| /* |
| * Copyright 2013 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "GrOvalRenderer.h" |
| |
| #include "GrBatch.h" |
| #include "GrBatchTarget.h" |
| #include "GrBatchTest.h" |
| #include "GrDrawTarget.h" |
| #include "GrGeometryProcessor.h" |
| #include "GrInvariantOutput.h" |
| #include "GrPipelineBuilder.h" |
| #include "GrProcessor.h" |
| #include "GrResourceProvider.h" |
| #include "GrVertexBuffer.h" |
| #include "SkRRect.h" |
| #include "SkStrokeRec.h" |
| #include "SkTLazy.h" |
| #include "effects/GrRRectEffect.h" |
| #include "gl/GrGLProcessor.h" |
| #include "gl/GrGLSL.h" |
| #include "gl/GrGLGeometryProcessor.h" |
| #include "gl/builders/GrGLProgramBuilder.h" |
| |
| // TODO(joshualitt) - Break this file up during GrBatch post implementation cleanup |
| |
| namespace { |
| // TODO(joshualitt) add per vertex colors |
| struct CircleVertex { |
| SkPoint fPos; |
| SkPoint fOffset; |
| SkScalar fOuterRadius; |
| SkScalar fInnerRadius; |
| }; |
| |
| struct EllipseVertex { |
| SkPoint fPos; |
| SkPoint fOffset; |
| SkPoint fOuterRadii; |
| SkPoint fInnerRadii; |
| }; |
| |
| struct DIEllipseVertex { |
| SkPoint fPos; |
| SkPoint fOuterOffset; |
| SkPoint fInnerOffset; |
| }; |
| |
| inline bool circle_stays_circle(const SkMatrix& m) { |
| return m.isSimilarity(); |
| } |
| |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * The output of this effect is a modulation of the input color and coverage for a circle. It |
| * operates in a space normalized by the circle radius (outer radius in the case of a stroke) |
| * with origin at the circle center. Two vertex attributes are used: |
| * vec2f : position in device space of the bounding geometry vertices |
| * vec4f : (p.xy, outerRad, innerRad) |
| * p is the position in the normalized space. |
| * outerRad is the outerRadius in device space. |
| * innerRad is the innerRadius in normalized space (ignored if not stroking). |
| */ |
| |
| class CircleEdgeEffect : public GrGeometryProcessor { |
| public: |
| static GrGeometryProcessor* Create(GrColor color, bool stroke, const SkMatrix& localMatrix) { |
| return SkNEW_ARGS(CircleEdgeEffect, (color, stroke, localMatrix)); |
| } |
| |
| const Attribute* inPosition() const { return fInPosition; } |
| const Attribute* inCircleEdge() const { return fInCircleEdge; } |
| virtual ~CircleEdgeEffect() {} |
| |
| const char* name() const override { return "CircleEdge"; } |
| |
| inline bool isStroked() const { return fStroke; } |
| |
| class GLProcessor : public GrGLGeometryProcessor { |
| public: |
| GLProcessor(const GrGeometryProcessor&, |
| const GrBatchTracker&) |
| : fColor(GrColor_ILLEGAL) {} |
| |
| void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{ |
| const CircleEdgeEffect& ce = args.fGP.cast<CircleEdgeEffect>(); |
| GrGLGPBuilder* pb = args.fPB; |
| const BatchTracker& local = args.fBT.cast<BatchTracker>(); |
| GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder(); |
| |
| // emit attributes |
| vsBuilder->emitAttributes(ce); |
| |
| GrGLVertToFrag v(kVec4f_GrSLType); |
| args.fPB->addVarying("CircleEdge", &v); |
| vsBuilder->codeAppendf("%s = %s;", v.vsOut(), ce.inCircleEdge()->fName); |
| |
| // Setup pass through color |
| this->setupColorPassThrough(pb, local.fInputColorType, args.fOutputColor, NULL, |
| &fColorUniform); |
| |
| // Setup position |
| this->setupPosition(pb, gpArgs, ce.inPosition()->fName, ce.viewMatrix()); |
| |
| // emit transforms |
| this->emitTransforms(args.fPB, gpArgs->fPositionVar, ce.inPosition()->fName, |
| ce.localMatrix(), args.fTransformsIn, args.fTransformsOut); |
| |
| GrGLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder(); |
| fsBuilder->codeAppendf("float d = length(%s.xy);", v.fsIn()); |
| fsBuilder->codeAppendf("float edgeAlpha = clamp(%s.z * (1.0 - d), 0.0, 1.0);", v.fsIn()); |
| if (ce.isStroked()) { |
| fsBuilder->codeAppendf("float innerAlpha = clamp(%s.z * (d - %s.w), 0.0, 1.0);", |
| v.fsIn(), v.fsIn()); |
| fsBuilder->codeAppend("edgeAlpha *= innerAlpha;"); |
| } |
| |
| fsBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage); |
| } |
| |
| static void GenKey(const GrGeometryProcessor& gp, |
| const GrBatchTracker& bt, |
| const GrGLSLCaps&, |
| GrProcessorKeyBuilder* b) { |
| const BatchTracker& local = bt.cast<BatchTracker>(); |
| const CircleEdgeEffect& circleEffect = gp.cast<CircleEdgeEffect>(); |
| uint16_t key = circleEffect.isStroked() ? 0x1 : 0x0; |
| key |= local.fUsesLocalCoords && gp.localMatrix().hasPerspective() ? 0x2 : 0x0; |
| key |= ComputePosKey(gp.viewMatrix()) << 2; |
| b->add32(key << 16 | local.fInputColorType); |
| } |
| |
| virtual void setData(const GrGLProgramDataManager& pdman, |
| const GrPrimitiveProcessor& gp, |
| const GrBatchTracker& bt) override { |
| this->setUniformViewMatrix(pdman, gp.viewMatrix()); |
| |
| const BatchTracker& local = bt.cast<BatchTracker>(); |
| if (kUniform_GrGPInput == local.fInputColorType && local.fColor != fColor) { |
| GrGLfloat c[4]; |
| GrColorToRGBAFloat(local.fColor, c); |
| pdman.set4fv(fColorUniform, 1, c); |
| fColor = local.fColor; |
| } |
| } |
| |
| private: |
| GrColor fColor; |
| UniformHandle fColorUniform; |
| typedef GrGLGeometryProcessor INHERITED; |
| }; |
| |
| virtual void getGLProcessorKey(const GrBatchTracker& bt, |
| const GrGLSLCaps& caps, |
| GrProcessorKeyBuilder* b) const override { |
| GLProcessor::GenKey(*this, bt, caps, b); |
| } |
| |
| virtual GrGLPrimitiveProcessor* createGLInstance(const GrBatchTracker& bt, |
| const GrGLSLCaps&) const override { |
| return SkNEW_ARGS(GLProcessor, (*this, bt)); |
| } |
| |
| void initBatchTracker(GrBatchTracker* bt, const GrPipelineInfo& init) const override { |
| BatchTracker* local = bt->cast<BatchTracker>(); |
| local->fInputColorType = GetColorInputType(&local->fColor, this->color(), init, false); |
| local->fUsesLocalCoords = init.fUsesLocalCoords; |
| } |
| |
| bool onCanMakeEqual(const GrBatchTracker& m, |
| const GrGeometryProcessor& that, |
| const GrBatchTracker& t) const override { |
| const BatchTracker& mine = m.cast<BatchTracker>(); |
| const BatchTracker& theirs = t.cast<BatchTracker>(); |
| return CanCombineLocalMatrices(*this, mine.fUsesLocalCoords, |
| that, theirs.fUsesLocalCoords) && |
| CanCombineOutput(mine.fInputColorType, mine.fColor, |
| theirs.fInputColorType, theirs.fColor); |
| } |
| |
| private: |
| CircleEdgeEffect(GrColor color, bool stroke, const SkMatrix& localMatrix) |
| : INHERITED(color, SkMatrix::I(), localMatrix) { |
| this->initClassID<CircleEdgeEffect>(); |
| fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType)); |
| fInCircleEdge = &this->addVertexAttrib(Attribute("inCircleEdge", |
| kVec4f_GrVertexAttribType)); |
| fStroke = stroke; |
| } |
| |
| bool onIsEqual(const GrGeometryProcessor& other) const override { |
| const CircleEdgeEffect& cee = other.cast<CircleEdgeEffect>(); |
| return cee.fStroke == fStroke; |
| } |
| |
| void onGetInvariantOutputCoverage(GrInitInvariantOutput* out) const override { |
| out->setUnknownSingleComponent(); |
| } |
| |
| struct BatchTracker { |
| GrGPInput fInputColorType; |
| GrColor fColor; |
| bool fUsesLocalCoords; |
| }; |
| |
| const Attribute* fInPosition; |
| const Attribute* fInCircleEdge; |
| bool fStroke; |
| |
| GR_DECLARE_GEOMETRY_PROCESSOR_TEST; |
| |
| typedef GrGeometryProcessor INHERITED; |
| }; |
| |
| GR_DEFINE_GEOMETRY_PROCESSOR_TEST(CircleEdgeEffect); |
| |
| GrGeometryProcessor* CircleEdgeEffect::TestCreate(SkRandom* random, |
| GrContext* context, |
| const GrDrawTargetCaps&, |
| GrTexture* textures[]) { |
| return CircleEdgeEffect::Create(GrRandomColor(random), |
| random->nextBool(), |
| GrTest::TestMatrix(random)); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * The output of this effect is a modulation of the input color and coverage for an axis-aligned |
| * ellipse, specified as a 2D offset from center, and the reciprocals of the outer and inner radii, |
| * in both x and y directions. |
| * |
| * We are using an implicit function of x^2/a^2 + y^2/b^2 - 1 = 0. |
| */ |
| |
| class EllipseEdgeEffect : public GrGeometryProcessor { |
| public: |
| static GrGeometryProcessor* Create(GrColor color, bool stroke, const SkMatrix& localMatrix) { |
| return SkNEW_ARGS(EllipseEdgeEffect, (color, stroke, localMatrix)); |
| } |
| |
| virtual ~EllipseEdgeEffect() {} |
| |
| const char* name() const override { return "EllipseEdge"; } |
| |
| const Attribute* inPosition() const { return fInPosition; } |
| const Attribute* inEllipseOffset() const { return fInEllipseOffset; } |
| const Attribute* inEllipseRadii() const { return fInEllipseRadii; } |
| |
| inline bool isStroked() const { return fStroke; } |
| |
| class GLProcessor : public GrGLGeometryProcessor { |
| public: |
| GLProcessor(const GrGeometryProcessor&, |
| const GrBatchTracker&) |
| : fColor(GrColor_ILLEGAL) {} |
| |
| void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{ |
| const EllipseEdgeEffect& ee = args.fGP.cast<EllipseEdgeEffect>(); |
| GrGLGPBuilder* pb = args.fPB; |
| const BatchTracker& local = args.fBT.cast<BatchTracker>(); |
| GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder(); |
| |
| // emit attributes |
| vsBuilder->emitAttributes(ee); |
| |
| GrGLVertToFrag ellipseOffsets(kVec2f_GrSLType); |
| args.fPB->addVarying("EllipseOffsets", &ellipseOffsets); |
| vsBuilder->codeAppendf("%s = %s;", ellipseOffsets.vsOut(), |
| ee.inEllipseOffset()->fName); |
| |
| GrGLVertToFrag ellipseRadii(kVec4f_GrSLType); |
| args.fPB->addVarying("EllipseRadii", &ellipseRadii); |
| vsBuilder->codeAppendf("%s = %s;", ellipseRadii.vsOut(), |
| ee.inEllipseRadii()->fName); |
| |
| // Setup pass through color |
| this->setupColorPassThrough(pb, local.fInputColorType, args.fOutputColor, NULL, |
| &fColorUniform); |
| |
| // Setup position |
| this->setupPosition(pb, gpArgs, ee.inPosition()->fName, ee.viewMatrix()); |
| |
| // emit transforms |
| this->emitTransforms(args.fPB, gpArgs->fPositionVar, ee.inPosition()->fName, |
| ee.localMatrix(), args.fTransformsIn, args.fTransformsOut); |
| |
| // for outer curve |
| GrGLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder(); |
| fsBuilder->codeAppendf("vec2 scaledOffset = %s*%s.xy;", ellipseOffsets.fsIn(), |
| ellipseRadii.fsIn()); |
| fsBuilder->codeAppend("float test = dot(scaledOffset, scaledOffset) - 1.0;"); |
| fsBuilder->codeAppendf("vec2 grad = 2.0*scaledOffset*%s.xy;", ellipseRadii.fsIn()); |
| fsBuilder->codeAppend("float grad_dot = dot(grad, grad);"); |
| |
| // avoid calling inversesqrt on zero. |
| fsBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);"); |
| fsBuilder->codeAppend("float invlen = inversesqrt(grad_dot);"); |
| fsBuilder->codeAppend("float edgeAlpha = clamp(0.5-test*invlen, 0.0, 1.0);"); |
| |
| // for inner curve |
| if (ee.isStroked()) { |
| fsBuilder->codeAppendf("scaledOffset = %s*%s.zw;", |
| ellipseOffsets.fsIn(), ellipseRadii.fsIn()); |
| fsBuilder->codeAppend("test = dot(scaledOffset, scaledOffset) - 1.0;"); |
| fsBuilder->codeAppendf("grad = 2.0*scaledOffset*%s.zw;", |
| ellipseRadii.fsIn()); |
| fsBuilder->codeAppend("invlen = inversesqrt(dot(grad, grad));"); |
| fsBuilder->codeAppend("edgeAlpha *= clamp(0.5+test*invlen, 0.0, 1.0);"); |
| } |
| |
| fsBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage); |
| } |
| |
| static void GenKey(const GrGeometryProcessor& gp, |
| const GrBatchTracker& bt, |
| const GrGLSLCaps&, |
| GrProcessorKeyBuilder* b) { |
| const BatchTracker& local = bt.cast<BatchTracker>(); |
| const EllipseEdgeEffect& ellipseEffect = gp.cast<EllipseEdgeEffect>(); |
| uint16_t key = ellipseEffect.isStroked() ? 0x1 : 0x0; |
| key |= local.fUsesLocalCoords && gp.localMatrix().hasPerspective() ? 0x2 : 0x0; |
| key |= ComputePosKey(gp.viewMatrix()) << 2; |
| b->add32(key << 16 | local.fInputColorType); |
| } |
| |
| virtual void setData(const GrGLProgramDataManager& pdman, |
| const GrPrimitiveProcessor& gp, |
| const GrBatchTracker& bt) override { |
| this->setUniformViewMatrix(pdman, gp.viewMatrix()); |
| |
| const BatchTracker& local = bt.cast<BatchTracker>(); |
| if (kUniform_GrGPInput == local.fInputColorType && local.fColor != fColor) { |
| GrGLfloat c[4]; |
| GrColorToRGBAFloat(local.fColor, c); |
| pdman.set4fv(fColorUniform, 1, c); |
| fColor = local.fColor; |
| } |
| } |
| |
| private: |
| GrColor fColor; |
| UniformHandle fColorUniform; |
| |
| typedef GrGLGeometryProcessor INHERITED; |
| }; |
| |
| virtual void getGLProcessorKey(const GrBatchTracker& bt, |
| const GrGLSLCaps& caps, |
| GrProcessorKeyBuilder* b) const override { |
| GLProcessor::GenKey(*this, bt, caps, b); |
| } |
| |
| virtual GrGLPrimitiveProcessor* createGLInstance(const GrBatchTracker& bt, |
| const GrGLSLCaps&) const override { |
| return SkNEW_ARGS(GLProcessor, (*this, bt)); |
| } |
| |
| void initBatchTracker(GrBatchTracker* bt, const GrPipelineInfo& init) const override { |
| BatchTracker* local = bt->cast<BatchTracker>(); |
| local->fInputColorType = GetColorInputType(&local->fColor, this->color(), init, false); |
| local->fUsesLocalCoords = init.fUsesLocalCoords; |
| } |
| |
| bool onCanMakeEqual(const GrBatchTracker& m, |
| const GrGeometryProcessor& that, |
| const GrBatchTracker& t) const override { |
| const BatchTracker& mine = m.cast<BatchTracker>(); |
| const BatchTracker& theirs = t.cast<BatchTracker>(); |
| return CanCombineLocalMatrices(*this, mine.fUsesLocalCoords, |
| that, theirs.fUsesLocalCoords) && |
| CanCombineOutput(mine.fInputColorType, mine.fColor, |
| theirs.fInputColorType, theirs.fColor); |
| } |
| |
| private: |
| EllipseEdgeEffect(GrColor color, bool stroke, const SkMatrix& localMatrix) |
| : INHERITED(color, SkMatrix::I(), localMatrix) { |
| this->initClassID<EllipseEdgeEffect>(); |
| fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType)); |
| fInEllipseOffset = &this->addVertexAttrib(Attribute("inEllipseOffset", |
| kVec2f_GrVertexAttribType)); |
| fInEllipseRadii = &this->addVertexAttrib(Attribute("inEllipseRadii", |
| kVec4f_GrVertexAttribType)); |
| fStroke = stroke; |
| } |
| |
| bool onIsEqual(const GrGeometryProcessor& other) const override { |
| const EllipseEdgeEffect& eee = other.cast<EllipseEdgeEffect>(); |
| return eee.fStroke == fStroke; |
| } |
| |
| void onGetInvariantOutputCoverage(GrInitInvariantOutput* out) const override { |
| out->setUnknownSingleComponent(); |
| } |
| |
| struct BatchTracker { |
| GrGPInput fInputColorType; |
| GrColor fColor; |
| bool fUsesLocalCoords; |
| }; |
| |
| const Attribute* fInPosition; |
| const Attribute* fInEllipseOffset; |
| const Attribute* fInEllipseRadii; |
| bool fStroke; |
| |
| GR_DECLARE_GEOMETRY_PROCESSOR_TEST; |
| |
| typedef GrGeometryProcessor INHERITED; |
| }; |
| |
| GR_DEFINE_GEOMETRY_PROCESSOR_TEST(EllipseEdgeEffect); |
| |
| GrGeometryProcessor* EllipseEdgeEffect::TestCreate(SkRandom* random, |
| GrContext* context, |
| const GrDrawTargetCaps&, |
| GrTexture* textures[]) { |
| return EllipseEdgeEffect::Create(GrRandomColor(random), |
| random->nextBool(), |
| GrTest::TestMatrix(random)); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * The output of this effect is a modulation of the input color and coverage for an ellipse, |
| * specified as a 2D offset from center for both the outer and inner paths (if stroked). The |
| * implict equation used is for a unit circle (x^2 + y^2 - 1 = 0) and the edge corrected by |
| * using differentials. |
| * |
| * The result is device-independent and can be used with any affine matrix. |
| */ |
| |
| class DIEllipseEdgeEffect : public GrGeometryProcessor { |
| public: |
| enum Mode { kStroke = 0, kHairline, kFill }; |
| |
| static GrGeometryProcessor* Create(GrColor color, const SkMatrix& viewMatrix, Mode mode) { |
| return SkNEW_ARGS(DIEllipseEdgeEffect, (color, viewMatrix, mode)); |
| } |
| |
| virtual ~DIEllipseEdgeEffect() {} |
| |
| const char* name() const override { return "DIEllipseEdge"; } |
| |
| const Attribute* inPosition() const { return fInPosition; } |
| const Attribute* inEllipseOffsets0() const { return fInEllipseOffsets0; } |
| const Attribute* inEllipseOffsets1() const { return fInEllipseOffsets1; } |
| |
| inline Mode getMode() const { return fMode; } |
| |
| class GLProcessor : public GrGLGeometryProcessor { |
| public: |
| GLProcessor(const GrGeometryProcessor&, |
| const GrBatchTracker&) |
| : fColor(GrColor_ILLEGAL) {} |
| |
| void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{ |
| const DIEllipseEdgeEffect& ee = args.fGP.cast<DIEllipseEdgeEffect>(); |
| GrGLGPBuilder* pb = args.fPB; |
| const BatchTracker& local = args.fBT.cast<BatchTracker>(); |
| GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder(); |
| |
| // emit attributes |
| vsBuilder->emitAttributes(ee); |
| |
| GrGLVertToFrag offsets0(kVec2f_GrSLType); |
| args.fPB->addVarying("EllipseOffsets0", &offsets0); |
| vsBuilder->codeAppendf("%s = %s;", offsets0.vsOut(), |
| ee.inEllipseOffsets0()->fName); |
| |
| GrGLVertToFrag offsets1(kVec2f_GrSLType); |
| args.fPB->addVarying("EllipseOffsets1", &offsets1); |
| vsBuilder->codeAppendf("%s = %s;", offsets1.vsOut(), |
| ee.inEllipseOffsets1()->fName); |
| |
| // Setup pass through color |
| this->setupColorPassThrough(pb, local.fInputColorType, args.fOutputColor, NULL, |
| &fColorUniform); |
| |
| // Setup position |
| this->setupPosition(pb, gpArgs, ee.inPosition()->fName, ee.viewMatrix()); |
| |
| // emit transforms |
| this->emitTransforms(args.fPB, gpArgs->fPositionVar, ee.inPosition()->fName, |
| ee.localMatrix(), args.fTransformsIn, args.fTransformsOut); |
| |
| GrGLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder(); |
| SkAssertResult(fsBuilder->enableFeature( |
| GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature)); |
| // for outer curve |
| fsBuilder->codeAppendf("vec2 scaledOffset = %s.xy;", offsets0.fsIn()); |
| fsBuilder->codeAppend("float test = dot(scaledOffset, scaledOffset) - 1.0;"); |
| fsBuilder->codeAppendf("vec2 duvdx = dFdx(%s);", offsets0.fsIn()); |
| fsBuilder->codeAppendf("vec2 duvdy = dFdy(%s);", offsets0.fsIn()); |
| fsBuilder->codeAppendf("vec2 grad = vec2(2.0*%s.x*duvdx.x + 2.0*%s.y*duvdx.y," |
| " 2.0*%s.x*duvdy.x + 2.0*%s.y*duvdy.y);", |
| offsets0.fsIn(), offsets0.fsIn(), offsets0.fsIn(), offsets0.fsIn()); |
| |
| fsBuilder->codeAppend("float grad_dot = dot(grad, grad);"); |
| // avoid calling inversesqrt on zero. |
| fsBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);"); |
| fsBuilder->codeAppend("float invlen = inversesqrt(grad_dot);"); |
| if (kHairline == ee.getMode()) { |
| // can probably do this with one step |
| fsBuilder->codeAppend("float edgeAlpha = clamp(1.0-test*invlen, 0.0, 1.0);"); |
| fsBuilder->codeAppend("edgeAlpha *= clamp(1.0+test*invlen, 0.0, 1.0);"); |
| } else { |
| fsBuilder->codeAppend("float edgeAlpha = clamp(0.5-test*invlen, 0.0, 1.0);"); |
| } |
| |
| // for inner curve |
| if (kStroke == ee.getMode()) { |
| fsBuilder->codeAppendf("scaledOffset = %s.xy;", offsets1.fsIn()); |
| fsBuilder->codeAppend("test = dot(scaledOffset, scaledOffset) - 1.0;"); |
| fsBuilder->codeAppendf("duvdx = dFdx(%s);", offsets1.fsIn()); |
| fsBuilder->codeAppendf("duvdy = dFdy(%s);", offsets1.fsIn()); |
| fsBuilder->codeAppendf("grad = vec2(2.0*%s.x*duvdx.x + 2.0*%s.y*duvdx.y," |
| " 2.0*%s.x*duvdy.x + 2.0*%s.y*duvdy.y);", |
| offsets1.fsIn(), offsets1.fsIn(), offsets1.fsIn(), |
| offsets1.fsIn()); |
| fsBuilder->codeAppend("invlen = inversesqrt(dot(grad, grad));"); |
| fsBuilder->codeAppend("edgeAlpha *= clamp(0.5+test*invlen, 0.0, 1.0);"); |
| } |
| |
| fsBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage); |
| } |
| |
| static void GenKey(const GrGeometryProcessor& gp, |
| const GrBatchTracker& bt, |
| const GrGLSLCaps&, |
| GrProcessorKeyBuilder* b) { |
| const BatchTracker& local = bt.cast<BatchTracker>(); |
| const DIEllipseEdgeEffect& ellipseEffect = gp.cast<DIEllipseEdgeEffect>(); |
| uint16_t key = ellipseEffect.getMode(); |
| key |= local.fUsesLocalCoords && gp.localMatrix().hasPerspective() ? 0x1 << 8 : 0x0; |
| key |= ComputePosKey(gp.viewMatrix()) << 9; |
| b->add32(key << 16 | local.fInputColorType); |
| } |
| |
| virtual void setData(const GrGLProgramDataManager& pdman, |
| const GrPrimitiveProcessor& gp, |
| const GrBatchTracker& bt) override { |
| this->setUniformViewMatrix(pdman, gp.viewMatrix()); |
| |
| const BatchTracker& local = bt.cast<BatchTracker>(); |
| if (kUniform_GrGPInput == local.fInputColorType && local.fColor != fColor) { |
| GrGLfloat c[4]; |
| GrColorToRGBAFloat(local.fColor, c); |
| pdman.set4fv(fColorUniform, 1, c); |
| fColor = local.fColor; |
| } |
| } |
| |
| private: |
| GrColor fColor; |
| UniformHandle fColorUniform; |
| |
| typedef GrGLGeometryProcessor INHERITED; |
| }; |
| |
| virtual void getGLProcessorKey(const GrBatchTracker& bt, |
| const GrGLSLCaps& caps, |
| GrProcessorKeyBuilder* b) const override { |
| GLProcessor::GenKey(*this, bt, caps, b); |
| } |
| |
| virtual GrGLPrimitiveProcessor* createGLInstance(const GrBatchTracker& bt, |
| const GrGLSLCaps&) const override { |
| return SkNEW_ARGS(GLProcessor, (*this, bt)); |
| } |
| |
| void initBatchTracker(GrBatchTracker* bt, const GrPipelineInfo& init) const override { |
| BatchTracker* local = bt->cast<BatchTracker>(); |
| local->fInputColorType = GetColorInputType(&local->fColor, this->color(), init, false); |
| local->fUsesLocalCoords = init.fUsesLocalCoords; |
| } |
| |
| bool onCanMakeEqual(const GrBatchTracker& m, |
| const GrGeometryProcessor& that, |
| const GrBatchTracker& t) const override { |
| const BatchTracker& mine = m.cast<BatchTracker>(); |
| const BatchTracker& theirs = t.cast<BatchTracker>(); |
| return CanCombineLocalMatrices(*this, mine.fUsesLocalCoords, |
| that, theirs.fUsesLocalCoords) && |
| CanCombineOutput(mine.fInputColorType, mine.fColor, |
| theirs.fInputColorType, theirs.fColor); |
| } |
| |
| private: |
| DIEllipseEdgeEffect(GrColor color, const SkMatrix& viewMatrix, Mode mode) |
| : INHERITED(color, viewMatrix) { |
| this->initClassID<DIEllipseEdgeEffect>(); |
| fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType)); |
| fInEllipseOffsets0 = &this->addVertexAttrib(Attribute("inEllipseOffsets0", |
| kVec2f_GrVertexAttribType)); |
| fInEllipseOffsets1 = &this->addVertexAttrib(Attribute("inEllipseOffsets1", |
| kVec2f_GrVertexAttribType)); |
| fMode = mode; |
| } |
| |
| bool onIsEqual(const GrGeometryProcessor& other) const override { |
| const DIEllipseEdgeEffect& eee = other.cast<DIEllipseEdgeEffect>(); |
| return eee.fMode == fMode; |
| } |
| |
| void onGetInvariantOutputCoverage(GrInitInvariantOutput* out) const override { |
| out->setUnknownSingleComponent(); |
| } |
| |
| struct BatchTracker { |
| GrGPInput fInputColorType; |
| GrColor fColor; |
| bool fUsesLocalCoords; |
| }; |
| |
| const Attribute* fInPosition; |
| const Attribute* fInEllipseOffsets0; |
| const Attribute* fInEllipseOffsets1; |
| Mode fMode; |
| |
| GR_DECLARE_GEOMETRY_PROCESSOR_TEST; |
| |
| typedef GrGeometryProcessor INHERITED; |
| }; |
| |
| GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DIEllipseEdgeEffect); |
| |
| GrGeometryProcessor* DIEllipseEdgeEffect::TestCreate(SkRandom* random, |
| GrContext* context, |
| const GrDrawTargetCaps&, |
| GrTexture* textures[]) { |
| return DIEllipseEdgeEffect::Create(GrRandomColor(random), |
| GrTest::TestMatrix(random), |
| (Mode)(random->nextRangeU(0,2))); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| bool GrOvalRenderer::drawOval(GrDrawTarget* target, |
| GrPipelineBuilder* pipelineBuilder, |
| GrColor color, |
| const SkMatrix& viewMatrix, |
| bool useAA, |
| const SkRect& oval, |
| const SkStrokeRec& stroke) |
| { |
| bool useCoverageAA = useAA && !pipelineBuilder->getRenderTarget()->isMultisampled(); |
| |
| if (!useCoverageAA) { |
| return false; |
| } |
| |
| // we can draw circles |
| if (SkScalarNearlyEqual(oval.width(), oval.height()) && circle_stays_circle(viewMatrix)) { |
| this->drawCircle(target, pipelineBuilder, color, viewMatrix, useCoverageAA, oval, stroke); |
| // if we have shader derivative support, render as device-independent |
| } else if (target->caps()->shaderCaps()->shaderDerivativeSupport()) { |
| return this->drawDIEllipse(target, pipelineBuilder, color, viewMatrix, useCoverageAA, oval, |
| stroke); |
| // otherwise axis-aligned ellipses only |
| } else if (viewMatrix.rectStaysRect()) { |
| return this->drawEllipse(target, pipelineBuilder, color, viewMatrix, useCoverageAA, oval, |
| stroke); |
| } else { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| class CircleBatch : public GrBatch { |
| public: |
| struct Geometry { |
| GrColor fColor; |
| SkMatrix fViewMatrix; |
| SkScalar fInnerRadius; |
| SkScalar fOuterRadius; |
| bool fStroke; |
| SkRect fDevBounds; |
| }; |
| |
| static GrBatch* Create(const Geometry& geometry) { return SkNEW_ARGS(CircleBatch, (geometry)); } |
| |
| const char* name() const override { return "CircleBatch"; } |
| |
| void getInvariantOutputColor(GrInitInvariantOutput* out) const override { |
| // When this is called on a batch, there is only one geometry bundle |
| out->setKnownFourComponents(fGeoData[0].fColor); |
| } |
| |
| void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override { |
| out->setUnknownSingleComponent(); |
| } |
| |
| void initBatchTracker(const GrPipelineInfo& init) override { |
| // Handle any color overrides |
| if (init.fColorIgnored) { |
| fGeoData[0].fColor = GrColor_ILLEGAL; |
| } else if (GrColor_ILLEGAL != init.fOverrideColor) { |
| fGeoData[0].fColor = init.fOverrideColor; |
| } |
| |
| // setup batch properties |
| fBatch.fColorIgnored = init.fColorIgnored; |
| fBatch.fColor = fGeoData[0].fColor; |
| fBatch.fStroke = fGeoData[0].fStroke; |
| fBatch.fUsesLocalCoords = init.fUsesLocalCoords; |
| fBatch.fCoverageIgnored = init.fCoverageIgnored; |
| } |
| |
| void generateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) override { |
| SkMatrix invert; |
| if (!this->viewMatrix().invert(&invert)) { |
| return; |
| } |
| |
| // Setup geometry processor |
| SkAutoTUnref<GrGeometryProcessor> gp(CircleEdgeEffect::Create(this->color(), |
| this->stroke(), |
| invert)); |
| |
| batchTarget->initDraw(gp, pipeline); |
| |
| // TODO this is hacky, but the only way we have to initialize the GP is to use the |
| // GrPipelineInfo struct so we can generate the correct shader. Once we have GrBatch |
| // everywhere we can remove this nastiness |
| GrPipelineInfo init; |
| init.fColorIgnored = fBatch.fColorIgnored; |
| init.fOverrideColor = GrColor_ILLEGAL; |
| init.fCoverageIgnored = fBatch.fCoverageIgnored; |
| init.fUsesLocalCoords = this->usesLocalCoords(); |
| gp->initBatchTracker(batchTarget->currentBatchTracker(), init); |
| |
| int instanceCount = fGeoData.count(); |
| size_t vertexStride = gp->getVertexStride(); |
| SkASSERT(vertexStride == sizeof(CircleVertex)); |
| QuadHelper helper; |
| CircleVertex* verts = reinterpret_cast<CircleVertex*>(helper.init(batchTarget, vertexStride, |
| instanceCount)); |
| if (!verts) { |
| return; |
| } |
| |
| for (int i = 0; i < instanceCount; i++) { |
| Geometry& geom = fGeoData[i]; |
| |
| SkScalar innerRadius = geom.fInnerRadius; |
| SkScalar outerRadius = geom.fOuterRadius; |
| |
| const SkRect& bounds = geom.fDevBounds; |
| |
| // The inner radius in the vertex data must be specified in normalized space. |
| innerRadius = innerRadius / outerRadius; |
| verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop); |
| verts[0].fOffset = SkPoint::Make(-1, -1); |
| verts[0].fOuterRadius = outerRadius; |
| verts[0].fInnerRadius = innerRadius; |
| |
| verts[1].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom); |
| verts[1].fOffset = SkPoint::Make(-1, 1); |
| verts[1].fOuterRadius = outerRadius; |
| verts[1].fInnerRadius = innerRadius; |
| |
| verts[2].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom); |
| verts[2].fOffset = SkPoint::Make(1, 1); |
| verts[2].fOuterRadius = outerRadius; |
| verts[2].fInnerRadius = innerRadius; |
| |
| verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fTop); |
| verts[3].fOffset = SkPoint::Make(1, -1); |
| verts[3].fOuterRadius = outerRadius; |
| verts[3].fInnerRadius = innerRadius; |
| |
| verts += kVerticesPerQuad; |
| } |
| helper.issueDraw(batchTarget); |
| } |
| |
| SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; } |
| |
| private: |
| CircleBatch(const Geometry& geometry) { |
| this->initClassID<CircleBatch>(); |
| fGeoData.push_back(geometry); |
| |
| this->setBounds(geometry.fDevBounds); |
| } |
| |
| bool onCombineIfPossible(GrBatch* t) override { |
| CircleBatch* that = t->cast<CircleBatch>(); |
| |
| // TODO use vertex color to avoid breaking batches |
| if (this->color() != that->color()) { |
| return false; |
| } |
| |
| if (this->stroke() != that->stroke()) { |
| return false; |
| } |
| |
| SkASSERT(this->usesLocalCoords() == that->usesLocalCoords()); |
| if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) { |
| return false; |
| } |
| |
| fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin()); |
| this->joinBounds(that->bounds()); |
| return true; |
| } |
| |
| GrColor color() const { return fBatch.fColor; } |
| bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; } |
| const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; } |
| bool stroke() const { return fBatch.fStroke; } |
| |
| struct BatchTracker { |
| GrColor fColor; |
| bool fStroke; |
| bool fUsesLocalCoords; |
| bool fColorIgnored; |
| bool fCoverageIgnored; |
| }; |
| |
| BatchTracker fBatch; |
| SkSTArray<1, Geometry, true> fGeoData; |
| }; |
| |
| static GrBatch* create_circle_batch(GrColor color, |
| const SkMatrix& viewMatrix, |
| bool useCoverageAA, |
| const SkRect& circle, |
| const SkStrokeRec& stroke) { |
| SkPoint center = SkPoint::Make(circle.centerX(), circle.centerY()); |
| viewMatrix.mapPoints(¢er, 1); |
| SkScalar radius = viewMatrix.mapRadius(SkScalarHalf(circle.width())); |
| SkScalar strokeWidth = viewMatrix.mapRadius(stroke.getWidth()); |
| |
| SkStrokeRec::Style style = stroke.getStyle(); |
| bool isStrokeOnly = SkStrokeRec::kStroke_Style == style || |
| SkStrokeRec::kHairline_Style == style; |
| bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style; |
| |
| SkScalar innerRadius = 0.0f; |
| SkScalar outerRadius = radius; |
| SkScalar halfWidth = 0; |
| if (hasStroke) { |
| if (SkScalarNearlyZero(strokeWidth)) { |
| halfWidth = SK_ScalarHalf; |
| } else { |
| halfWidth = SkScalarHalf(strokeWidth); |
| } |
| |
| outerRadius += halfWidth; |
| if (isStrokeOnly) { |
| innerRadius = radius - halfWidth; |
| } |
| } |
| |
| // The radii are outset for two reasons. First, it allows the shader to simply perform simpler |
| // computation because the computed alpha is zero, rather than 50%, at the radius. |
| // Second, the outer radius is used to compute the verts of the bounding box that is rendered |
| // and the outset ensures the box will cover all partially covered by the circle. |
| outerRadius += SK_ScalarHalf; |
| innerRadius -= SK_ScalarHalf; |
| |
| CircleBatch::Geometry geometry; |
| geometry.fViewMatrix = viewMatrix; |
| geometry.fColor = color; |
| geometry.fInnerRadius = innerRadius; |
| geometry.fOuterRadius = outerRadius; |
| geometry.fStroke = isStrokeOnly && innerRadius > 0; |
| geometry.fDevBounds = SkRect::MakeLTRB(center.fX - outerRadius, center.fY - outerRadius, |
| center.fX + outerRadius, center.fY + outerRadius); |
| |
| return CircleBatch::Create(geometry); |
| } |
| |
| void GrOvalRenderer::drawCircle(GrDrawTarget* target, |
| GrPipelineBuilder* pipelineBuilder, |
| GrColor color, |
| const SkMatrix& viewMatrix, |
| bool useCoverageAA, |
| const SkRect& circle, |
| const SkStrokeRec& stroke) { |
| SkAutoTUnref<GrBatch> batch(create_circle_batch(color, viewMatrix, useCoverageAA, circle, |
| stroke)); |
| target->drawBatch(pipelineBuilder, batch); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| class EllipseBatch : public GrBatch { |
| public: |
| struct Geometry { |
| GrColor fColor; |
| SkMatrix fViewMatrix; |
| SkScalar fXRadius; |
| SkScalar fYRadius; |
| SkScalar fInnerXRadius; |
| SkScalar fInnerYRadius; |
| bool fStroke; |
| SkRect fDevBounds; |
| }; |
| |
| static GrBatch* Create(const Geometry& geometry) { |
| return SkNEW_ARGS(EllipseBatch, (geometry)); |
| } |
| |
| const char* name() const override { return "EllipseBatch"; } |
| |
| void getInvariantOutputColor(GrInitInvariantOutput* out) const override { |
| // When this is called on a batch, there is only one geometry bundle |
| out->setKnownFourComponents(fGeoData[0].fColor); |
| } |
| void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override { |
| out->setUnknownSingleComponent(); |
| } |
| |
| void initBatchTracker(const GrPipelineInfo& init) override { |
| // Handle any color overrides |
| if (init.fColorIgnored) { |
| fGeoData[0].fColor = GrColor_ILLEGAL; |
| } else if (GrColor_ILLEGAL != init.fOverrideColor) { |
| fGeoData[0].fColor = init.fOverrideColor; |
| } |
| |
| // setup batch properties |
| fBatch.fColorIgnored = init.fColorIgnored; |
| fBatch.fColor = fGeoData[0].fColor; |
| fBatch.fStroke = fGeoData[0].fStroke; |
| fBatch.fUsesLocalCoords = init.fUsesLocalCoords; |
| fBatch.fCoverageIgnored = init.fCoverageIgnored; |
| } |
| |
| void generateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) override { |
| SkMatrix invert; |
| if (!this->viewMatrix().invert(&invert)) { |
| return; |
| } |
| |
| // Setup geometry processor |
| SkAutoTUnref<GrGeometryProcessor> gp(EllipseEdgeEffect::Create(this->color(), |
| this->stroke(), |
| invert)); |
| |
| batchTarget->initDraw(gp, pipeline); |
| |
| // TODO this is hacky, but the only way we have to initialize the GP is to use the |
| // GrPipelineInfo struct so we can generate the correct shader. Once we have GrBatch |
| // everywhere we can remove this nastiness |
| GrPipelineInfo init; |
| init.fColorIgnored = fBatch.fColorIgnored; |
| init.fOverrideColor = GrColor_ILLEGAL; |
| init.fCoverageIgnored = fBatch.fCoverageIgnored; |
| init.fUsesLocalCoords = this->usesLocalCoords(); |
| gp->initBatchTracker(batchTarget->currentBatchTracker(), init); |
| |
| int instanceCount = fGeoData.count(); |
| QuadHelper helper; |
| size_t vertexStride = gp->getVertexStride(); |
| SkASSERT(vertexStride == sizeof(EllipseVertex)); |
| EllipseVertex* verts = reinterpret_cast<EllipseVertex*>( |
| helper.init(batchTarget, vertexStride, instanceCount)); |
| if (!verts) { |
| return; |
| } |
| |
| for (int i = 0; i < instanceCount; i++) { |
| Geometry& geom = fGeoData[i]; |
| |
| SkScalar xRadius = geom.fXRadius; |
| SkScalar yRadius = geom.fYRadius; |
| |
| // Compute the reciprocals of the radii here to save time in the shader |
| SkScalar xRadRecip = SkScalarInvert(xRadius); |
| SkScalar yRadRecip = SkScalarInvert(yRadius); |
| SkScalar xInnerRadRecip = SkScalarInvert(geom.fInnerXRadius); |
| SkScalar yInnerRadRecip = SkScalarInvert(geom.fInnerYRadius); |
| |
| const SkRect& bounds = geom.fDevBounds; |
| |
| // The inner radius in the vertex data must be specified in normalized space. |
| verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop); |
| verts[0].fOffset = SkPoint::Make(-xRadius, -yRadius); |
| verts[0].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts[0].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| |
| verts[1].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom); |
| verts[1].fOffset = SkPoint::Make(-xRadius, yRadius); |
| verts[1].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts[1].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| |
| verts[2].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom); |
| verts[2].fOffset = SkPoint::Make(xRadius, yRadius); |
| verts[2].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts[2].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| |
| verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fTop); |
| verts[3].fOffset = SkPoint::Make(xRadius, -yRadius); |
| verts[3].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts[3].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| |
| verts += kVerticesPerQuad; |
| } |
| helper.issueDraw(batchTarget); |
| } |
| |
| SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; } |
| |
| private: |
| EllipseBatch(const Geometry& geometry) { |
| this->initClassID<EllipseBatch>(); |
| fGeoData.push_back(geometry); |
| |
| this->setBounds(geometry.fDevBounds); |
| } |
| |
| bool onCombineIfPossible(GrBatch* t) override { |
| EllipseBatch* that = t->cast<EllipseBatch>(); |
| |
| // TODO use vertex color to avoid breaking batches |
| if (this->color() != that->color()) { |
| return false; |
| } |
| |
| if (this->stroke() != that->stroke()) { |
| return false; |
| } |
| |
| SkASSERT(this->usesLocalCoords() == that->usesLocalCoords()); |
| if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) { |
| return false; |
| } |
| |
| fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin()); |
| this->joinBounds(that->bounds()); |
| return true; |
| } |
| |
| GrColor color() const { return fBatch.fColor; } |
| bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; } |
| const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; } |
| bool stroke() const { return fBatch.fStroke; } |
| |
| struct BatchTracker { |
| GrColor fColor; |
| bool fStroke; |
| bool fUsesLocalCoords; |
| bool fColorIgnored; |
| bool fCoverageIgnored; |
| }; |
| |
| BatchTracker fBatch; |
| SkSTArray<1, Geometry, true> fGeoData; |
| }; |
| |
| static GrBatch* create_ellipse_batch(GrColor color, |
| const SkMatrix& viewMatrix, |
| bool useCoverageAA, |
| const SkRect& ellipse, |
| const SkStrokeRec& stroke) { |
| #ifdef SK_DEBUG |
| { |
| // we should have checked for this previously |
| bool isAxisAlignedEllipse = viewMatrix.rectStaysRect(); |
| SkASSERT(useCoverageAA && isAxisAlignedEllipse); |
| } |
| #endif |
| |
| // do any matrix crunching before we reset the draw state for device coords |
| SkPoint center = SkPoint::Make(ellipse.centerX(), ellipse.centerY()); |
| viewMatrix.mapPoints(¢er, 1); |
| SkScalar ellipseXRadius = SkScalarHalf(ellipse.width()); |
| SkScalar ellipseYRadius = SkScalarHalf(ellipse.height()); |
| SkScalar xRadius = SkScalarAbs(viewMatrix[SkMatrix::kMScaleX]*ellipseXRadius + |
| viewMatrix[SkMatrix::kMSkewY]*ellipseYRadius); |
| SkScalar yRadius = SkScalarAbs(viewMatrix[SkMatrix::kMSkewX]*ellipseXRadius + |
| viewMatrix[SkMatrix::kMScaleY]*ellipseYRadius); |
| |
| // do (potentially) anisotropic mapping of stroke |
| SkVector scaledStroke; |
| SkScalar strokeWidth = stroke.getWidth(); |
| scaledStroke.fX = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMScaleX] + |
| viewMatrix[SkMatrix::kMSkewY])); |
| scaledStroke.fY = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMSkewX] + |
| viewMatrix[SkMatrix::kMScaleY])); |
| |
| SkStrokeRec::Style style = stroke.getStyle(); |
| bool isStrokeOnly = SkStrokeRec::kStroke_Style == style || |
| SkStrokeRec::kHairline_Style == style; |
| bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style; |
| |
| SkScalar innerXRadius = 0; |
| SkScalar innerYRadius = 0; |
| if (hasStroke) { |
| if (SkScalarNearlyZero(scaledStroke.length())) { |
| scaledStroke.set(SK_ScalarHalf, SK_ScalarHalf); |
| } else { |
| scaledStroke.scale(SK_ScalarHalf); |
| } |
| |
| // we only handle thick strokes for near-circular ellipses |
| if (scaledStroke.length() > SK_ScalarHalf && |
| (SK_ScalarHalf*xRadius > yRadius || SK_ScalarHalf*yRadius > xRadius)) { |
| return NULL; |
| } |
| |
| // we don't handle it if curvature of the stroke is less than curvature of the ellipse |
| if (scaledStroke.fX*(yRadius*yRadius) < (scaledStroke.fY*scaledStroke.fY)*xRadius || |
| scaledStroke.fY*(xRadius*xRadius) < (scaledStroke.fX*scaledStroke.fX)*yRadius) { |
| return NULL; |
| } |
| |
| // this is legit only if scale & translation (which should be the case at the moment) |
| if (isStrokeOnly) { |
| innerXRadius = xRadius - scaledStroke.fX; |
| innerYRadius = yRadius - scaledStroke.fY; |
| } |
| |
| xRadius += scaledStroke.fX; |
| yRadius += scaledStroke.fY; |
| } |
| |
| // We've extended the outer x radius out half a pixel to antialias. |
| // This will also expand the rect so all the pixels will be captured. |
| // TODO: Consider if we should use sqrt(2)/2 instead |
| xRadius += SK_ScalarHalf; |
| yRadius += SK_ScalarHalf; |
| |
| EllipseBatch::Geometry geometry; |
| geometry.fViewMatrix = viewMatrix; |
| geometry.fColor = color; |
| geometry.fXRadius = xRadius; |
| geometry.fYRadius = yRadius; |
| geometry.fInnerXRadius = innerXRadius; |
| geometry.fInnerYRadius = innerYRadius; |
| geometry.fStroke = isStrokeOnly && innerXRadius > 0 && innerYRadius > 0; |
| geometry.fDevBounds = SkRect::MakeLTRB(center.fX - xRadius, center.fY - yRadius, |
| center.fX + xRadius, center.fY + yRadius); |
| |
| return EllipseBatch::Create(geometry); |
| } |
| |
| bool GrOvalRenderer::drawEllipse(GrDrawTarget* target, |
| GrPipelineBuilder* pipelineBuilder, |
| GrColor color, |
| const SkMatrix& viewMatrix, |
| bool useCoverageAA, |
| const SkRect& ellipse, |
| const SkStrokeRec& stroke) { |
| SkAutoTUnref<GrBatch> batch(create_ellipse_batch(color, viewMatrix, useCoverageAA, ellipse, |
| stroke)); |
| if (!batch) { |
| return false; |
| } |
| |
| target->drawBatch(pipelineBuilder, batch); |
| return true; |
| } |
| |
| ///////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| class DIEllipseBatch : public GrBatch { |
| public: |
| struct Geometry { |
| GrColor fColor; |
| SkMatrix fViewMatrix; |
| SkScalar fXRadius; |
| SkScalar fYRadius; |
| SkScalar fInnerXRadius; |
| SkScalar fInnerYRadius; |
| SkScalar fGeoDx; |
| SkScalar fGeoDy; |
| DIEllipseEdgeEffect::Mode fMode; |
| SkRect fBounds; |
| }; |
| |
| static GrBatch* Create(const Geometry& geometry, const SkRect& bounds) { |
| return SkNEW_ARGS(DIEllipseBatch, (geometry, bounds)); |
| } |
| |
| const char* name() const override { return "DIEllipseBatch"; } |
| |
| void getInvariantOutputColor(GrInitInvariantOutput* out) const override { |
| // When this is called on a batch, there is only one geometry bundle |
| out->setKnownFourComponents(fGeoData[0].fColor); |
| } |
| void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override { |
| out->setUnknownSingleComponent(); |
| } |
| |
| void initBatchTracker(const GrPipelineInfo& init) override { |
| // Handle any color overrides |
| if (init.fColorIgnored) { |
| fGeoData[0].fColor = GrColor_ILLEGAL; |
| } else if (GrColor_ILLEGAL != init.fOverrideColor) { |
| fGeoData[0].fColor = init.fOverrideColor; |
| } |
| |
| // setup batch properties |
| fBatch.fColorIgnored = init.fColorIgnored; |
| fBatch.fColor = fGeoData[0].fColor; |
| fBatch.fMode = fGeoData[0].fMode; |
| fBatch.fUsesLocalCoords = init.fUsesLocalCoords; |
| fBatch.fCoverageIgnored = init.fCoverageIgnored; |
| } |
| |
| void generateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) override { |
| // Setup geometry processor |
| SkAutoTUnref<GrGeometryProcessor> gp(DIEllipseEdgeEffect::Create(this->color(), |
| this->viewMatrix(), |
| this->mode())); |
| |
| batchTarget->initDraw(gp, pipeline); |
| |
| // TODO this is hacky, but the only way we have to initialize the GP is to use the |
| // GrPipelineInfo struct so we can generate the correct shader. Once we have GrBatch |
| // everywhere we can remove this nastiness |
| GrPipelineInfo init; |
| init.fColorIgnored = fBatch.fColorIgnored; |
| init.fOverrideColor = GrColor_ILLEGAL; |
| init.fCoverageIgnored = fBatch.fCoverageIgnored; |
| init.fUsesLocalCoords = this->usesLocalCoords(); |
| gp->initBatchTracker(batchTarget->currentBatchTracker(), init); |
| |
| int instanceCount = fGeoData.count(); |
| size_t vertexStride = gp->getVertexStride(); |
| SkASSERT(vertexStride == sizeof(DIEllipseVertex)); |
| QuadHelper helper; |
| DIEllipseVertex* verts = reinterpret_cast<DIEllipseVertex*>( |
| helper.init(batchTarget, vertexStride, instanceCount)); |
| if (!verts) { |
| return; |
| } |
| |
| for (int i = 0; i < instanceCount; i++) { |
| Geometry& geom = fGeoData[i]; |
| |
| SkScalar xRadius = geom.fXRadius; |
| SkScalar yRadius = geom.fYRadius; |
| |
| const SkRect& bounds = geom.fBounds; |
| |
| // This adjusts the "radius" to include the half-pixel border |
| SkScalar offsetDx = geom.fGeoDx / xRadius; |
| SkScalar offsetDy = geom.fGeoDy / yRadius; |
| |
| SkScalar innerRatioX = xRadius / geom.fInnerXRadius; |
| SkScalar innerRatioY = yRadius / geom.fInnerYRadius; |
| |
| verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop); |
| verts[0].fOuterOffset = SkPoint::Make(-1.0f - offsetDx, -1.0f - offsetDy); |
| verts[0].fInnerOffset = SkPoint::Make(-innerRatioX - offsetDx, -innerRatioY - offsetDy); |
| |
| verts[1].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom); |
| verts[1].fOuterOffset = SkPoint::Make(-1.0f - offsetDx, 1.0f + offsetDy); |
| verts[1].fInnerOffset = SkPoint::Make(-innerRatioX - offsetDx, innerRatioY + offsetDy); |
| |
| verts[2].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom); |
| verts[2].fOuterOffset = SkPoint::Make(1.0f + offsetDx, 1.0f + offsetDy); |
| verts[2].fInnerOffset = SkPoint::Make(innerRatioX + offsetDx, innerRatioY + offsetDy); |
| |
| verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fTop); |
| verts[3].fOuterOffset = SkPoint::Make(1.0f + offsetDx, -1.0f - offsetDy); |
| verts[3].fInnerOffset = SkPoint::Make(innerRatioX + offsetDx, -innerRatioY - offsetDy); |
| |
| verts += kVerticesPerQuad; |
| } |
| helper.issueDraw(batchTarget); |
| } |
| |
| SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; } |
| |
| private: |
| DIEllipseBatch(const Geometry& geometry, const SkRect& bounds) { |
| this->initClassID<DIEllipseBatch>(); |
| fGeoData.push_back(geometry); |
| |
| this->setBounds(bounds); |
| } |
| |
| bool onCombineIfPossible(GrBatch* t) override { |
| DIEllipseBatch* that = t->cast<DIEllipseBatch>(); |
| |
| // TODO use vertex color to avoid breaking batches |
| if (this->color() != that->color()) { |
| return false; |
| } |
| |
| if (this->mode() != that->mode()) { |
| return false; |
| } |
| |
| // TODO rewrite to allow positioning on CPU |
| if (!this->viewMatrix().cheapEqualTo(that->viewMatrix())) { |
| return false; |
| } |
| |
| fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin()); |
| this->joinBounds(that->bounds()); |
| return true; |
| } |
| |
| GrColor color() const { return fBatch.fColor; } |
| bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; } |
| const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; } |
| DIEllipseEdgeEffect::Mode mode() const { return fBatch.fMode; } |
| |
| struct BatchTracker { |
| GrColor fColor; |
| DIEllipseEdgeEffect::Mode fMode; |
| bool fUsesLocalCoords; |
| bool fColorIgnored; |
| bool fCoverageIgnored; |
| }; |
| |
| BatchTracker fBatch; |
| SkSTArray<1, Geometry, true> fGeoData; |
| }; |
| |
| static GrBatch* create_diellipse_batch(GrColor color, |
| const SkMatrix& viewMatrix, |
| bool useCoverageAA, |
| const SkRect& ellipse, |
| const SkStrokeRec& stroke) { |
| SkPoint center = SkPoint::Make(ellipse.centerX(), ellipse.centerY()); |
| SkScalar xRadius = SkScalarHalf(ellipse.width()); |
| SkScalar yRadius = SkScalarHalf(ellipse.height()); |
| |
| SkStrokeRec::Style style = stroke.getStyle(); |
| DIEllipseEdgeEffect::Mode mode = (SkStrokeRec::kStroke_Style == style) ? |
| DIEllipseEdgeEffect::kStroke : |
| (SkStrokeRec::kHairline_Style == style) ? |
| DIEllipseEdgeEffect::kHairline : DIEllipseEdgeEffect::kFill; |
| |
| SkScalar innerXRadius = 0; |
| SkScalar innerYRadius = 0; |
| if (SkStrokeRec::kFill_Style != style && SkStrokeRec::kHairline_Style != style) { |
| SkScalar strokeWidth = stroke.getWidth(); |
| |
| if (SkScalarNearlyZero(strokeWidth)) { |
| strokeWidth = SK_ScalarHalf; |
| } else { |
| strokeWidth *= SK_ScalarHalf; |
| } |
| |
| // we only handle thick strokes for near-circular ellipses |
| if (strokeWidth > SK_ScalarHalf && |
| (SK_ScalarHalf*xRadius > yRadius || SK_ScalarHalf*yRadius > xRadius)) { |
| return NULL; |
| } |
| |
| // we don't handle it if curvature of the stroke is less than curvature of the ellipse |
| if (strokeWidth*(yRadius*yRadius) < (strokeWidth*strokeWidth)*xRadius || |
| strokeWidth*(xRadius*xRadius) < (strokeWidth*strokeWidth)*yRadius) { |
| return NULL; |
| } |
| |
| // set inner radius (if needed) |
| if (SkStrokeRec::kStroke_Style == style) { |
| innerXRadius = xRadius - strokeWidth; |
| innerYRadius = yRadius - strokeWidth; |
| } |
| |
| xRadius += strokeWidth; |
| yRadius += strokeWidth; |
| } |
| if (DIEllipseEdgeEffect::kStroke == mode) { |
| mode = (innerXRadius > 0 && innerYRadius > 0) ? DIEllipseEdgeEffect::kStroke : |
| DIEllipseEdgeEffect::kFill; |
| } |
| |
| // This expands the outer rect so that after CTM we end up with a half-pixel border |
| SkScalar a = viewMatrix[SkMatrix::kMScaleX]; |
| SkScalar b = viewMatrix[SkMatrix::kMSkewX]; |
| SkScalar c = viewMatrix[SkMatrix::kMSkewY]; |
| SkScalar d = viewMatrix[SkMatrix::kMScaleY]; |
| SkScalar geoDx = SK_ScalarHalf / SkScalarSqrt(a*a + c*c); |
| SkScalar geoDy = SK_ScalarHalf / SkScalarSqrt(b*b + d*d); |
| |
| DIEllipseBatch::Geometry geometry; |
| geometry.fViewMatrix = viewMatrix; |
| geometry.fColor = color; |
| geometry.fXRadius = xRadius; |
| geometry.fYRadius = yRadius; |
| geometry.fInnerXRadius = innerXRadius; |
| geometry.fInnerYRadius = innerYRadius; |
| geometry.fGeoDx = geoDx; |
| geometry.fGeoDy = geoDy; |
| geometry.fMode = mode; |
| geometry.fBounds = SkRect::MakeLTRB(center.fX - xRadius - geoDx, center.fY - yRadius - geoDy, |
| center.fX + xRadius + geoDx, center.fY + yRadius + geoDy); |
| |
| SkRect devBounds = geometry.fBounds; |
| viewMatrix.mapRect(&devBounds); |
| return DIEllipseBatch::Create(geometry, devBounds); |
| } |
| |
| bool GrOvalRenderer::drawDIEllipse(GrDrawTarget* target, |
| GrPipelineBuilder* pipelineBuilder, |
| GrColor color, |
| const SkMatrix& viewMatrix, |
| bool useCoverageAA, |
| const SkRect& ellipse, |
| const SkStrokeRec& stroke) { |
| SkAutoTUnref<GrBatch> batch(create_diellipse_batch(color, viewMatrix, useCoverageAA, ellipse, |
| stroke)); |
| if (!batch) { |
| return false; |
| } |
| target->drawBatch(pipelineBuilder, batch); |
| return true; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static const uint16_t gRRectIndices[] = { |
| // corners |
| 0, 1, 5, 0, 5, 4, |
| 2, 3, 7, 2, 7, 6, |
| 8, 9, 13, 8, 13, 12, |
| 10, 11, 15, 10, 15, 14, |
| |
| // edges |
| 1, 2, 6, 1, 6, 5, |
| 4, 5, 9, 4, 9, 8, |
| 6, 7, 11, 6, 11, 10, |
| 9, 10, 14, 9, 14, 13, |
| |
| // center |
| // we place this at the end so that we can ignore these indices when rendering stroke-only |
| 5, 6, 10, 5, 10, 9 |
| }; |
| |
| static const int kIndicesPerStrokeRRect = SK_ARRAY_COUNT(gRRectIndices) - 6; |
| static const int kIndicesPerRRect = SK_ARRAY_COUNT(gRRectIndices); |
| static const int kVertsPerRRect = 16; |
| static const int kNumRRectsInIndexBuffer = 256; |
| |
| GR_DECLARE_STATIC_UNIQUE_KEY(gStrokeRRectOnlyIndexBufferKey); |
| GR_DECLARE_STATIC_UNIQUE_KEY(gRRectOnlyIndexBufferKey); |
| static const GrIndexBuffer* ref_rrect_index_buffer(bool strokeOnly, |
| GrResourceProvider* resourceProvider) { |
| GR_DEFINE_STATIC_UNIQUE_KEY(gStrokeRRectOnlyIndexBufferKey); |
| GR_DEFINE_STATIC_UNIQUE_KEY(gRRectOnlyIndexBufferKey); |
| if (strokeOnly) { |
| return resourceProvider->refOrCreateInstancedIndexBuffer( |
| gRRectIndices, kIndicesPerStrokeRRect, kNumRRectsInIndexBuffer, kVertsPerRRect, |
| gStrokeRRectOnlyIndexBufferKey); |
| } else { |
| return resourceProvider->refOrCreateInstancedIndexBuffer( |
| gRRectIndices, kIndicesPerRRect, kNumRRectsInIndexBuffer, kVertsPerRRect, |
| gRRectOnlyIndexBufferKey); |
| |
| } |
| } |
| |
| bool GrOvalRenderer::drawDRRect(GrDrawTarget* target, |
| GrPipelineBuilder* pipelineBuilder, |
| GrColor color, |
| const SkMatrix& viewMatrix, |
| bool useAA, |
| const SkRRect& origOuter, |
| const SkRRect& origInner) { |
| bool applyAA = useAA && |
| !pipelineBuilder->getRenderTarget()->isMultisampled(); |
| GrPipelineBuilder::AutoRestoreFragmentProcessors arfp; |
| if (!origInner.isEmpty()) { |
| SkTCopyOnFirstWrite<SkRRect> inner(origInner); |
| if (!viewMatrix.isIdentity()) { |
| if (!origInner.transform(viewMatrix, inner.writable())) { |
| return false; |
| } |
| } |
| GrPrimitiveEdgeType edgeType = applyAA ? |
| kInverseFillAA_GrProcessorEdgeType : |
| kInverseFillBW_GrProcessorEdgeType; |
| // TODO this needs to be a geometry processor |
| GrFragmentProcessor* fp = GrRRectEffect::Create(edgeType, *inner); |
| if (NULL == fp) { |
| return false; |
| } |
| arfp.set(pipelineBuilder); |
| pipelineBuilder->addCoverageProcessor(fp)->unref(); |
| } |
| |
| SkStrokeRec fillRec(SkStrokeRec::kFill_InitStyle); |
| if (this->drawRRect(target, pipelineBuilder, color, viewMatrix, useAA, origOuter, fillRec)) { |
| return true; |
| } |
| |
| SkASSERT(!origOuter.isEmpty()); |
| SkTCopyOnFirstWrite<SkRRect> outer(origOuter); |
| if (!viewMatrix.isIdentity()) { |
| if (!origOuter.transform(viewMatrix, outer.writable())) { |
| return false; |
| } |
| } |
| GrPrimitiveEdgeType edgeType = applyAA ? kFillAA_GrProcessorEdgeType : |
| kFillBW_GrProcessorEdgeType; |
| GrFragmentProcessor* effect = GrRRectEffect::Create(edgeType, *outer); |
| if (NULL == effect) { |
| return false; |
| } |
| if (!arfp.isSet()) { |
| arfp.set(pipelineBuilder); |
| } |
| |
| SkMatrix invert; |
| if (!viewMatrix.invert(&invert)) { |
| return false; |
| } |
| |
| pipelineBuilder->addCoverageProcessor(effect)->unref(); |
| SkRect bounds = outer->getBounds(); |
| if (applyAA) { |
| bounds.outset(SK_ScalarHalf, SK_ScalarHalf); |
| } |
| target->drawRect(pipelineBuilder, color, SkMatrix::I(), bounds, NULL, &invert); |
| return true; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| class RRectCircleRendererBatch : public GrBatch { |
| public: |
| struct Geometry { |
| GrColor fColor; |
| SkMatrix fViewMatrix; |
| SkScalar fInnerRadius; |
| SkScalar fOuterRadius; |
| bool fStroke; |
| SkRect fDevBounds; |
| }; |
| |
| static GrBatch* Create(const Geometry& geometry) { |
| return SkNEW_ARGS(RRectCircleRendererBatch, (geometry)); |
| } |
| |
| const char* name() const override { return "RRectCircleBatch"; } |
| |
| void getInvariantOutputColor(GrInitInvariantOutput* out) const override { |
| // When this is called on a batch, there is only one geometry bundle |
| out->setKnownFourComponents(fGeoData[0].fColor); |
| } |
| void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override { |
| out->setUnknownSingleComponent(); |
| } |
| |
| void initBatchTracker(const GrPipelineInfo& init) override { |
| // Handle any color overrides |
| if (init.fColorIgnored) { |
| fGeoData[0].fColor = GrColor_ILLEGAL; |
| } else if (GrColor_ILLEGAL != init.fOverrideColor) { |
| fGeoData[0].fColor = init.fOverrideColor; |
| } |
| |
| // setup batch properties |
| fBatch.fColorIgnored = init.fColorIgnored; |
| fBatch.fColor = fGeoData[0].fColor; |
| fBatch.fStroke = fGeoData[0].fStroke; |
| fBatch.fUsesLocalCoords = init.fUsesLocalCoords; |
| fBatch.fCoverageIgnored = init.fCoverageIgnored; |
| } |
| |
| void generateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) override { |
| // reset to device coordinates |
| SkMatrix invert; |
| if (!this->viewMatrix().invert(&invert)) { |
| SkDebugf("Failed to invert\n"); |
| return; |
| } |
| |
| // Setup geometry processor |
| SkAutoTUnref<GrGeometryProcessor> gp(CircleEdgeEffect::Create(this->color(), |
| this->stroke(), |
| invert)); |
| |
| batchTarget->initDraw(gp, pipeline); |
| |
| // TODO this is hacky, but the only way we have to initialize the GP is to use the |
| // GrPipelineInfo struct so we can generate the correct shader. Once we have GrBatch |
| // everywhere we can remove this nastiness |
| GrPipelineInfo init; |
| init.fColorIgnored = fBatch.fColorIgnored; |
| init.fOverrideColor = GrColor_ILLEGAL; |
| init.fCoverageIgnored = fBatch.fCoverageIgnored; |
| init.fUsesLocalCoords = this->usesLocalCoords(); |
| gp->initBatchTracker(batchTarget->currentBatchTracker(), init); |
| |
| int instanceCount = fGeoData.count(); |
| size_t vertexStride = gp->getVertexStride(); |
| SkASSERT(vertexStride == sizeof(CircleVertex)); |
| |
| // drop out the middle quad if we're stroked |
| int indicesPerInstance = this->stroke() ? kIndicesPerStrokeRRect : kIndicesPerRRect; |
| SkAutoTUnref<const GrIndexBuffer> indexBuffer( |
| ref_rrect_index_buffer(this->stroke(), batchTarget->resourceProvider())); |
| |
| InstancedHelper helper; |
| CircleVertex* verts = reinterpret_cast<CircleVertex*>(helper.init(batchTarget, |
| kTriangles_GrPrimitiveType, vertexStride, indexBuffer, kVertsPerRRect, |
| indicesPerInstance, instanceCount)); |
| if (!verts || !indexBuffer) { |
| SkDebugf("Could not allocate vertices\n"); |
| return; |
| } |
| |
| for (int i = 0; i < instanceCount; i++) { |
| Geometry& args = fGeoData[i]; |
| |
| SkScalar outerRadius = args.fOuterRadius; |
| |
| const SkRect& bounds = args.fDevBounds; |
| |
| SkScalar yCoords[4] = { |
| bounds.fTop, |
| bounds.fTop + outerRadius, |
| bounds.fBottom - outerRadius, |
| bounds.fBottom |
| }; |
| |
| SkScalar yOuterRadii[4] = {-1, 0, 0, 1 }; |
| // The inner radius in the vertex data must be specified in normalized space. |
| SkScalar innerRadius = args.fInnerRadius / args.fOuterRadius; |
| for (int i = 0; i < 4; ++i) { |
| verts->fPos = SkPoint::Make(bounds.fLeft, yCoords[i]); |
| verts->fOffset = SkPoint::Make(-1, yOuterRadii[i]); |
| verts->fOuterRadius = outerRadius; |
| verts->fInnerRadius = innerRadius; |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fLeft + outerRadius, yCoords[i]); |
| verts->fOffset = SkPoint::Make(0, yOuterRadii[i]); |
| verts->fOuterRadius = outerRadius; |
| verts->fInnerRadius = innerRadius; |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fRight - outerRadius, yCoords[i]); |
| verts->fOffset = SkPoint::Make(0, yOuterRadii[i]); |
| verts->fOuterRadius = outerRadius; |
| verts->fInnerRadius = innerRadius; |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fRight, yCoords[i]); |
| verts->fOffset = SkPoint::Make(1, yOuterRadii[i]); |
| verts->fOuterRadius = outerRadius; |
| verts->fInnerRadius = innerRadius; |
| verts++; |
| } |
| } |
| |
| helper.issueDraw(batchTarget); |
| } |
| |
| SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; } |
| |
| private: |
| RRectCircleRendererBatch(const Geometry& geometry) { |
| this->initClassID<RRectCircleRendererBatch>(); |
| fGeoData.push_back(geometry); |
| |
| this->setBounds(geometry.fDevBounds); |
| } |
| |
| bool onCombineIfPossible(GrBatch* t) override { |
| RRectCircleRendererBatch* that = t->cast<RRectCircleRendererBatch>(); |
| |
| // TODO use vertex color to avoid breaking batches |
| if (this->color() != that->color()) { |
| return false; |
| } |
| |
| if (this->stroke() != that->stroke()) { |
| return false; |
| } |
| |
| SkASSERT(this->usesLocalCoords() == that->usesLocalCoords()); |
| if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) { |
| return false; |
| } |
| |
| fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin()); |
| this->joinBounds(that->bounds()); |
| return true; |
| } |
| |
| GrColor color() const { return fBatch.fColor; } |
| bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; } |
| const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; } |
| bool stroke() const { return fBatch.fStroke; } |
| |
| struct BatchTracker { |
| GrColor fColor; |
| bool fStroke; |
| bool fUsesLocalCoords; |
| bool fColorIgnored; |
| bool fCoverageIgnored; |
| }; |
| |
| BatchTracker fBatch; |
| SkSTArray<1, Geometry, true> fGeoData; |
| }; |
| |
| class RRectEllipseRendererBatch : public GrBatch { |
| public: |
| struct Geometry { |
| GrColor fColor; |
| SkMatrix fViewMatrix; |
| SkScalar fXRadius; |
| SkScalar fYRadius; |
| SkScalar fInnerXRadius; |
| SkScalar fInnerYRadius; |
| bool fStroke; |
| SkRect fDevBounds; |
| }; |
| |
| static GrBatch* Create(const Geometry& geometry) { |
| return SkNEW_ARGS(RRectEllipseRendererBatch, (geometry)); |
| } |
| |
| const char* name() const override { return "RRectEllipseRendererBatch"; } |
| |
| void getInvariantOutputColor(GrInitInvariantOutput* out) const override { |
| // When this is called on a batch, there is only one geometry bundle |
| out->setKnownFourComponents(fGeoData[0].fColor); |
| } |
| void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override { |
| out->setUnknownSingleComponent(); |
| } |
| |
| void initBatchTracker(const GrPipelineInfo& init) override { |
| // Handle any color overrides |
| if (init.fColorIgnored) { |
| fGeoData[0].fColor = GrColor_ILLEGAL; |
| } else if (GrColor_ILLEGAL != init.fOverrideColor) { |
| fGeoData[0].fColor = init.fOverrideColor; |
| } |
| |
| // setup batch properties |
| fBatch.fColorIgnored = init.fColorIgnored; |
| fBatch.fColor = fGeoData[0].fColor; |
| fBatch.fStroke = fGeoData[0].fStroke; |
| fBatch.fUsesLocalCoords = init.fUsesLocalCoords; |
| fBatch.fCoverageIgnored = init.fCoverageIgnored; |
| } |
| |
| void generateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) override { |
| // reset to device coordinates |
| SkMatrix invert; |
| if (!this->viewMatrix().invert(&invert)) { |
| SkDebugf("Failed to invert\n"); |
| return; |
| } |
| |
| // Setup geometry processor |
| SkAutoTUnref<GrGeometryProcessor> gp(EllipseEdgeEffect::Create(this->color(), |
| this->stroke(), |
| invert)); |
| |
| batchTarget->initDraw(gp, pipeline); |
| |
| // TODO this is hacky, but the only way we have to initialize the GP is to use the |
| // GrPipelineInfo struct so we can generate the correct shader. Once we have GrBatch |
| // everywhere we can remove this nastiness |
| GrPipelineInfo init; |
| init.fColorIgnored = fBatch.fColorIgnored; |
| init.fOverrideColor = GrColor_ILLEGAL; |
| init.fCoverageIgnored = fBatch.fCoverageIgnored; |
| init.fUsesLocalCoords = this->usesLocalCoords(); |
| gp->initBatchTracker(batchTarget->currentBatchTracker(), init); |
| |
| int instanceCount = fGeoData.count(); |
| size_t vertexStride = gp->getVertexStride(); |
| SkASSERT(vertexStride == sizeof(EllipseVertex)); |
| |
| // drop out the middle quad if we're stroked |
| int indicesPerInstance = this->stroke() ? kIndicesPerStrokeRRect : kIndicesPerRRect; |
| SkAutoTUnref<const GrIndexBuffer> indexBuffer( |
| ref_rrect_index_buffer(this->stroke(), batchTarget->resourceProvider())); |
| |
| InstancedHelper helper; |
| EllipseVertex* verts = reinterpret_cast<EllipseVertex*>( |
| helper.init(batchTarget, kTriangles_GrPrimitiveType, vertexStride, indexBuffer, |
| kVertsPerRRect, indicesPerInstance, instanceCount)); |
| if (!verts || !indexBuffer) { |
| SkDebugf("Could not allocate vertices\n"); |
| return; |
| } |
| |
| for (int i = 0; i < instanceCount; i++) { |
| Geometry& args = fGeoData[i]; |
| |
| // Compute the reciprocals of the radii here to save time in the shader |
| SkScalar xRadRecip = SkScalarInvert(args.fXRadius); |
| SkScalar yRadRecip = SkScalarInvert(args.fYRadius); |
| SkScalar xInnerRadRecip = SkScalarInvert(args.fInnerXRadius); |
| SkScalar yInnerRadRecip = SkScalarInvert(args.fInnerYRadius); |
| |
| // Extend the radii out half a pixel to antialias. |
| SkScalar xOuterRadius = args.fXRadius + SK_ScalarHalf; |
| SkScalar yOuterRadius = args.fYRadius + SK_ScalarHalf; |
| |
| const SkRect& bounds = args.fDevBounds; |
| |
| SkScalar yCoords[4] = { |
| bounds.fTop, |
| bounds.fTop + yOuterRadius, |
| bounds.fBottom - yOuterRadius, |
| bounds.fBottom |
| }; |
| SkScalar yOuterOffsets[4] = { |
| yOuterRadius, |
| SK_ScalarNearlyZero, // we're using inversesqrt() in shader, so can't be exactly 0 |
| SK_ScalarNearlyZero, |
| yOuterRadius |
| }; |
| |
| for (int i = 0; i < 4; ++i) { |
| verts->fPos = SkPoint::Make(bounds.fLeft, yCoords[i]); |
| verts->fOffset = SkPoint::Make(xOuterRadius, yOuterOffsets[i]); |
| verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fLeft + xOuterRadius, yCoords[i]); |
| verts->fOffset = SkPoint::Make(SK_ScalarNearlyZero, yOuterOffsets[i]); |
| verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fRight - xOuterRadius, yCoords[i]); |
| verts->fOffset = SkPoint::Make(SK_ScalarNearlyZero, yOuterOffsets[i]); |
| verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fRight, yCoords[i]); |
| verts->fOffset = SkPoint::Make(xOuterRadius, yOuterOffsets[i]); |
| verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| verts++; |
| } |
| } |
| helper.issueDraw(batchTarget); |
| } |
| |
| SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; } |
| |
| private: |
| RRectEllipseRendererBatch(const Geometry& geometry) { |
| this->initClassID<RRectEllipseRendererBatch>(); |
| fGeoData.push_back(geometry); |
| |
| this->setBounds(geometry.fDevBounds); |
| } |
| |
| bool onCombineIfPossible(GrBatch* t) override { |
| RRectEllipseRendererBatch* that = t->cast<RRectEllipseRendererBatch>(); |
| |
| // TODO use vertex color to avoid breaking batches |
| if (this->color() != that->color()) { |
| return false; |
| } |
| |
| if (this->stroke() != that->stroke()) { |
| return false; |
| } |
| |
| SkASSERT(this->usesLocalCoords() == that->usesLocalCoords()); |
| if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) { |
| return false; |
| } |
| |
| fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin()); |
| this->joinBounds(that->bounds()); |
| return true; |
| } |
| |
| GrColor color() const { return fBatch.fColor; } |
| bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; } |
| const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; } |
| bool stroke() const { return fBatch.fStroke; } |
| |
| struct BatchTracker { |
| GrColor fColor; |
| bool fStroke; |
| bool fUsesLocalCoords; |
| bool fColorIgnored; |
| bool fCoverageIgnored; |
| }; |
| |
| BatchTracker fBatch; |
| SkSTArray<1, Geometry, true> fGeoData; |
| }; |
| |
| static GrBatch* create_rrect_batch(GrColor color, |
| const SkMatrix& viewMatrix, |
| const SkRRect& rrect, |
| const SkStrokeRec& stroke) { |
| SkASSERT(viewMatrix.rectStaysRect()); |
| SkASSERT(rrect.isSimple()); |
| SkASSERT(!rrect.isOval()); |
| |
| // RRect batchs only handle simple, but not too simple, rrects |
| // do any matrix crunching before we reset the draw state for device coords |
| const SkRect& rrectBounds = rrect.getBounds(); |
| SkRect bounds; |
| viewMatrix.mapRect(&bounds, rrectBounds); |
| |
| SkVector radii = rrect.getSimpleRadii(); |
| SkScalar xRadius = SkScalarAbs(viewMatrix[SkMatrix::kMScaleX]*radii.fX + |
| viewMatrix[SkMatrix::kMSkewY]*radii.fY); |
| SkScalar yRadius = SkScalarAbs(viewMatrix[SkMatrix::kMSkewX]*radii.fX + |
| viewMatrix[SkMatrix::kMScaleY]*radii.fY); |
| |
| SkStrokeRec::Style style = stroke.getStyle(); |
| |
| // do (potentially) anisotropic mapping of stroke |
| SkVector scaledStroke; |
| SkScalar strokeWidth = stroke.getWidth(); |
| |
| bool isStrokeOnly = SkStrokeRec::kStroke_Style == style || |
| SkStrokeRec::kHairline_Style == style; |
| bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style; |
| |
| if (hasStroke) { |
| if (SkStrokeRec::kHairline_Style == style) { |
| scaledStroke.set(1, 1); |
| } else { |
| scaledStroke.fX = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMScaleX] + |
| viewMatrix[SkMatrix::kMSkewY])); |
| scaledStroke.fY = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMSkewX] + |
| viewMatrix[SkMatrix::kMScaleY])); |
| } |
| |
| // if half of strokewidth is greater than radius, we don't handle that right now |
| if (SK_ScalarHalf*scaledStroke.fX > xRadius || SK_ScalarHalf*scaledStroke.fY > yRadius) { |
| return NULL; |
| } |
| } |
| |
| // The way the effect interpolates the offset-to-ellipse/circle-center attribute only works on |
| // the interior of the rrect if the radii are >= 0.5. Otherwise, the inner rect of the nine- |
| // patch will have fractional coverage. This only matters when the interior is actually filled. |
| // We could consider falling back to rect rendering here, since a tiny radius is |
| // indistinguishable from a square corner. |
| if (!isStrokeOnly && (SK_ScalarHalf > xRadius || SK_ScalarHalf > yRadius)) { |
| return NULL; |
| } |
| |
| // if the corners are circles, use the circle renderer |
| if ((!hasStroke || scaledStroke.fX == scaledStroke.fY) && xRadius == yRadius) { |
| SkScalar innerRadius = 0.0f; |
| SkScalar outerRadius = xRadius; |
| SkScalar halfWidth = 0; |
| if (hasStroke) { |
| if (SkScalarNearlyZero(scaledStroke.fX)) { |
| halfWidth = SK_ScalarHalf; |
| } else { |
| halfWidth = SkScalarHalf(scaledStroke.fX); |
| } |
| |
| if (isStrokeOnly) { |
| innerRadius = xRadius - halfWidth; |
| } |
| outerRadius += halfWidth; |
| bounds.outset(halfWidth, halfWidth); |
| } |
| |
| isStrokeOnly = (isStrokeOnly && innerRadius >= 0); |
| |
| // The radii are outset for two reasons. First, it allows the shader to simply perform |
| // simpler computation because the computed alpha is zero, rather than 50%, at the radius. |
| // Second, the outer radius is used to compute the verts of the bounding box that is |
| // rendered and the outset ensures the box will cover all partially covered by the rrect |
| // corners. |
| outerRadius += SK_ScalarHalf; |
| innerRadius -= SK_ScalarHalf; |
| |
| // Expand the rect so all the pixels will be captured. |
| bounds.outset(SK_ScalarHalf, SK_ScalarHalf); |
| |
| RRectCircleRendererBatch::Geometry geometry; |
| geometry.fViewMatrix = viewMatrix; |
| geometry.fColor = color; |
| geometry.fInnerRadius = innerRadius; |
| geometry.fOuterRadius = outerRadius; |
| geometry.fStroke = isStrokeOnly; |
| geometry.fDevBounds = bounds; |
| |
| return RRectCircleRendererBatch::Create(geometry); |
| // otherwise we use the ellipse renderer |
| } else { |
| SkScalar innerXRadius = 0.0f; |
| SkScalar innerYRadius = 0.0f; |
| if (hasStroke) { |
| if (SkScalarNearlyZero(scaledStroke.length())) { |
| scaledStroke.set(SK_ScalarHalf, SK_ScalarHalf); |
| } else { |
| scaledStroke.scale(SK_ScalarHalf); |
| } |
| |
| // we only handle thick strokes for near-circular ellipses |
| if (scaledStroke.length() > SK_ScalarHalf && |
| (SK_ScalarHalf*xRadius > yRadius || SK_ScalarHalf*yRadius > xRadius)) { |
| return NULL; |
| } |
| |
| // we don't handle it if curvature of the stroke is less than curvature of the ellipse |
| if (scaledStroke.fX*(yRadius*yRadius) < (scaledStroke.fY*scaledStroke.fY)*xRadius || |
| scaledStroke.fY*(xRadius*xRadius) < (scaledStroke.fX*scaledStroke.fX)*yRadius) { |
| return NULL; |
| } |
| |
| // this is legit only if scale & translation (which should be the case at the moment) |
| if (isStrokeOnly) { |
| innerXRadius = xRadius - scaledStroke.fX; |
| innerYRadius = yRadius - scaledStroke.fY; |
| } |
| |
| xRadius += scaledStroke.fX; |
| yRadius += scaledStroke.fY; |
| bounds.outset(scaledStroke.fX, scaledStroke.fY); |
| } |
| |
| isStrokeOnly = (isStrokeOnly && innerXRadius >= 0 && innerYRadius >= 0); |
| |
| // Expand the rect so all the pixels will be captured. |
| bounds.outset(SK_ScalarHalf, SK_ScalarHalf); |
| |
| RRectEllipseRendererBatch::Geometry geometry; |
| geometry.fViewMatrix = viewMatrix; |
| geometry.fColor = color; |
| geometry.fXRadius = xRadius; |
| geometry.fYRadius = yRadius; |
| geometry.fInnerXRadius = innerXRadius; |
| geometry.fInnerYRadius = innerYRadius; |
| geometry.fStroke = isStrokeOnly; |
| geometry.fDevBounds = bounds; |
| |
| return RRectEllipseRendererBatch::Create(geometry); |
| } |
| } |
| |
| bool GrOvalRenderer::drawRRect(GrDrawTarget* target, |
| GrPipelineBuilder* pipelineBuilder, |
| GrColor color, |
| const SkMatrix& viewMatrix, |
| bool useAA, |
| const SkRRect& rrect, |
| const SkStrokeRec& stroke) { |
| if (rrect.isOval()) { |
| return this->drawOval(target, pipelineBuilder, color, viewMatrix, useAA, rrect.getBounds(), |
| stroke); |
| } |
| |
| bool useCoverageAA = useAA && !pipelineBuilder->getRenderTarget()->isMultisampled(); |
| |
| // only anti-aliased rrects for now |
| if (!useCoverageAA) { |
| return false; |
| } |
| |
| if (!viewMatrix.rectStaysRect() || !rrect.isSimple()) { |
| return false; |
| } |
| |
| SkAutoTUnref<GrBatch> batch(create_rrect_batch(color, viewMatrix, rrect, stroke)); |
| if (!batch) { |
| return false; |
| } |
| |
| target->drawBatch(pipelineBuilder, batch); |
| return true; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| #ifdef GR_TEST_UTILS |
| |
| BATCH_TEST_DEFINE(CircleBatch) { |
| SkMatrix viewMatrix = GrTest::TestMatrix(random); |
| GrColor color = GrRandomColor(random); |
| bool useCoverageAA = random->nextBool(); |
| SkRect circle = GrTest::TestRect(random); |
| return create_circle_batch(color, viewMatrix, useCoverageAA, circle, |
| GrTest::TestStrokeRec(random)); |
| } |
| |
| BATCH_TEST_DEFINE(EllipseBatch) { |
| SkMatrix viewMatrix = GrTest::TestMatrixRectStaysRect(random); |
| GrColor color = GrRandomColor(random); |
| bool useCoverageAA = random->nextBool(); |
| SkRect ellipse = GrTest::TestRect(random); |
| return create_ellipse_batch(color, viewMatrix, useCoverageAA, ellipse, |
| GrTest::TestStrokeRec(random)); |
| } |
| |
| BATCH_TEST_DEFINE(DIEllipseBatch) { |
| SkMatrix viewMatrix = GrTest::TestMatrix(random); |
| GrColor color = GrRandomColor(random); |
| bool useCoverageAA = random->nextBool(); |
| SkRect ellipse = GrTest::TestRect(random); |
| return create_diellipse_batch(color, viewMatrix, useCoverageAA, ellipse, |
| GrTest::TestStrokeRec(random)); |
| } |
| |
| BATCH_TEST_DEFINE(RRectBatch) { |
| SkMatrix viewMatrix = GrTest::TestMatrixRectStaysRect(random); |
| GrColor color = GrRandomColor(random); |
| const SkRRect& rrect = GrTest::TestRRectSimple(random); |
| return create_rrect_batch(color, viewMatrix, rrect, GrTest::TestStrokeRec(random)); |
| } |
| |
| #endif |