blob: 3dbd43dfc8cc07d6d814be7d5c86e78a970c8335 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkBlitRow_opts_DEFINED
#define SkBlitRow_opts_DEFINED
#include "include/private/SkColorData.h"
#include "include/private/SkVx.h"
#include "src/core/SkMSAN.h"
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SKX
#include <immintrin.h>
static inline __m512i SkPMSrcOver_SKX(const __m512i& src, const __m512i& dst) {
// Detailed explanations in SkPMSrcOver_AVX2
// b = s + (d*(256-srcA)) >> 8
// Shuffle each pixel's srcA to the low byte of each 16-bit half of the pixel.
const uint8_t _ = -1; // fills a literal 0 byte.
const uint8_t mask[64] = { 3, _,3, _, 7, _,7, _, 11,_,11,_, 15,_,15,_,
19,_,19,_, 23,_,23,_, 27,_,27,_, 31,_,31,_,
35,_,35,_, 39,_,39,_, 43,_,43,_, 47,_,47,_,
51,_,51,_, 55,_,55,_, 59,_,59,_, 63,_,63,_ };
__m512i srcA_x2 = _mm512_shuffle_epi8(src, _mm512_loadu_si512(mask));
__m512i scale_x2 = _mm512_sub_epi16(_mm512_set1_epi16(256),
srcA_x2);
// Scale red and blue, leaving results in the low byte of each 16-bit lane.
__m512i rb = _mm512_and_si512(_mm512_set1_epi32(0x00ff00ff), dst);
rb = _mm512_mullo_epi16(rb, scale_x2);
rb = _mm512_srli_epi16(rb, 8);
// Scale green and alpha, leaving results in the high byte, masking off the low bits.
__m512i ga = _mm512_srli_epi16(dst, 8);
ga = _mm512_mullo_epi16(ga, scale_x2);
ga = _mm512_andnot_si512(_mm512_set1_epi32(0x00ff00ff), ga);
return _mm512_add_epi32(src, _mm512_or_si512(rb, ga));
}
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
#include <immintrin.h>
static inline __m256i SkPMSrcOver_AVX2(const __m256i& src, const __m256i& dst) {
// Abstractly srcover is
// b = s + d*(1-srcA)
//
// In terms of unorm8 bytes, that works out to
// b = s + (d*(255-srcA) + 127) / 255
//
// But we approximate that to within a bit with
// b = s + (d*(255-srcA) + d) / 256
// a.k.a
// b = s + (d*(256-srcA)) >> 8
// The bottleneck of this math is the multiply, and we want to do it as
// narrowly as possible, here getting inputs into 16-bit lanes and
// using 16-bit multiplies. We can do twice as many multiplies at once
// as using naive 32-bit multiplies, and on top of that, the 16-bit multiplies
// are themselves a couple cycles quicker. Win-win.
// We'll get everything in 16-bit lanes for two multiplies, one
// handling dst red and blue, the other green and alpha. (They're
// conveniently 16-bits apart, you see.) We don't need the individual
// src channels beyond alpha until the very end when we do the "s + "
// add, and we don't even need to unpack them; the adds cannot overflow.
// Shuffle each pixel's srcA to the low byte of each 16-bit half of the pixel.
const int _ = -1; // fills a literal 0 byte.
__m256i srcA_x2 = _mm256_shuffle_epi8(src,
_mm256_setr_epi8(3,_,3,_, 7,_,7,_, 11,_,11,_, 15,_,15,_,
3,_,3,_, 7,_,7,_, 11,_,11,_, 15,_,15,_));
__m256i scale_x2 = _mm256_sub_epi16(_mm256_set1_epi16(256),
srcA_x2);
// Scale red and blue, leaving results in the low byte of each 16-bit lane.
__m256i rb = _mm256_and_si256(_mm256_set1_epi32(0x00ff00ff), dst);
rb = _mm256_mullo_epi16(rb, scale_x2);
rb = _mm256_srli_epi16 (rb, 8);
// Scale green and alpha, leaving results in the high byte, masking off the low bits.
__m256i ga = _mm256_srli_epi16(dst, 8);
ga = _mm256_mullo_epi16(ga, scale_x2);
ga = _mm256_andnot_si256(_mm256_set1_epi32(0x00ff00ff), ga);
return _mm256_add_epi32(src, _mm256_or_si256(rb, ga));
}
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
#include <immintrin.h>
static inline __m128i SkPMSrcOver_SSE2(const __m128i& src, const __m128i& dst) {
auto SkAlphaMulQ_SSE2 = [](const __m128i& c, const __m128i& scale) {
const __m128i mask = _mm_set1_epi32(0xFF00FF);
__m128i s = _mm_or_si128(_mm_slli_epi32(scale, 16), scale);
// uint32_t rb = ((c & mask) * scale) >> 8
__m128i rb = _mm_and_si128(mask, c);
rb = _mm_mullo_epi16(rb, s);
rb = _mm_srli_epi16(rb, 8);
// uint32_t ag = ((c >> 8) & mask) * scale
__m128i ag = _mm_srli_epi16(c, 8);
ag = _mm_mullo_epi16(ag, s);
// (rb & mask) | (ag & ~mask)
ag = _mm_andnot_si128(mask, ag);
return _mm_or_si128(rb, ag);
};
return _mm_add_epi32(src,
SkAlphaMulQ_SSE2(dst, _mm_sub_epi32(_mm_set1_epi32(256),
_mm_srli_epi32(src, 24))));
}
#endif
namespace SK_OPTS_NS {
// Blend constant color over count src pixels, writing into dst.
inline void blit_row_color32(SkPMColor* dst, const SkPMColor* src, int count, SkPMColor color) {
constexpr int N = 4; // 8, 16 also reasonable choices
using U32 = skvx::Vec< N, uint32_t>;
using U16 = skvx::Vec<4*N, uint16_t>;
using U8 = skvx::Vec<4*N, uint8_t>;
auto kernel = [color](U32 src) {
unsigned invA = 255 - SkGetPackedA32(color);
invA += invA >> 7;
SkASSERT(0 < invA && invA < 256); // We handle alpha == 0 or alpha == 255 specially.
// (src * invA + (color << 8) + 128) >> 8
// Should all fit in 16 bits.
U8 s = skvx::bit_pun<U8>(src),
a = U8(invA);
U16 c = skvx::cast<uint16_t>(skvx::bit_pun<U8>(U32(color))),
d = (mull(s,a) + (c << 8) + 128)>>8;
return skvx::bit_pun<U32>(skvx::cast<uint8_t>(d));
};
while (count >= N) {
kernel(U32::Load(src)).store(dst);
src += N;
dst += N;
count -= N;
}
while (count --> 0) {
*dst++ = kernel(U32{*src++})[0];
}
}
#if defined(SK_ARM_HAS_NEON)
// Return a uint8x8_t value, r, computed as r[i] = SkMulDiv255Round(x[i], y[i]), where r[i], x[i],
// y[i] are the i-th lanes of the corresponding NEON vectors.
static inline uint8x8_t SkMulDiv255Round_neon8(uint8x8_t x, uint8x8_t y) {
uint16x8_t prod = vmull_u8(x, y);
return vraddhn_u16(prod, vrshrq_n_u16(prod, 8));
}
// The implementations of SkPMSrcOver below perform alpha blending consistently with
// SkMulDiv255Round. They compute the color components (numbers in the interval [0, 255]) as:
//
// result_i = src_i + rint(g(src_alpha, dst_i))
//
// where g(x, y) = ((255.0 - x) * y) / 255.0 and rint rounds to the nearest integer.
// In this variant of SkPMSrcOver each NEON register, dst.val[i], src.val[i], contains the value
// of the same color component for 8 consecutive pixels. The result of this function follows the
// same convention.
static inline uint8x8x4_t SkPMSrcOver_neon8(uint8x8x4_t dst, uint8x8x4_t src) {
uint8x8_t nalphas = vmvn_u8(src.val[3]);
uint8x8x4_t result;
result.val[0] = vadd_u8(src.val[0], SkMulDiv255Round_neon8(nalphas, dst.val[0]));
result.val[1] = vadd_u8(src.val[1], SkMulDiv255Round_neon8(nalphas, dst.val[1]));
result.val[2] = vadd_u8(src.val[2], SkMulDiv255Round_neon8(nalphas, dst.val[2]));
result.val[3] = vadd_u8(src.val[3], SkMulDiv255Round_neon8(nalphas, dst.val[3]));
return result;
}
// In this variant of SkPMSrcOver dst and src contain the color components of two consecutive
// pixels. The return value follows the same convention.
static inline uint8x8_t SkPMSrcOver_neon2(uint8x8_t dst, uint8x8_t src) {
const uint8x8_t alpha_indices = vcreate_u8(0x0707070703030303);
uint8x8_t nalphas = vmvn_u8(vtbl1_u8(src, alpha_indices));
return vadd_u8(src, SkMulDiv255Round_neon8(nalphas, dst));
}
#endif
/*not static*/ inline
void blit_row_s32a_opaque(SkPMColor* dst, const SkPMColor* src, int len, U8CPU alpha) {
SkASSERT(alpha == 0xFF);
sk_msan_assert_initialized(src, src+len);
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SKX
while (len >= 64) {
// Load 64 source pixels.
auto s0 = _mm512_loadu_si512((const __m512i*)(src) + 0),
s1 = _mm512_loadu_si512((const __m512i*)(src) + 1),
s2 = _mm512_loadu_si512((const __m512i*)(src) + 2),
s3 = _mm512_loadu_si512((const __m512i*)(src) + 3);
const auto alphaMask = _mm512_set1_epi32(0xFF000000);
auto ORed = _mm512_or_si512(s3, _mm512_or_si512(s2, _mm512_or_si512(s1, s0)));
if (0 == _mm512_cmpneq_epi8_mask(_mm512_and_si512(ORed, alphaMask),
_mm512_setzero_si512())) {
// All 64 source pixels are transparent. Nothing to do.
src += 64;
dst += 64;
len -= 64;
continue;
}
auto d0 = (__m512i*)(dst) + 0,
d1 = (__m512i*)(dst) + 1,
d2 = (__m512i*)(dst) + 2,
d3 = (__m512i*)(dst) + 3;
auto ANDed = _mm512_and_si512(s3, _mm512_and_si512(s2, _mm512_and_si512(s1, s0)));
if (0 == _mm512_cmpneq_epi8_mask(_mm512_and_si512(ANDed, alphaMask),
alphaMask)) {
// All 64 source pixels are opaque. SrcOver becomes Src.
_mm512_storeu_si512(d0, s0);
_mm512_storeu_si512(d1, s1);
_mm512_storeu_si512(d2, s2);
_mm512_storeu_si512(d3, s3);
src += 64;
dst += 64;
len -= 64;
continue;
}
// TODO: This math is wrong.
// Do SrcOver.
_mm512_storeu_si512(d0, SkPMSrcOver_SKX(s0, _mm512_loadu_si512(d0)));
_mm512_storeu_si512(d1, SkPMSrcOver_SKX(s1, _mm512_loadu_si512(d1)));
_mm512_storeu_si512(d2, SkPMSrcOver_SKX(s2, _mm512_loadu_si512(d2)));
_mm512_storeu_si512(d3, SkPMSrcOver_SKX(s3, _mm512_loadu_si512(d3)));
src += 64;
dst += 64;
len -= 64;
}
// Require AVX2 because of AVX2 integer calculation intrinsics in SrcOver
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
while (len >= 32) {
// Load 32 source pixels.
auto s0 = _mm256_loadu_si256((const __m256i*)(src) + 0),
s1 = _mm256_loadu_si256((const __m256i*)(src) + 1),
s2 = _mm256_loadu_si256((const __m256i*)(src) + 2),
s3 = _mm256_loadu_si256((const __m256i*)(src) + 3);
const auto alphaMask = _mm256_set1_epi32(0xFF000000);
auto ORed = _mm256_or_si256(s3, _mm256_or_si256(s2, _mm256_or_si256(s1, s0)));
if (_mm256_testz_si256(ORed, alphaMask)) {
// All 32 source pixels are transparent. Nothing to do.
src += 32;
dst += 32;
len -= 32;
continue;
}
auto d0 = (__m256i*)(dst) + 0,
d1 = (__m256i*)(dst) + 1,
d2 = (__m256i*)(dst) + 2,
d3 = (__m256i*)(dst) + 3;
auto ANDed = _mm256_and_si256(s3, _mm256_and_si256(s2, _mm256_and_si256(s1, s0)));
if (_mm256_testc_si256(ANDed, alphaMask)) {
// All 32 source pixels are opaque. SrcOver becomes Src.
_mm256_storeu_si256(d0, s0);
_mm256_storeu_si256(d1, s1);
_mm256_storeu_si256(d2, s2);
_mm256_storeu_si256(d3, s3);
src += 32;
dst += 32;
len -= 32;
continue;
}
// TODO: This math is wrong.
// Do SrcOver.
_mm256_storeu_si256(d0, SkPMSrcOver_AVX2(s0, _mm256_loadu_si256(d0)));
_mm256_storeu_si256(d1, SkPMSrcOver_AVX2(s1, _mm256_loadu_si256(d1)));
_mm256_storeu_si256(d2, SkPMSrcOver_AVX2(s2, _mm256_loadu_si256(d2)));
_mm256_storeu_si256(d3, SkPMSrcOver_AVX2(s3, _mm256_loadu_si256(d3)));
src += 32;
dst += 32;
len -= 32;
}
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41
while (len >= 16) {
// Load 16 source pixels.
auto s0 = _mm_loadu_si128((const __m128i*)(src) + 0),
s1 = _mm_loadu_si128((const __m128i*)(src) + 1),
s2 = _mm_loadu_si128((const __m128i*)(src) + 2),
s3 = _mm_loadu_si128((const __m128i*)(src) + 3);
const auto alphaMask = _mm_set1_epi32(0xFF000000);
auto ORed = _mm_or_si128(s3, _mm_or_si128(s2, _mm_or_si128(s1, s0)));
if (_mm_testz_si128(ORed, alphaMask)) {
// All 16 source pixels are transparent. Nothing to do.
src += 16;
dst += 16;
len -= 16;
continue;
}
auto d0 = (__m128i*)(dst) + 0,
d1 = (__m128i*)(dst) + 1,
d2 = (__m128i*)(dst) + 2,
d3 = (__m128i*)(dst) + 3;
auto ANDed = _mm_and_si128(s3, _mm_and_si128(s2, _mm_and_si128(s1, s0)));
if (_mm_testc_si128(ANDed, alphaMask)) {
// All 16 source pixels are opaque. SrcOver becomes Src.
_mm_storeu_si128(d0, s0);
_mm_storeu_si128(d1, s1);
_mm_storeu_si128(d2, s2);
_mm_storeu_si128(d3, s3);
src += 16;
dst += 16;
len -= 16;
continue;
}
// TODO: This math is wrong.
// Do SrcOver.
_mm_storeu_si128(d0, SkPMSrcOver_SSE2(s0, _mm_loadu_si128(d0)));
_mm_storeu_si128(d1, SkPMSrcOver_SSE2(s1, _mm_loadu_si128(d1)));
_mm_storeu_si128(d2, SkPMSrcOver_SSE2(s2, _mm_loadu_si128(d2)));
_mm_storeu_si128(d3, SkPMSrcOver_SSE2(s3, _mm_loadu_si128(d3)));
src += 16;
dst += 16;
len -= 16;
}
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
while (len >= 16) {
// Load 16 source pixels.
auto s0 = _mm_loadu_si128((const __m128i*)(src) + 0),
s1 = _mm_loadu_si128((const __m128i*)(src) + 1),
s2 = _mm_loadu_si128((const __m128i*)(src) + 2),
s3 = _mm_loadu_si128((const __m128i*)(src) + 3);
const auto alphaMask = _mm_set1_epi32(0xFF000000);
auto ORed = _mm_or_si128(s3, _mm_or_si128(s2, _mm_or_si128(s1, s0)));
if (0xffff == _mm_movemask_epi8(_mm_cmpeq_epi8(_mm_and_si128(ORed, alphaMask),
_mm_setzero_si128()))) {
// All 16 source pixels are transparent. Nothing to do.
src += 16;
dst += 16;
len -= 16;
continue;
}
auto d0 = (__m128i*)(dst) + 0,
d1 = (__m128i*)(dst) + 1,
d2 = (__m128i*)(dst) + 2,
d3 = (__m128i*)(dst) + 3;
auto ANDed = _mm_and_si128(s3, _mm_and_si128(s2, _mm_and_si128(s1, s0)));
if (0xffff == _mm_movemask_epi8(_mm_cmpeq_epi8(_mm_and_si128(ANDed, alphaMask),
alphaMask))) {
// All 16 source pixels are opaque. SrcOver becomes Src.
_mm_storeu_si128(d0, s0);
_mm_storeu_si128(d1, s1);
_mm_storeu_si128(d2, s2);
_mm_storeu_si128(d3, s3);
src += 16;
dst += 16;
len -= 16;
continue;
}
// TODO: This math is wrong.
// Do SrcOver.
_mm_storeu_si128(d0, SkPMSrcOver_SSE2(s0, _mm_loadu_si128(d0)));
_mm_storeu_si128(d1, SkPMSrcOver_SSE2(s1, _mm_loadu_si128(d1)));
_mm_storeu_si128(d2, SkPMSrcOver_SSE2(s2, _mm_loadu_si128(d2)));
_mm_storeu_si128(d3, SkPMSrcOver_SSE2(s3, _mm_loadu_si128(d3)));
src += 16;
dst += 16;
len -= 16;
}
#elif defined(SK_ARM_HAS_NEON)
// Do 8-pixels at a time. A 16-pixels at a time version of this code was also tested, but it
// underperformed on some of the platforms under test for inputs with frequent transitions of
// alpha (corresponding to changes of the conditions [~]alpha_u64 == 0 below). It may be worth
// revisiting the situation in the future.
while (len >= 8) {
// Load 8 pixels in 4 NEON registers. src_col.val[i] will contain the same color component
// for 8 consecutive pixels (e.g. src_col.val[3] will contain all alpha components of 8
// pixels).
uint8x8x4_t src_col = vld4_u8(reinterpret_cast<const uint8_t*>(src));
src += 8;
len -= 8;
// We now detect 2 special cases: the first occurs when all alphas are zero (the 8 pixels
// are all transparent), the second when all alphas are fully set (they are all opaque).
uint8x8_t alphas = src_col.val[3];
uint64_t alphas_u64 = vget_lane_u64(vreinterpret_u64_u8(alphas), 0);
if (alphas_u64 == 0) {
// All pixels transparent.
dst += 8;
continue;
}
if (~alphas_u64 == 0) {
// All pixels opaque.
vst4_u8(reinterpret_cast<uint8_t*>(dst), src_col);
dst += 8;
continue;
}
uint8x8x4_t dst_col = vld4_u8(reinterpret_cast<uint8_t*>(dst));
vst4_u8(reinterpret_cast<uint8_t*>(dst), SkPMSrcOver_neon8(dst_col, src_col));
dst += 8;
}
// Deal with leftover pixels.
for (; len >= 2; len -= 2, src += 2, dst += 2) {
uint8x8_t src2 = vld1_u8(reinterpret_cast<const uint8_t*>(src));
uint8x8_t dst2 = vld1_u8(reinterpret_cast<const uint8_t*>(dst));
vst1_u8(reinterpret_cast<uint8_t*>(dst), SkPMSrcOver_neon2(dst2, src2));
}
if (len != 0) {
uint8x8_t result = SkPMSrcOver_neon2(vcreate_u8((uint64_t)*dst), vcreate_u8((uint64_t)*src));
vst1_lane_u32(dst, vreinterpret_u32_u8(result), 0);
}
return;
#endif
while (len-- > 0) {
// This 0xFF000000 is not semantically necessary, but for compatibility
// with chromium:611002 we need to keep it until we figure out where
// the non-premultiplied src values (like 0x00FFFFFF) are coming from.
// TODO(mtklein): sort this out and assert *src is premul here.
if (*src & 0xFF000000) {
*dst = (*src >= 0xFF000000) ? *src : SkPMSrcOver(*src, *dst);
}
src++;
dst++;
}
}
} // SK_OPTS_NS
#endif//SkBlitRow_opts_DEFINED