blob: 0687dcf7b58e95f1dfbb0c84da53deb040181ceb [file] [log] [blame]
/*
* Copyright 2010 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrContext_DEFINED
#define GrContext_DEFINED
#include "GrPaint.h"
#include "GrAARectRenderer.h"
#include "GrClipData.h"
// not strictly needed but requires WK change in LayerTextureUpdaterCanvas to
// remove.
#include "GrRenderTarget.h"
#include "SkClipStack.h"
class GrAutoScratchTexture;
class GrDrawState;
class GrDrawTarget;
class GrFontCache;
class GrGpu;
class GrIndexBuffer;
class GrIndexBufferAllocPool;
class GrInOrderDrawBuffer;
class GrPathRenderer;
class GrPathRendererChain;
class GrResourceEntry;
class GrResourceCache;
class GrStencilBuffer;
class GrVertexBuffer;
class GrVertexBufferAllocPool;
class GrSoftwarePathRenderer;
class GR_API GrContext : public GrRefCnt {
public:
SK_DECLARE_INST_COUNT(GrContext)
/**
* Creates a GrContext from within a 3D context.
*/
static GrContext* Create(GrEngine engine,
GrPlatform3DContext context3D);
/**
* Returns the number of GrContext instances for the current thread.
*/
static int GetThreadInstanceCount();
virtual ~GrContext();
/**
* The GrContext normally assumes that no outsider is setting state
* within the underlying 3D API's context/device/whatever. This call informs
* the context that the state was modified and it should resend. Shouldn't
* be called frequently for good performance.
*/
void resetContext();
/**
* Abandons all gpu resources, assumes 3D API state is unknown. Call this
* if you have lost the associated GPU context, and thus internal texture,
* buffer, etc. references/IDs are now invalid. Should be called even when
* GrContext is no longer going to be used for two reasons:
* 1) ~GrContext will not try to free the objects in the 3D API.
* 2) If you've created GrResources that outlive the GrContext they will
* be marked as invalid (GrResource::isValid()) and won't attempt to
* free their underlying resource in the 3D API.
* Content drawn since the last GrContext::flush() may be lost.
*/
void contextLost();
/**
* Similar to contextLost, but makes no attempt to reset state.
* Use this method when GrContext destruction is pending, but
* the graphics context is destroyed first.
*/
void contextDestroyed();
/**
* Frees gpu created by the context. Can be called to reduce GPU memory
* pressure.
*/
void freeGpuResources();
/**
* Returns the number of bytes of GPU memory hosted by the texture cache.
*/
size_t getGpuTextureCacheBytes() const;
///////////////////////////////////////////////////////////////////////////
// Textures
/**
* Create a new entry, based on the specified key and texture, and return
* a "locked" texture. Must call be balanced with an unlockTexture() call.
*
* @param params The tex params used to draw a texture may help determine
* the cache entry used. (e.g. different versions may exist
* for different wrap modes on GPUs with limited NPOT
* texture support). NULL implies clamp wrap modes.
* @param desc Description of the texture properties.
* @param cacheData Cache-specific properties (e.g., texture gen ID)
* @param srcData Pointer to the pixel values.
* @param rowBytes The number of bytes between rows of the texture. Zero
* implies tightly packed rows.
*/
GrTexture* createAndLockTexture(const GrTextureParams* params,
const GrTextureDesc& desc,
const GrCacheData& cacheData,
void* srcData, size_t rowBytes);
/**
* Search for an entry based on key and dimensions. If found, "lock" it and
* return it. The return value will be NULL if not found.
* Must be balanced with an unlockTexture() call.
*
* @param desc Description of the texture properties.
* @param cacheData Cache-specific properties (e.g., texture gen ID)
* @param params The tex params used to draw a texture may help determine
* the cache entry used. (e.g. different versions may exist
* for different wrap modes on GPUs with limited NPOT
* texture support). NULL implies clamp wrap modes.
*/
GrTexture* findAndLockTexture(const GrTextureDesc& desc,
const GrCacheData& cacheData,
const GrTextureParams* params);
/**
* Determines whether a texture is in the cache. If the texture is found it
* will not be locked or returned. This call does not affect the priority of
* the texture for deletion.
*/
bool isTextureInCache(const GrTextureDesc& desc,
const GrCacheData& cacheData,
const GrTextureParams* params) const;
/**
* Enum that determines how closely a returned scratch texture must match
* a provided GrTextureDesc.
*/
enum ScratchTexMatch {
/**
* Finds a texture that exactly matches the descriptor.
*/
kExact_ScratchTexMatch,
/**
* Finds a texture that approximately matches the descriptor. Will be
* at least as large in width and height as desc specifies. If desc
* specifies that texture is a render target then result will be a
* render target. If desc specifies a render target and doesn't set the
* no stencil flag then result will have a stencil. Format and aa level
* will always match.
*/
kApprox_ScratchTexMatch
};
/**
* Returns a texture matching the desc. It's contents are unknown. Subsequent
* requests with the same descriptor are not guaranteed to return the same
* texture. The same texture is guaranteed not be returned again until it is
* unlocked. Call must be balanced with an unlockTexture() call.
*
* Textures created by createAndLockTexture() hide the complications of
* tiling non-power-of-two textures on APIs that don't support this (e.g.
* unextended GLES2). Tiling a npot texture created by lockScratchTexture on
* such an API will create gaps in the tiling pattern. This includes clamp
* mode. (This may be addressed in a future update.)
*/
GrTexture* lockScratchTexture(const GrTextureDesc& desc,
ScratchTexMatch match);
/**
* When done with an entry, call unlockTexture(entry) on it, which returns
* it to the cache, where it may be purged.
*/
void unlockTexture(GrTexture* texture);
/**
* Free any data associated with the provided entry in the texture cache.
* Currently this entry point is only used when a scratch texture is
* detached from the cache. In this case the GrResourceEntry* associated
* with the texture needs to be freed since it will be re-allocated when
* the texture is re-added. This entry point will be removed soon since the
* texture can now carry around a pointer to its GrResourceEntry* (and
* will eventually take over its functionality).
*/
void freeEntry(GrTexture* texture);
/**
* Creates a texture that is outside the cache. Does not count against
* cache's budget.
*/
GrTexture* createUncachedTexture(const GrTextureDesc& desc,
void* srcData,
size_t rowBytes);
/**
* Returns true if the specified use of an indexed texture is supported.
* Support may depend upon whether the texture params indicate that the
* texture will be tiled. Passing NULL for the texture params indicates
* clamp mode.
*/
bool supportsIndex8PixelConfig(const GrTextureParams*,
int width,
int height) const;
/**
* Return the current texture cache limits.
*
* @param maxTextures If non-null, returns maximum number of textures that
* can be held in the cache.
* @param maxTextureBytes If non-null, returns maximum number of bytes of
* texture memory that can be held in the cache.
*/
void getTextureCacheLimits(int* maxTextures, size_t* maxTextureBytes) const;
/**
* Specify the texture cache limits. If the current cache exceeds either
* of these, it will be purged (LRU) to keep the cache within these limits.
*
* @param maxTextures The maximum number of textures that can be held in
* the cache.
* @param maxTextureBytes The maximum number of bytes of texture memory
* that can be held in the cache.
*/
void setTextureCacheLimits(int maxTextures, size_t maxTextureBytes);
/**
* Return the max width or height of a texture supported by the current gpu
*/
int getMaxTextureSize() const;
/**
* Return the max width or height of a render target supported by the
* current gpu
*/
int getMaxRenderTargetSize() const;
///////////////////////////////////////////////////////////////////////////
// Render targets
/**
* Sets the render target.
* @param target the render target to set. (should not be NULL.)
*/
void setRenderTarget(GrRenderTarget* target);
/**
* Gets the current render target.
* @return the currently bound render target. Should never be NULL.
*/
const GrRenderTarget* getRenderTarget() const;
GrRenderTarget* getRenderTarget();
GrAARectRenderer* getAARectRenderer() { return fAARectRenderer; }
/**
* Can the provided configuration act as a color render target?
*/
bool isConfigRenderable(GrPixelConfig config) const;
///////////////////////////////////////////////////////////////////////////
// Platform Surfaces
/**
* Wraps an existing texture with a GrTexture object.
*
* OpenGL: if the object is a texture Gr may change its GL texture params
* when it is drawn.
*
* @param desc description of the object to create.
*
* @return GrTexture object or NULL on failure.
*/
GrTexture* createPlatformTexture(const GrPlatformTextureDesc& desc);
/**
* Wraps an existing render target with a GrRenderTarget object. It is
* similar to createPlatformTexture but can be used to draw into surfaces
* that are not also textures (e.g. FBO 0 in OpenGL, or an MSAA buffer that
* the client will resolve to a texture).
*
* @param desc description of the object to create.
*
* @return GrTexture object or NULL on failure.
*/
GrRenderTarget* createPlatformRenderTarget(
const GrPlatformRenderTargetDesc& desc);
///////////////////////////////////////////////////////////////////////////
// Matrix state
/**
* Gets the current transformation matrix.
* @return the current matrix.
*/
const GrMatrix& getMatrix() const;
/**
* Sets the transformation matrix.
* @param m the matrix to set.
*/
void setMatrix(const GrMatrix& m);
/**
* Concats the current matrix. The passed matrix is applied before the
* current matrix.
* @param m the matrix to concat.
*/
void concatMatrix(const GrMatrix& m) const;
///////////////////////////////////////////////////////////////////////////
// Clip state
/**
* Gets the current clip.
* @return the current clip.
*/
const GrClipData* getClip() const;
/**
* Sets the clip.
* @param clipData the clip to set.
*/
void setClip(const GrClipData* clipData);
///////////////////////////////////////////////////////////////////////////
// Draws
/**
* Clear the entire or rect of the render target, ignoring any clips.
* @param rect the rect to clear or the whole thing if rect is NULL.
* @param color the color to clear to.
* @param target if non-NULL, the render target to clear otherwise clear
* the current render target
*/
void clear(const GrIRect* rect, GrColor color,
GrRenderTarget* target = NULL);
/**
* Draw everywhere (respecting the clip) with the paint.
*/
void drawPaint(const GrPaint& paint);
/**
* Draw the rect using a paint.
* @param paint describes how to color pixels.
* @param strokeWidth If strokeWidth < 0, then the rect is filled, else
* the rect is mitered stroked based on strokeWidth. If
* strokeWidth == 0, then the stroke is always a single
* pixel thick.
* @param matrix Optional matrix applied to the rect. Applied before
* context's matrix or the paint's matrix.
* The rects coords are used to access the paint (through texture matrix)
*/
void drawRect(const GrPaint& paint,
const GrRect&,
GrScalar strokeWidth = -1,
const GrMatrix* matrix = NULL);
/**
* Maps a rect of paint coordinates onto the a rect of destination
* coordinates. Each rect can optionally be transformed. The srcRect
* is stretched over the dstRect. The dstRect is transformed by the
* context's matrix and the srcRect is transformed by the paint's matrix.
* Additional optional matrices can be provided by parameters.
*
* @param paint describes how to color pixels.
* @param dstRect the destination rect to draw.
* @param srcRect rect of paint coordinates to be mapped onto dstRect
* @param dstMatrix Optional matrix to transform dstRect. Applied before
* context's matrix.
* @param srcMatrix Optional matrix to transform srcRect Applied before
* paint's matrix.
*/
void drawRectToRect(const GrPaint& paint,
const GrRect& dstRect,
const GrRect& srcRect,
const GrMatrix* dstMatrix = NULL,
const GrMatrix* srcMatrix = NULL);
/**
* Draws a path.
*
* @param paint describes how to color pixels.
* @param path the path to draw
* @param fill the path filling rule to use.
* @param translate optional additional translation applied to the
* path.
*/
void drawPath(const GrPaint& paint, const SkPath& path, GrPathFill fill,
const GrPoint* translate = NULL);
/**
* Draws vertices with a paint.
*
* @param paint describes how to color pixels.
* @param primitiveType primitives type to draw.
* @param vertexCount number of vertices.
* @param positions array of vertex positions, required.
* @param texCoords optional array of texture coordinates used
* to access the paint.
* @param colors optional array of per-vertex colors, supercedes
* the paint's color field.
* @param indices optional array of indices. If NULL vertices
* are drawn non-indexed.
* @param indexCount if indices is non-null then this is the
* number of indices.
*/
void drawVertices(const GrPaint& paint,
GrPrimitiveType primitiveType,
int vertexCount,
const GrPoint positions[],
const GrPoint texs[],
const GrColor colors[],
const uint16_t indices[],
int indexCount);
/**
* Draws an oval.
*
* @param paint describes how to color pixels.
* @param rect the bounding rect of the oval.
* @param strokeWidth if strokeWidth < 0, then the oval is filled, else
* the rect is stroked based on strokeWidth. If
* strokeWidth == 0, then the stroke is always a single
* pixel thick.
*/
void drawOval(const GrPaint& paint,
const GrRect& rect,
SkScalar strokeWidth);
///////////////////////////////////////////////////////////////////////////
// Misc.
/**
* Flags that affect flush() behavior.
*/
enum FlushBits {
/**
* A client may want Gr to bind a GrRenderTarget in the 3D API so that
* it can be rendered to directly. However, Gr lazily sets state. Simply
* calling setRenderTarget() followed by flush() without flags may not
* bind the render target. This flag forces the context to bind the last
* set render target in the 3D API.
*/
kForceCurrentRenderTarget_FlushBit = 0x1,
/**
* A client may reach a point where it has partially rendered a frame
* through a GrContext that it knows the user will never see. This flag
* causes the flush to skip submission of deferred content to the 3D API
* during the flush.
*/
kDiscard_FlushBit = 0x2,
};
/**
* Call to ensure all drawing to the context has been issued to the
* underlying 3D API.
* @param flagsBitfield flags that control the flushing behavior. See
* FlushBits.
*/
void flush(int flagsBitfield = 0);
/**
* Reads a rectangle of pixels from a render target.
* @param target the render target to read from. NULL means the
* current render target.
* @param left left edge of the rectangle to read (inclusive)
* @param top top edge of the rectangle to read (inclusive)
* @param width width of rectangle to read in pixels.
* @param height height of rectangle to read in pixels.
* @param config the pixel config of the destination buffer
* @param buffer memory to read the rectangle into.
* @param rowBytes number of bytes bewtween consecutive rows. Zero
* means rows are tightly packed.
*
* @return true if the read succeeded, false if not. The read can fail
* because of an unsupported pixel config or because no render
* target is currently set.
*/
bool readRenderTargetPixels(GrRenderTarget* target,
int left, int top, int width, int height,
GrPixelConfig config, void* buffer,
size_t rowBytes) {
return this->internalReadRenderTargetPixels(target, left, top,
width, height,
config, buffer,
rowBytes, 0);
}
/**
* Copy the src pixels [buffer, rowbytes, pixelconfig] into a render target
* at the specified rectangle.
* @param target the render target to write into. NULL means the
* current render target.
* @param left left edge of the rectangle to write (inclusive)
* @param top top edge of the rectangle to write (inclusive)
* @param width width of rectangle to write in pixels.
* @param height height of rectangle to write in pixels.
* @param config the pixel config of the source buffer
* @param buffer memory to read the rectangle from.
* @param rowBytes number of bytes bewtween consecutive rows. Zero
* means rows are tightly packed.
*/
void writeRenderTargetPixels(GrRenderTarget* target,
int left, int top, int width, int height,
GrPixelConfig config, const void* buffer,
size_t rowBytes) {
this->internalWriteRenderTargetPixels(target, left, top, width, height,
config, buffer, rowBytes, 0);
}
/**
* Reads a rectangle of pixels from a texture.
* @param texture the texture to read from.
* @param left left edge of the rectangle to read (inclusive)
* @param top top edge of the rectangle to read (inclusive)
* @param width width of rectangle to read in pixels.
* @param height height of rectangle to read in pixels.
* @param config the pixel config of the destination buffer
* @param buffer memory to read the rectangle into.
* @param rowBytes number of bytes bewtween consecutive rows. Zero
* means rows are tightly packed.
*
* @return true if the read succeeded, false if not. The read can fail
* because of an unsupported pixel config.
*/
bool readTexturePixels(GrTexture* texture,
int left, int top, int width, int height,
GrPixelConfig config, void* buffer,
size_t rowBytes) {
return this->internalReadTexturePixels(texture, left, top,
width, height,
config, buffer, rowBytes, 0);
}
/**
* Writes a rectangle of pixels to a texture.
* @param texture the render target to read from.
* @param left left edge of the rectangle to write (inclusive)
* @param top top edge of the rectangle to write (inclusive)
* @param width width of rectangle to write in pixels.
* @param height height of rectangle to write in pixels.
* @param config the pixel config of the source buffer
* @param buffer memory to read pixels from
* @param rowBytes number of bytes bewtween consecutive rows. Zero
* means rows are tightly packed.
*/
void writeTexturePixels(GrTexture* texture,
int left, int top, int width, int height,
GrPixelConfig config, const void* buffer,
size_t rowBytes) {
this->internalWriteTexturePixels(texture, left, top, width, height,
config, buffer, rowBytes, 0);
}
/**
* Copies all texels from one texture to another.
* @param src the texture to copy from.
* @param dst the render target to copy to.
*/
void copyTexture(GrTexture* src, GrRenderTarget* dst);
/**
* Resolves a render target that has MSAA. The intermediate MSAA buffer is
* downsampled to the associated GrTexture (accessible via
* GrRenderTarget::asTexture()). Any pending draws to the render target will
* be executed before the resolve.
*
* This is only necessary when a client wants to access the object directly
* using the underlying graphics API. GrContext will detect when it must
* perform a resolve to a GrTexture used as the source of a draw or before
* reading pixels back from a GrTexture or GrRenderTarget.
*/
void resolveRenderTarget(GrRenderTarget* target);
/**
* Applies a 2D Gaussian blur to a given texture.
* @param srcTexture The source texture to be blurred.
* @param canClobberSrc If true, srcTexture may be overwritten, and
* may be returned as the result.
* @param rect The destination rectangle.
* @param sigmaX The blur's standard deviation in X.
* @param sigmaY The blur's standard deviation in Y.
* @return the blurred texture, which may be srcTexture ref'ed, or a
* new texture. It is the caller's responsibility to unref this texture.
*/
GrTexture* gaussianBlur(GrTexture* srcTexture,
bool canClobberSrc,
const SkRect& rect,
float sigmaX, float sigmaY);
/**
* Zooms a subset of the texture to a larger size with a nice edge.
* The inner rectangle is a simple scaling of the texture by a factor of
* |zoom|. The outer |inset| pixels transition from the background texture
* to the zoomed coordinate system at a rate of
* (distance_to_edge / inset) ^2, producing a rounded lens effect.
* @param srcTexture The source texture to be zoomed.
* @param dstRect The destination rectangle.
* @param srcRect The source rectangle. Must be smaller than
* dstRect
* @param inset Number of pixels to blend along the edges.
* @return the zoomed texture, which is dstTexture.
*/
GrTexture* zoom(GrTexture* srcTexture,
const SkRect& dstRect, const SkRect& srcRect, float inset);
/**
* This enum is used with the function below, applyMorphology.
*/
enum MorphologyType {
kErode_MorphologyType,
kDilate_MorphologyType,
};
/**
* Applies a 2D morphology to a given texture.
* @param srcTexture The source texture to be blurred.
* @param rect The destination rectangle.
* @param filter The morphology filter. Must be kDilate_Filter or
* kErode_Filter.
* @param radius The morphology radius in X and Y. The filter is
* applied to a fWidth by fHeight rectangle of
* pixels.
* @return the morphed texture, which may be srcTexture ref'ed, or a
* new texture. It is the caller's responsibility to unref this texture.
*/
GrTexture* applyMorphology(GrTexture* srcTexture,
const GrRect& rect,
MorphologyType type,
SkISize radius);
///////////////////////////////////////////////////////////////////////////
// Helpers
class AutoRenderTarget : ::GrNoncopyable {
public:
AutoRenderTarget(GrContext* context, GrRenderTarget* target) {
fContext = NULL;
fPrevTarget = context->getRenderTarget();
if (fPrevTarget != target) {
context->setRenderTarget(target);
fContext = context;
}
}
~AutoRenderTarget() {
if (fContext) {
fContext->setRenderTarget(fPrevTarget);
}
}
private:
GrContext* fContext;
GrRenderTarget* fPrevTarget;
};
/**
* Save/restore the view-matrix in the context.
*/
class AutoMatrix : GrNoncopyable {
public:
AutoMatrix() : fContext(NULL) {}
AutoMatrix(GrContext* ctx) : fContext(ctx) {
fMatrix = ctx->getMatrix();
}
AutoMatrix(GrContext* ctx, const GrMatrix& matrix) : fContext(ctx) {
fMatrix = ctx->getMatrix();
ctx->setMatrix(matrix);
}
void set(GrContext* ctx) {
if (NULL != fContext) {
fContext->setMatrix(fMatrix);
}
fMatrix = ctx->getMatrix();
fContext = ctx;
}
void set(GrContext* ctx, const GrMatrix& matrix) {
if (NULL != fContext) {
fContext->setMatrix(fMatrix);
}
fMatrix = ctx->getMatrix();
ctx->setMatrix(matrix);
fContext = ctx;
}
~AutoMatrix() {
if (NULL != fContext) {
fContext->setMatrix(fMatrix);
}
}
private:
GrContext* fContext;
GrMatrix fMatrix;
};
class AutoClip : GrNoncopyable {
public:
AutoClip(GrContext* context, const GrRect& newClipRect)
: fContext(context)
, fNewClipStack(newClipRect) {
fNewClipData.fClipStack = &fNewClipStack;
fOldClip = fContext->getClip();
fContext->setClip(&fNewClipData);
}
~AutoClip() {
if (NULL != fContext) {
fContext->setClip(fOldClip);
}
}
private:
GrContext* fContext;
const GrClipData* fOldClip;
SkClipStack fNewClipStack;
GrClipData fNewClipData;
};
///////////////////////////////////////////////////////////////////////////
// Functions intended for internal use only.
GrGpu* getGpu() { return fGpu; }
const GrGpu* getGpu() const { return fGpu; }
GrFontCache* getFontCache() { return fFontCache; }
GrDrawTarget* getTextTarget(const GrPaint& paint);
const GrIndexBuffer* getQuadIndexBuffer() const;
/**
* Stencil buffers add themselves to the cache using
* addAndLockStencilBuffer. When a SB's RT-attachment count
* reaches zero the SB unlocks itself using unlockStencilBuffer and is
* eligible for purging. findStencilBuffer is called to check the cache for
* a SB that matching an RT's criteria. If a match is found that has been
* unlocked (its attachment count has reached 0) then it will be relocked.
*/
void addAndLockStencilBuffer(GrStencilBuffer* sb);
void unlockStencilBuffer(GrStencilBuffer* sb);
GrStencilBuffer* findStencilBuffer(int width, int height, int sampleCnt);
GrPathRenderer* getPathRenderer(const SkPath& path,
GrPathFill fill,
const GrDrawTarget* target,
bool antiAlias,
bool allowSW);
private:
// Used to indicate whether a draw should be performed immediately or queued in fDrawBuffer.
enum BufferedDraw {
kYes_BufferedDraw,
kNo_BufferedDraw,
};
BufferedDraw fLastDrawWasBuffered;
GrGpu* fGpu;
GrDrawState* fDrawState;
GrResourceCache* fTextureCache;
GrFontCache* fFontCache;
GrPathRendererChain* fPathRendererChain;
GrSoftwarePathRenderer* fSoftwarePathRenderer;
GrVertexBufferAllocPool* fDrawBufferVBAllocPool;
GrIndexBufferAllocPool* fDrawBufferIBAllocPool;
GrInOrderDrawBuffer* fDrawBuffer;
GrAARectRenderer* fAARectRenderer;
GrContext(GrGpu* gpu);
void setupDrawBuffer();
void flushDrawBuffer();
void setPaint(const GrPaint& paint);
/// Sets the paint and returns the target to draw into. The paint can be NULL in which case the
/// draw state is left unmodified.
GrDrawTarget* prepareToDraw(const GrPaint*, BufferedDraw);
void internalDrawPath(const GrPaint& paint, const SkPath& path,
GrPathFill fill, const GrPoint* translate);
/**
* Flags to the internal read/write pixels funcs
*/
enum PixelOpsFlags {
kDontFlush_PixelOpsFlag = 0x1,
};
GrTexture* createResizedTexture(const GrTextureDesc& desc,
const GrCacheData& cacheData,
void* srcData,
size_t rowBytes,
bool needsFiltering);
bool internalReadRenderTargetPixels(GrRenderTarget* target,
int left, int top,
int width, int height,
GrPixelConfig config, void* buffer,
size_t rowBytes, uint32_t flags);
void internalWriteRenderTargetPixels(GrRenderTarget* target,
int left, int top,
int width, int height,
GrPixelConfig, const void* buffer,
size_t rowBytes, uint32_t flags);
bool internalReadTexturePixels(GrTexture* texture,
int left, int top,
int width, int height,
GrPixelConfig config, void* buffer,
size_t rowBytes, uint32_t flags);
void internalWriteTexturePixels(GrTexture* texture,
int left, int top,
int width, int height,
GrPixelConfig config, const void* buffer,
size_t rowBytes, uint32_t flags);
// needed for access to internalWriteTexturePixels. TODO: make GrContext
// be a facade for an internal class. Then functions that are public on the
// internal class would have only be callable in src/gpu. The facade would
// only have to functions necessary for clients.
friend class GrAtlas;
friend class GrTextureStripAtlas;
// Needed so GrTexture's returnToCache helper function can call
// addExistingTextureToCache
friend class GrTexture;
// Add an existing texture to the texture cache. This is intended solely
// for use with textures released from an GrAutoScratchTexture.
void addExistingTextureToCache(GrTexture* texture);
typedef GrRefCnt INHERITED;
};
/**
* Gets and locks a scratch texture from a descriptor using
* either exact or approximate criteria. Unlocks texture in
* the destructor.
*/
class GrAutoScratchTexture : ::GrNoncopyable {
public:
GrAutoScratchTexture()
: fContext(NULL)
, fTexture(NULL) {
}
GrAutoScratchTexture(GrContext* context,
const GrTextureDesc& desc,
GrContext::ScratchTexMatch match =
GrContext::kApprox_ScratchTexMatch)
: fContext(NULL)
, fTexture(NULL) {
this->set(context, desc, match);
}
~GrAutoScratchTexture() {
this->reset();
}
void reset() {
if (NULL != fContext && NULL != fTexture) {
fContext->unlockTexture(fTexture);
fTexture = NULL;
}
}
/*
* When detaching a texture we do not unlock it in the texture cache but
* we do set the returnToCache flag. In this way the texture remains
* "locked" in the texture cache until it is freed and recycled in
* GrTexture::internal_dispose. In reality, the texture has been removed
* from the cache (because this is in AutoScratchTexture) and by not
* calling unlockTexture we simply don't re-add it. It will be reattached
* in GrTexture::internal_dispose.
*
* Note that the caller is assumed to accept and manage the ref to the
* returned texture.
*/
GrTexture* detach() {
GrTexture* temp = fTexture;
// freeEntry will remove the texture cache's ref
temp->ref();
fContext->freeEntry(fTexture);
fTexture = NULL;
temp->setFlag((GrTextureFlags) GrTexture::kReturnToCache_FlagBit);
return temp;
}
GrTexture* set(GrContext* context,
const GrTextureDesc& desc,
GrContext::ScratchTexMatch match =
GrContext::kApprox_ScratchTexMatch) {
this->reset();
fContext = context;
if (NULL != fContext) {
fTexture = fContext->lockScratchTexture(desc, match);
if (NULL == fTexture) {
fContext = NULL;
}
return fTexture;
} else {
return NULL;
}
}
GrTexture* texture() { return fTexture; }
private:
GrContext* fContext;
GrTexture* fTexture;
};
#endif