blob: b0f7ee64a90cf9ae4c144ea69fc36f63ef80d64f [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "bench/Benchmark.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkM44.h"
#include "include/core/SkPaint.h"
#include "include/core/SkShader.h"
#include "include/core/SkString.h"
#include "include/core/SkVertices.h"
#include "include/utils/SkRandom.h"
// This bench simulates the calls Skia sees from various HTML5 canvas
// game bench marks
class GameBench : public Benchmark {
public:
enum Type {
kScale_Type,
kTranslate_Type,
kRotate_Type
};
enum Clear {
kFull_Clear,
kPartial_Clear
};
GameBench(Type type, Clear clear,
bool aligned = false, bool useAtlas = false,
bool useDrawVertices = false)
: fType(type)
, fClear(clear)
, fAligned(aligned)
, fUseAtlas(useAtlas)
, fUseDrawVertices(useDrawVertices)
, fName("game")
, fNumSaved(0)
, fInitialized(false) {
switch (fType) {
case kScale_Type:
fName.append("_scale");
break;
case kTranslate_Type:
fName.append("_trans");
break;
case kRotate_Type:
fName.append("_rot");
break;
}
if (aligned) {
fName.append("_aligned");
}
if (kPartial_Clear == clear) {
fName.append("_partial");
} else {
fName.append("_full");
}
if (useAtlas) {
fName.append("_atlas");
}
if (useDrawVertices) {
fName.append("_drawVerts");
}
// It's HTML 5 canvas, so always AA
fName.append("_aa");
}
protected:
const char* onGetName() override {
return fName.c_str();
}
void onDelayedSetup() override {
if (!fInitialized) {
this->makeCheckerboard();
this->makeAtlas();
fInitialized = true;
}
}
void onDraw(int loops, SkCanvas* canvas) override {
SkRandom scaleRand;
SkRandom transRand;
SkRandom rotRand;
int width, height;
if (fUseAtlas) {
width = kAtlasCellWidth;
height = kAtlasCellHeight;
} else {
width = kCheckerboardWidth;
height = kCheckerboardHeight;
}
SkPaint clearPaint;
clearPaint.setColor(0xFF000000);
clearPaint.setAntiAlias(true);
SkISize size = canvas->getBaseLayerSize();
SkScalar maxTransX, maxTransY;
if (kScale_Type == fType) {
maxTransX = size.fWidth - (1.5f * width);
maxTransY = size.fHeight - (1.5f * height);
} else if (kTranslate_Type == fType) {
maxTransX = SkIntToScalar(size.fWidth - width);
maxTransY = SkIntToScalar(size.fHeight - height);
} else {
SkASSERT(kRotate_Type == fType);
// Yes, some rotations will be off the top and left sides
maxTransX = size.fWidth - SK_ScalarSqrt2 * height;
maxTransY = size.fHeight - SK_ScalarSqrt2 * height;
}
SkMatrix mat;
SkRect dst = { 0, 0, SkIntToScalar(width), SkIntToScalar(height) };
SkRect clearRect = { -1.0f, -1.0f, width+1.0f, height+1.0f };
SkPoint verts[4] = { // for drawVertices path
{ 0, 0 },
{ 0, SkIntToScalar(height) },
{ SkIntToScalar(width), SkIntToScalar(height) },
{ SkIntToScalar(width), 0 }
};
uint16_t indices[6] = { 0, 1, 2, 0, 2, 3 };
SkPaint p;
p.setColor(0xFF000000);
p.setFilterQuality(kLow_SkFilterQuality);
SkPaint p2; // for drawVertices path
p2.setColor(0xFF000000);
p2.setFilterQuality(kLow_SkFilterQuality);
p2.setShader(fAtlas.makeShader());
for (int i = 0; i < loops; ++i, ++fNumSaved) {
if (0 == i % kNumBeforeClear) {
if (kPartial_Clear == fClear) {
for (int j = 0; j < fNumSaved; ++j) {
canvas->setMatrix(SkMatrix::I());
mat.setTranslate(fSaved[j][0], fSaved[j][1]);
if (kScale_Type == fType) {
mat.preScale(fSaved[j][2], fSaved[j][2]);
} else if (kRotate_Type == fType) {
mat.preRotate(fSaved[j][2]);
}
canvas->concat(mat);
canvas->drawRect(clearRect, clearPaint);
}
} else {
canvas->clear(0xFF000000);
}
fNumSaved = 0;
}
SkASSERT(fNumSaved < kNumBeforeClear);
canvas->setMatrix(SkMatrix::I());
fSaved[fNumSaved][0] = transRand.nextRangeScalar(0.0f, maxTransX);
fSaved[fNumSaved][1] = transRand.nextRangeScalar(0.0f, maxTransY);
if (fAligned) {
// make the translations integer aligned
fSaved[fNumSaved][0] = SkScalarFloorToScalar(fSaved[fNumSaved][0]);
fSaved[fNumSaved][1] = SkScalarFloorToScalar(fSaved[fNumSaved][1]);
}
mat.setTranslate(fSaved[fNumSaved][0], fSaved[fNumSaved][1]);
if (kScale_Type == fType) {
fSaved[fNumSaved][2] = scaleRand.nextRangeScalar(0.5f, 1.5f);
mat.preScale(fSaved[fNumSaved][2], fSaved[fNumSaved][2]);
} else if (kRotate_Type == fType) {
fSaved[fNumSaved][2] = rotRand.nextRangeScalar(0.0f, 360.0f);
mat.preRotate(fSaved[fNumSaved][2]);
}
canvas->concat(mat);
if (fUseAtlas) {
const int curCell = i % (kNumAtlasedX * kNumAtlasedY);
SkIRect src = fAtlasRects[curCell % (kNumAtlasedX)][curCell / (kNumAtlasedX)];
if (fUseDrawVertices) {
SkPoint uvs[4] = {
{ SkIntToScalar(src.fLeft), SkIntToScalar(src.fBottom) },
{ SkIntToScalar(src.fLeft), SkIntToScalar(src.fTop) },
{ SkIntToScalar(src.fRight), SkIntToScalar(src.fTop) },
{ SkIntToScalar(src.fRight), SkIntToScalar(src.fBottom) },
};
canvas->drawVertices(SkVertices::MakeCopy(SkVertices::kTriangles_VertexMode,
4, verts, uvs, nullptr, 6, indices),
SkBlendMode::kModulate, p2);
} else {
canvas->drawBitmapRect(fAtlas, src, dst, &p,
SkCanvas::kFast_SrcRectConstraint);
}
} else {
canvas->drawBitmapRect(fCheckerboard, dst, &p);
}
}
}
private:
static const int kCheckerboardWidth = 64;
static const int kCheckerboardHeight = 128;
static const int kAtlasCellWidth = 48;
static const int kAtlasCellHeight = 36;
static const int kNumAtlasedX = 5;
static const int kNumAtlasedY = 5;
static const int kAtlasSpacer = 2;
static const int kTotAtlasWidth = kNumAtlasedX * kAtlasCellWidth +
(kNumAtlasedX+1) * kAtlasSpacer;
static const int kTotAtlasHeight = kNumAtlasedY * kAtlasCellHeight +
(kNumAtlasedY+1) * kAtlasSpacer;
static const int kNumBeforeClear = 100;
Type fType;
Clear fClear;
bool fAligned;
bool fUseAtlas;
bool fUseDrawVertices;
SkString fName;
int fNumSaved; // num draws stored in 'fSaved'
bool fInitialized;
// 0 & 1 are always x & y translate. 2 is either scale or rotate.
SkScalar fSaved[kNumBeforeClear][3];
SkBitmap fCheckerboard;
SkBitmap fAtlas;
SkIRect fAtlasRects[kNumAtlasedX][kNumAtlasedY];
// Note: the resulting checker board has transparency
void makeCheckerboard() {
static int kCheckSize = 16;
fCheckerboard.allocN32Pixels(kCheckerboardWidth, kCheckerboardHeight);
for (int y = 0; y < kCheckerboardHeight; ++y) {
int even = (y / kCheckSize) % 2;
SkPMColor* scanline = fCheckerboard.getAddr32(0, y);
for (int x = 0; x < kCheckerboardWidth; ++x) {
if (even == (x / kCheckSize) % 2) {
*scanline++ = 0xFFFF0000;
} else {
*scanline++ = 0x00000000;
}
}
}
}
// Note: the resulting atlas has transparency
void makeAtlas() {
SkRandom rand;
SkColor colors[kNumAtlasedX][kNumAtlasedY];
for (int y = 0; y < kNumAtlasedY; ++y) {
for (int x = 0; x < kNumAtlasedX; ++x) {
colors[x][y] = rand.nextU() | 0xff000000;
fAtlasRects[x][y] = SkIRect::MakeXYWH(kAtlasSpacer + x * (kAtlasCellWidth + kAtlasSpacer),
kAtlasSpacer + y * (kAtlasCellHeight + kAtlasSpacer),
kAtlasCellWidth,
kAtlasCellHeight);
}
}
fAtlas.allocN32Pixels(kTotAtlasWidth, kTotAtlasHeight);
for (int y = 0; y < kTotAtlasHeight; ++y) {
int colorY = y / (kAtlasCellHeight + kAtlasSpacer);
bool inColorY = (y % (kAtlasCellHeight + kAtlasSpacer)) >= kAtlasSpacer;
SkPMColor* scanline = fAtlas.getAddr32(0, y);
for (int x = 0; x < kTotAtlasWidth; ++x, ++scanline) {
int colorX = x / (kAtlasCellWidth + kAtlasSpacer);
bool inColorX = (x % (kAtlasCellWidth + kAtlasSpacer)) >= kAtlasSpacer;
if (inColorX && inColorY) {
SkASSERT(colorX < kNumAtlasedX && colorY < kNumAtlasedY);
*scanline = colors[colorX][colorY];
} else {
*scanline = 0x00000000;
}
}
}
}
typedef Benchmark INHERITED;
};
// Partial clear
DEF_BENCH(return new GameBench(GameBench::kScale_Type, GameBench::kPartial_Clear);)
DEF_BENCH(return new GameBench(GameBench::kTranslate_Type, GameBench::kPartial_Clear);)
DEF_BENCH(return new GameBench(GameBench::kTranslate_Type, GameBench::kPartial_Clear, true);)
DEF_BENCH(return new GameBench(GameBench::kRotate_Type, GameBench::kPartial_Clear);)
// Full clear
DEF_BENCH(return new GameBench(GameBench::kScale_Type, GameBench::kFull_Clear);)
DEF_BENCH(return new GameBench(GameBench::kTranslate_Type, GameBench::kFull_Clear);)
DEF_BENCH(return new GameBench(GameBench::kTranslate_Type, GameBench::kFull_Clear, true);)
DEF_BENCH(return new GameBench(GameBench::kRotate_Type, GameBench::kFull_Clear);)
// Atlased
DEF_BENCH(return new GameBench(GameBench::kTranslate_Type, GameBench::kFull_Clear, false, true);)
DEF_BENCH(return new GameBench(
GameBench::kTranslate_Type, GameBench::kFull_Clear, false, true, true);)
class CanvasMatrixBench : public Benchmark {
SkString fName;
public:
enum Type {
kTranslate_Type,
kScale_Type,
k2x3_Type,
k3x3_Type,
k4x4_Type,
};
Type fType;
CanvasMatrixBench(Type t) : fType(t) {
fName.set("canvas_matrix");
switch (fType) {
case kTranslate_Type: fName.append("_trans"); break;
case kScale_Type: fName.append("_scale"); break;
case k2x3_Type: fName.append("_2x3"); break;
case k3x3_Type: fName.append("_3x3"); break;
case k4x4_Type: fName.append("_4x4"); break;
}
}
protected:
const char* onGetName() override {
return fName.c_str();
}
void onDraw(int loops, SkCanvas* canvas) override {
SkMatrix m;
m.setRotate(1);
if (fType == k3x3_Type) {
m[7] = 0.0001f;
}
SkM44 m4(m);
for (int i = 0; i < loops; ++i) {
canvas->save();
for (int j = 0; j < 10000; ++j) {
switch (fType) {
case kTranslate_Type: canvas->translate(0.0001f, 0.0001f); break;
case kScale_Type: canvas->scale(1.0001f, 0.9999f); break;
case k2x3_Type: canvas->concat(m); break;
case k3x3_Type: canvas->concat(m); break;
case k4x4_Type: canvas->concat44(m4); break;
}
}
canvas->restore();
}
}
private:
typedef Benchmark INHERITED;
};
DEF_BENCH(return new CanvasMatrixBench(CanvasMatrixBench::kTranslate_Type));
DEF_BENCH(return new CanvasMatrixBench(CanvasMatrixBench::kScale_Type));
DEF_BENCH(return new CanvasMatrixBench(CanvasMatrixBench::k2x3_Type));
DEF_BENCH(return new CanvasMatrixBench(CanvasMatrixBench::k3x3_Type));
DEF_BENCH(return new CanvasMatrixBench(CanvasMatrixBench::k4x4_Type));