blob: 277f997ea5db988938ada75eaabfa58a3e5c8b69 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkPathOpsConic_DEFINED
#define SkPathOpsConic_DEFINED
#include "SkPathOpsQuad.h"
struct SkDConic {
static const int kPointCount = 3;
static const int kPointLast = kPointCount - 1;
static const int kMaxIntersections = 4;
SkDQuad fPts;
SkScalar fWeight;
bool collapsed() const {
return fPts.collapsed();
}
bool controlsInside() const {
return fPts.controlsInside();
}
void debugInit() {
fPts.debugInit();
fWeight = 0;
}
void debugSet(const SkDPoint* pts, SkScalar weight);
SkDConic flip() const {
SkDConic result = {{{fPts[2], fPts[1], fPts[0]}
SkDEBUGPARAMS(fPts.fDebugGlobalState) }, fWeight};
return result;
}
#ifdef SK_DEBUG
SkOpGlobalState* globalState() const { return fPts.globalState(); }
#endif
static bool IsConic() { return true; }
const SkDConic& set(const SkPoint pts[kPointCount], SkScalar weight
SkDEBUGPARAMS(SkOpGlobalState* state = nullptr)) {
fPts.set(pts SkDEBUGPARAMS(state));
fWeight = weight;
return *this;
}
const SkDPoint& operator[](int n) const { return fPts[n]; }
SkDPoint& operator[](int n) { return fPts[n]; }
static int AddValidTs(double s[], int realRoots, double* t) {
return SkDQuad::AddValidTs(s, realRoots, t);
}
void align(int endIndex, SkDPoint* dstPt) const {
fPts.align(endIndex, dstPt);
}
SkDVector dxdyAtT(double t) const;
static int FindExtrema(const double src[], SkScalar weight, double tValue[1]);
bool hullIntersects(const SkDQuad& quad, bool* isLinear) const {
return fPts.hullIntersects(quad, isLinear);
}
bool hullIntersects(const SkDConic& conic, bool* isLinear) const {
return fPts.hullIntersects(conic.fPts, isLinear);
}
bool hullIntersects(const SkDCubic& cubic, bool* isLinear) const;
bool isLinear(int startIndex, int endIndex) const {
return fPts.isLinear(startIndex, endIndex);
}
static int maxIntersections() { return kMaxIntersections; }
bool monotonicInX() const {
return fPts.monotonicInX();
}
bool monotonicInY() const {
return fPts.monotonicInY();
}
void otherPts(int oddMan, const SkDPoint* endPt[2]) const {
fPts.otherPts(oddMan, endPt);
}
static int pointCount() { return kPointCount; }
static int pointLast() { return kPointLast; }
SkDPoint ptAtT(double t) const;
static int RootsReal(double A, double B, double C, double t[2]) {
return SkDQuad::RootsReal(A, B, C, t);
}
static int RootsValidT(const double A, const double B, const double C, double s[2]) {
return SkDQuad::RootsValidT(A, B, C, s);
}
SkDConic subDivide(double t1, double t2) const;
void subDivide(double t1, double t2, SkDConic* c) const { *c = this->subDivide(t1, t2); }
static SkDConic SubDivide(const SkPoint a[kPointCount], SkScalar weight, double t1, double t2) {
SkDConic conic;
conic.set(a, weight);
return conic.subDivide(t1, t2);
}
SkDPoint subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2,
SkScalar* weight) const;
static SkDPoint SubDivide(const SkPoint pts[kPointCount], SkScalar weight,
const SkDPoint& a, const SkDPoint& c,
double t1, double t2, SkScalar* newWeight) {
SkDConic conic;
conic.set(pts, weight);
return conic.subDivide(a, c, t1, t2, newWeight);
}
// utilities callable by the user from the debugger when the implementation code is linked in
void dump() const;
void dumpID(int id) const;
void dumpInner() const;
};
class SkTConic : public SkTCurve {
public:
SkDConic fConic;
SkTConic() {}
SkTConic(const SkDConic& c)
: fConic(c) {
}
~SkTConic() override {}
const SkDPoint& operator[](int n) const override { return fConic[n]; }
SkDPoint& operator[](int n) override { return fConic[n]; }
bool collapsed() const override { return fConic.collapsed(); }
bool controlsInside() const override { return fConic.controlsInside(); }
void debugInit() override { return fConic.debugInit(); }
#if DEBUG_T_SECT
void dumpID(int id) const override { return fConic.dumpID(id); }
#endif
SkDVector dxdyAtT(double t) const override { return fConic.dxdyAtT(t); }
#ifdef SK_DEBUG
SkOpGlobalState* globalState() const override { return fConic.globalState(); }
#endif
bool hullIntersects(const SkDQuad& quad, bool* isLinear) const override;
bool hullIntersects(const SkDConic& conic, bool* isLinear) const override {
return conic.hullIntersects(fConic, isLinear);
}
bool hullIntersects(const SkDCubic& cubic, bool* isLinear) const override;
bool hullIntersects(const SkTCurve& curve, bool* isLinear) const override {
return curve.hullIntersects(fConic, isLinear);
}
int intersectRay(SkIntersections* i, const SkDLine& line) const override;
bool IsConic() const override { return true; }
SkTCurve* make(SkArenaAlloc& heap) const override { return heap.make<SkTConic>(); }
int maxIntersections() const override { return SkDConic::kMaxIntersections; }
void otherPts(int oddMan, const SkDPoint* endPt[2]) const override {
fConic.otherPts(oddMan, endPt);
}
int pointCount() const override { return SkDConic::kPointCount; }
int pointLast() const override { return SkDConic::kPointLast; }
SkDPoint ptAtT(double t) const override { return fConic.ptAtT(t); }
void setBounds(SkDRect* ) const override;
void subDivide(double t1, double t2, SkTCurve* curve) const override {
((SkTConic*) curve)->fConic = fConic.subDivide(t1, t2);
}
};
#endif