefinition(e->as<StructDefinition>()); |
| } |
| } |
| } |
| |
| void MetalCodeGenerator::visitGlobalStruct(GlobalStructVisitor* visitor) { |
| // Visit the interface blocks. |
| for (const auto& [interfaceType, interfaceName] : fInterfaceBlockNameMap) { |
| visitor->visitInterfaceBlock(*interfaceType, interfaceName); |
| } |
| for (const ProgramElement* element : fProgram.elements()) { |
| if (!element->is<GlobalVarDeclaration>()) { |
| continue; |
| } |
| const GlobalVarDeclaration& global = element->as<GlobalVarDeclaration>(); |
| const VarDeclaration& decl = global.declaration()->as<VarDeclaration>(); |
| const Variable& var = decl.var(); |
| if (var.type().typeKind() == Type::TypeKind::kSampler) { |
| // Samplers are represented as a "texture/sampler" duo in the global struct. |
| visitor->visitTexture(var.type(), var.name()); |
| visitor->visitSampler(var.type(), var.name() + SAMPLER_SUFFIX); |
| continue; |
| } |
| |
| if (!(var.modifiers().fFlags & ~Modifiers::kConst_Flag) && |
| -1 == var.modifiers().fLayout.fBuiltin) { |
| // Visit a regular variable. |
| visitor->visitVariable(var, decl.value().get()); |
| } |
| } |
| } |
| |
| void MetalCodeGenerator::writeGlobalStruct() { |
| class : public GlobalStructVisitor { |
| public: |
| void visitInterfaceBlock(const InterfaceBlock& block, |
| skstd::string_view blockName) override { |
| this->addElement(); |
| fCodeGen->write(" constant "); |
| fCodeGen->write(block.typeName()); |
| fCodeGen->write("* "); |
| fCodeGen->writeName(blockName); |
| fCodeGen->write(";\n"); |
| } |
| void visitTexture(const Type& type, skstd::string_view name) override { |
| this->addElement(); |
| fCodeGen->write(" "); |
| fCodeGen->writeType(type); |
| fCodeGen->write(" "); |
| fCodeGen->writeName(name); |
| fCodeGen->write(";\n"); |
| } |
| void visitSampler(const Type&, skstd::string_view name) override { |
| this->addElement(); |
| fCodeGen->write(" sampler "); |
| fCodeGen->writeName(name); |
| fCodeGen->write(";\n"); |
| } |
| void visitVariable(const Variable& var, const Expression* value) override { |
| this->addElement(); |
| fCodeGen->write(" "); |
| fCodeGen->writeModifiers(var.modifiers()); |
| fCodeGen->writeType(var.type()); |
| fCodeGen->write(" "); |
| fCodeGen->writeName(var.name()); |
| fCodeGen->write(";\n"); |
| } |
| void addElement() { |
| if (fFirst) { |
| fCodeGen->write("struct Globals {\n"); |
| fFirst = false; |
| } |
| } |
| void finish() { |
| if (!fFirst) { |
| fCodeGen->writeLine("};"); |
| fFirst = true; |
| } |
| } |
| |
| MetalCodeGenerator* fCodeGen = nullptr; |
| bool fFirst = true; |
| } visitor; |
| |
| visitor.fCodeGen = this; |
| this->visitGlobalStruct(&visitor); |
| visitor.finish(); |
| } |
| |
| void MetalCodeGenerator::writeGlobalInit() { |
| class : public GlobalStructVisitor { |
| public: |
| void visitInterfaceBlock(const InterfaceBlock& blockType, |
| skstd::string_view blockName) override { |
| this->addElement(); |
| fCodeGen->write("&"); |
| fCodeGen->writeName(blockName); |
| } |
| void visitTexture(const Type&, skstd::string_view name) override { |
| this->addElement(); |
| fCodeGen->writeName(name); |
| } |
| void visitSampler(const Type&, skstd::string_view name) override { |
| this->addElement(); |
| fCodeGen->writeName(name); |
| } |
| void visitVariable(const Variable& var, const Expression* value) override { |
| this->addElement(); |
| if (value) { |
| fCodeGen->writeVarInitializer(var, *value); |
| } else { |
| fCodeGen->write("{}"); |
| } |
| } |
| void addElement() { |
| if (fFirst) { |
| fCodeGen->write(" Globals _globals{"); |
| fFirst = false; |
| } else { |
| fCodeGen->write(", "); |
| } |
| } |
| void finish() { |
| if (!fFirst) { |
| fCodeGen->writeLine("};"); |
| fCodeGen->writeLine(" (void)_globals;"); |
| } |
| } |
| MetalCodeGenerator* fCodeGen = nullptr; |
| bool fFirst = true; |
| } visitor; |
| |
| visitor.fCodeGen = this; |
| this->visitGlobalStruct(&visitor); |
| visitor.finish(); |
| } |
| |
| void MetalCodeGenerator::writeProgramElement(const ProgramElement& e) { |
| switch (e.kind()) { |
| case ProgramElement::Kind::kExtension: |
| break; |
| case ProgramElement::Kind::kGlobalVar: |
| break; |
| case ProgramElement::Kind::kInterfaceBlock: |
| // handled in writeInterfaceBlocks, do nothing |
| break; |
| case ProgramElement::Kind::kStructDefinition: |
| // Handled in writeStructDefinitions. Do nothing. |
| break; |
| case ProgramElement::Kind::kFunction: |
| this->writeFunction(e.as<FunctionDefinition>()); |
| break; |
| case ProgramElement::Kind::kFunctionPrototype: |
| this->writeFunctionPrototype(e.as<FunctionPrototype>()); |
| break; |
| case ProgramElement::Kind::kModifiers: |
| this->writeModifiers(e.as<ModifiersDeclaration>().modifiers()); |
| this->writeLine(";"); |
| break; |
| default: |
| SkDEBUGFAILF("unsupported program element: %s\n", e.description().c_str()); |
| break; |
| } |
| } |
| |
| MetalCodeGenerator::Requirements MetalCodeGenerator::requirements(const Expression* e) { |
| if (!e) { |
| return kNo_Requirements; |
| } |
| switch (e->kind()) { |
| case Expression::Kind::kFunctionCall: { |
| const FunctionCall& f = e->as<FunctionCall>(); |
| Requirements result = this->requirements(f.function()); |
| for (const auto& arg : f.arguments()) { |
| result |= this->requirements(arg.get()); |
| } |
| return result; |
| } |
| case Expression::Kind::kConstructorCompound: |
| case Expression::Kind::kConstructorCompoundCast: |
| case Expression::Kind::kConstructorArray: |
| case Expression::Kind::kConstructorArrayCast: |
| case Expression::Kind::kConstructorDiagonalMatrix: |
| case Expression::Kind::kConstructorScalarCast: |
| case Expression::Kind::kConstructorSplat: |
| case Expression::Kind::kConstructorStruct: { |
| const AnyConstructor& c = e->asAnyConstructor(); |
| Requirements result = kNo_Requirements; |
| for (const auto& arg : c.argumentSpan()) { |
| result |= this->requirements(arg.get()); |
| } |
| return result; |
| } |
| case Expression::Kind::kFieldAccess: { |
| const FieldAccess& f = e->as<FieldAccess>(); |
| if (FieldAccess::OwnerKind::kAnonymousInterfaceBlock == f.ownerKind()) { |
| return kGlobals_Requirement; |
| } |
| return this->requirements(f.base().get()); |
| } |
| case Expression::Kind::kSwizzle: |
| return this->requirements(e->as<Swizzle>().base().get()); |
| case Expression::Kind::kBinary: { |
| const BinaryExpression& bin = e->as<BinaryExpression>(); |
| return this->requirements(bin.left().get()) | |
| this->requirements(bin.right().get()); |
| } |
| case Expression::Kind::kIndex: { |
| const IndexExpression& idx = e->as<IndexExpression>(); |
| return this->requirements(idx.base().get()) | this->requirements(idx.index().get()); |
| } |
| case Expression::Kind::kPrefix: |
| return this->requirements(e->as<PrefixExpression>().operand().get()); |
| case Expression::Kind::kPostfix: |
| return this->requirements(e->as<PostfixExpression>().operand().get()); |
| case Expression::Kind::kTernary: { |
| const TernaryExpression& t = e->as<TernaryExpression>(); |
| return this->requirements(t.test().get()) | this->requirements(t.ifTrue().get()) | |
| this->requirements(t.ifFalse().get()); |
| } |
| case Expression::Kind::kVariableReference: { |
| const VariableReference& v = e->as<VariableReference>(); |
| const Modifiers& modifiers = v.variable()->modifiers(); |
| Requirements result = kNo_Requirements; |
| if (modifiers.fLayout.fBuiltin == SK_FRAGCOORD_BUILTIN) { |
| result = kGlobals_Requirement | kFragCoord_Requirement; |
| } else if (Variable::Storage::kGlobal == v.variable()->storage()) { |
| if (modifiers.fFlags & Modifiers::kIn_Flag) { |
| result = kInputs_Requirement; |
| } else if (modifiers.fFlags & Modifiers::kOut_Flag) { |
| result = kOutputs_Requirement; |
| } else if (modifiers.fFlags & Modifiers::kUniform_Flag && |
| v.variable()->type().typeKind() != Type::TypeKind::kSampler) { |
| result = kUniforms_Requirement; |
| } else { |
| result = kGlobals_Requirement; |
| } |
| } |
| return result; |
| } |
| default: |
| return kNo_Requirements; |
| } |
| } |
| |
| MetalCodeGenerator::Requirements MetalCodeGenerator::requirements(const Statement* s) { |
| if (!s) { |
| return kNo_Requirements; |
| } |
| switch (s->kind()) { |
| case Statement::Kind::kBlock: { |
| Requirements result = kNo_Requirements; |
| for (const std::unique_ptr<Statement>& child : s->as<Block>().children()) { |
| result |= this->requirements(child.get()); |
| } |
| return result; |
| } |
| case Statement::Kind::kVarDeclaration: { |
| const VarDeclaration& var = s->as<VarDeclaration>(); |
| return this->requirements(var.value().get()); |
| } |
| case Statement::Kind::kExpression: |
| return this->requirements(s->as<ExpressionStatement>().expression().get()); |
| case Statement::Kind::kReturn: { |
| const ReturnStatement& r = s->as<ReturnStatement>(); |
| return this->requirements(r.expression().get()); |
| } |
| case Statement::Kind::kIf: { |
| const IfStatement& i = s->as<IfStatement>(); |
| return this->requirements(i.test().get()) | |
| this->requirements(i.ifTrue().get()) | |
| this->requirements(i.ifFalse().get()); |
| } |
| case Statement::Kind::kFor: { |
| const ForStatement& f = s->as<ForStatement>(); |
| return this->requirements(f.initializer().get()) | |
| this->requirements(f.test().get()) | |
| this->requirements(f.next().get()) | |
| this->requirements(f.statement().get()); |
| } |
| case Statement::Kind::kDo: { |
| const DoStatement& d = s->as<DoStatement>(); |
| return this->requirements(d.test().get()) | |
| this->requirements(d.statement().get()); |
| } |
| case Statement::Kind::kSwitch: { |
| const SwitchStatement& sw = s->as<SwitchStatement>(); |
| Requirements result = this->requirements(sw.value().get()); |
| for (const std::unique_ptr<Statement>& sc : sw.cases()) { |
| result |= this->requirements(sc->as<SwitchCase>().statement().get()); |
| } |
| return result; |
| } |
| default: |
| return kNo_Requirements; |
| } |
| } |
| |
| MetalCodeGenerator::Requirements MetalCodeGenerator::requirements(const FunctionDeclaration& f) { |
| if (f.isBuiltin()) { |
| return kNo_Requirements; |
| } |
| auto found = fRequirements.find(&f); |
| if (found == fRequirements.end()) { |
| fRequirements[&f] = kNo_Requirements; |
| for (const ProgramElement* e : fProgram.elements()) { |
| if (e->is<FunctionDefinition>()) { |
| const FunctionDefinition& def = e->as<FunctionDefinition>(); |
| if (&def.declaration() == &f) { |
| Requirements reqs = this->requirements(def.body().get()); |
| fRequirements[&f] = reqs; |
| return reqs; |
| } |
| } |
| } |
| // We never found a definition for this declared function, but it's legal to prototype a |
| // function without ever giving a definition, as long as you don't call it. |
| return kNo_Requirements; |
| } |
| return found->second; |
| } |
| |
| bool MetalCodeGenerator::generateCode() { |
| StringStream header; |
| { |
| AutoOutputStream outputToHeader(this, &header, &fIndentation); |
| this->writeHeader(); |
| this->writeStructDefinitions(); |
| this->writeUniformStruct(); |
| this->writeInputStruct(); |
| this->writeOutputStruct(); |
| this->writeInterfaceBlocks(); |
| this->writeGlobalStruct(); |
| } |
| StringStream body; |
| { |
| AutoOutputStream outputToBody(this, &body, &fIndentation); |
| for (const ProgramElement* e : fProgram.elements()) { |
| this->writeProgramElement(*e); |
| } |
| } |
| write_stringstream(header, *fOut); |
| write_stringstream(fExtraFunctionPrototypes, *fOut); |
| write_stringstream(fExtraFunctions, *fOut); |
| write_stringstream(body, *fOut); |
| fContext.fErrors->reportPendingErrors(PositionInfo()); |
| return fContext.fErrors->errorCount() == 0; |
| } |
| |
| } // namespace SkSL |