| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkNx_sse_DEFINED |
| #define SkNx_sse_DEFINED |
| |
| #include "SkCpu.h" |
| |
| // This file may assume <= SSE2, but must check SK_CPU_SSE_LEVEL for anything more recent. |
| // If you do, make sure this is in a static inline function... anywhere else risks violating ODR. |
| |
| #define SKNX_IS_FAST |
| |
| template <> |
| class SkNx<2, float> { |
| public: |
| SkNx(const __m128& vec) : fVec(vec) {} |
| |
| SkNx() {} |
| SkNx(float val) : fVec(_mm_set1_ps(val)) {} |
| static SkNx Load(const void* ptr) { |
| return _mm_castsi128_ps(_mm_loadl_epi64((const __m128i*)ptr)); |
| } |
| SkNx(float a, float b) : fVec(_mm_setr_ps(a,b,0,0)) {} |
| |
| void store(void* ptr) const { _mm_storel_pi((__m64*)ptr, fVec); } |
| |
| SkNx operator + (const SkNx& o) const { return _mm_add_ps(fVec, o.fVec); } |
| SkNx operator - (const SkNx& o) const { return _mm_sub_ps(fVec, o.fVec); } |
| SkNx operator * (const SkNx& o) const { return _mm_mul_ps(fVec, o.fVec); } |
| SkNx operator / (const SkNx& o) const { return _mm_div_ps(fVec, o.fVec); } |
| |
| SkNx operator == (const SkNx& o) const { return _mm_cmpeq_ps (fVec, o.fVec); } |
| SkNx operator != (const SkNx& o) const { return _mm_cmpneq_ps(fVec, o.fVec); } |
| SkNx operator < (const SkNx& o) const { return _mm_cmplt_ps (fVec, o.fVec); } |
| SkNx operator > (const SkNx& o) const { return _mm_cmpgt_ps (fVec, o.fVec); } |
| SkNx operator <= (const SkNx& o) const { return _mm_cmple_ps (fVec, o.fVec); } |
| SkNx operator >= (const SkNx& o) const { return _mm_cmpge_ps (fVec, o.fVec); } |
| |
| static SkNx Min(const SkNx& l, const SkNx& r) { return _mm_min_ps(l.fVec, r.fVec); } |
| static SkNx Max(const SkNx& l, const SkNx& r) { return _mm_max_ps(l.fVec, r.fVec); } |
| |
| SkNx sqrt() const { return _mm_sqrt_ps (fVec); } |
| SkNx rsqrt() const { return _mm_rsqrt_ps(fVec); } |
| SkNx invert() const { return _mm_rcp_ps(fVec); } |
| |
| float operator[](int k) const { |
| SkASSERT(0 <= k && k < 2); |
| union { __m128 v; float fs[4]; } pun = {fVec}; |
| return pun.fs[k&1]; |
| } |
| |
| bool allTrue() const { return 0xff == (_mm_movemask_epi8(_mm_castps_si128(fVec)) & 0xff); } |
| bool anyTrue() const { return 0x00 != (_mm_movemask_epi8(_mm_castps_si128(fVec)) & 0xff); } |
| |
| __m128 fVec; |
| }; |
| |
| template <> |
| class SkNx<4, float> { |
| public: |
| SkNx(const __m128& vec) : fVec(vec) {} |
| |
| SkNx() {} |
| SkNx(float val) : fVec( _mm_set1_ps(val) ) {} |
| static SkNx Load(const void* ptr) { return _mm_loadu_ps((const float*)ptr); } |
| |
| SkNx(float a, float b, float c, float d) : fVec(_mm_setr_ps(a,b,c,d)) {} |
| |
| void store(void* ptr) const { _mm_storeu_ps((float*)ptr, fVec); } |
| |
| SkNx operator + (const SkNx& o) const { return _mm_add_ps(fVec, o.fVec); } |
| SkNx operator - (const SkNx& o) const { return _mm_sub_ps(fVec, o.fVec); } |
| SkNx operator * (const SkNx& o) const { return _mm_mul_ps(fVec, o.fVec); } |
| SkNx operator / (const SkNx& o) const { return _mm_div_ps(fVec, o.fVec); } |
| |
| SkNx operator == (const SkNx& o) const { return _mm_cmpeq_ps (fVec, o.fVec); } |
| SkNx operator != (const SkNx& o) const { return _mm_cmpneq_ps(fVec, o.fVec); } |
| SkNx operator < (const SkNx& o) const { return _mm_cmplt_ps (fVec, o.fVec); } |
| SkNx operator > (const SkNx& o) const { return _mm_cmpgt_ps (fVec, o.fVec); } |
| SkNx operator <= (const SkNx& o) const { return _mm_cmple_ps (fVec, o.fVec); } |
| SkNx operator >= (const SkNx& o) const { return _mm_cmpge_ps (fVec, o.fVec); } |
| |
| static SkNx Min(const SkNx& l, const SkNx& r) { return _mm_min_ps(l.fVec, r.fVec); } |
| static SkNx Max(const SkNx& l, const SkNx& r) { return _mm_max_ps(l.fVec, r.fVec); } |
| |
| SkNx abs() const { return _mm_andnot_ps(_mm_set1_ps(-0.0f), fVec); } |
| SkNx floor() const { |
| if (SkCpu::Supports(SkCpu::SSE41)) { |
| __m128 r; |
| #if defined(__GNUC__) || defined(__clang__) |
| asm("roundps $0x1, %[fVec], %[r]" : [r]"=x"(r) : [fVec]"x"(fVec)); |
| #else |
| r = _mm_floor_ps(fVec); |
| #endif |
| return r; |
| } |
| // Emulate _mm_floor_ps() with SSE2: |
| // - roundtrip through integers via truncation |
| // - subtract 1 if that's too big (possible for negative values). |
| // This restricts the domain of our inputs to a maximum somehwere around 2^31. |
| // Seems plenty big. |
| __m128 roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(fVec)); |
| __m128 too_big = _mm_cmpgt_ps(roundtrip, fVec); |
| return _mm_sub_ps(roundtrip, _mm_and_ps(too_big, _mm_set1_ps(1.0f))); |
| } |
| |
| SkNx sqrt() const { return _mm_sqrt_ps (fVec); } |
| SkNx rsqrt() const { return _mm_rsqrt_ps(fVec); } |
| SkNx invert() const { return _mm_rcp_ps(fVec); } |
| |
| float operator[](int k) const { |
| SkASSERT(0 <= k && k < 4); |
| union { __m128 v; float fs[4]; } pun = {fVec}; |
| return pun.fs[k&3]; |
| } |
| |
| bool allTrue() const { return 0xffff == _mm_movemask_epi8(_mm_castps_si128(fVec)); } |
| bool anyTrue() const { return 0x0000 != _mm_movemask_epi8(_mm_castps_si128(fVec)); } |
| |
| SkNx thenElse(const SkNx& t, const SkNx& e) const { |
| return _mm_or_ps(_mm_and_ps (fVec, t.fVec), |
| _mm_andnot_ps(fVec, e.fVec)); |
| } |
| |
| __m128 fVec; |
| }; |
| |
| template <> |
| class SkNx<4, int> { |
| public: |
| SkNx(const __m128i& vec) : fVec(vec) {} |
| |
| SkNx() {} |
| SkNx(int val) : fVec(_mm_set1_epi32(val)) {} |
| static SkNx Load(const void* ptr) { return _mm_loadu_si128((const __m128i*)ptr); } |
| SkNx(int a, int b, int c, int d) : fVec(_mm_setr_epi32(a,b,c,d)) {} |
| |
| void store(void* ptr) const { _mm_storeu_si128((__m128i*)ptr, fVec); } |
| |
| SkNx operator + (const SkNx& o) const { return _mm_add_epi32(fVec, o.fVec); } |
| SkNx operator - (const SkNx& o) const { return _mm_sub_epi32(fVec, o.fVec); } |
| SkNx operator * (const SkNx& o) const { |
| __m128i mul20 = _mm_mul_epu32(fVec, o.fVec), |
| mul31 = _mm_mul_epu32(_mm_srli_si128(fVec, 4), _mm_srli_si128(o.fVec, 4)); |
| return _mm_unpacklo_epi32(_mm_shuffle_epi32(mul20, _MM_SHUFFLE(0,0,2,0)), |
| _mm_shuffle_epi32(mul31, _MM_SHUFFLE(0,0,2,0))); |
| } |
| |
| SkNx operator << (int bits) const { return _mm_slli_epi32(fVec, bits); } |
| SkNx operator >> (int bits) const { return _mm_srai_epi32(fVec, bits); } |
| |
| int operator[](int k) const { |
| SkASSERT(0 <= k && k < 4); |
| union { __m128i v; int is[4]; } pun = {fVec}; |
| return pun.is[k&3]; |
| } |
| |
| __m128i fVec; |
| }; |
| |
| template <> |
| class SkNx<4, uint16_t> { |
| public: |
| SkNx(const __m128i& vec) : fVec(vec) {} |
| |
| SkNx() {} |
| SkNx(uint16_t val) : fVec(_mm_set1_epi16(val)) {} |
| static SkNx Load(const void* ptr) { return _mm_loadl_epi64((const __m128i*)ptr); } |
| SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d) : fVec(_mm_setr_epi16(a,b,c,d,0,0,0,0)) {} |
| |
| void store(void* ptr) const { _mm_storel_epi64((__m128i*)ptr, fVec); } |
| |
| SkNx operator + (const SkNx& o) const { return _mm_add_epi16(fVec, o.fVec); } |
| SkNx operator - (const SkNx& o) const { return _mm_sub_epi16(fVec, o.fVec); } |
| SkNx operator * (const SkNx& o) const { return _mm_mullo_epi16(fVec, o.fVec); } |
| |
| SkNx operator << (int bits) const { return _mm_slli_epi16(fVec, bits); } |
| SkNx operator >> (int bits) const { return _mm_srli_epi16(fVec, bits); } |
| |
| uint16_t operator[](int k) const { |
| SkASSERT(0 <= k && k < 4); |
| union { __m128i v; uint16_t us[8]; } pun = {fVec}; |
| return pun.us[k&3]; |
| } |
| |
| __m128i fVec; |
| }; |
| |
| template <> |
| class SkNx<8, uint16_t> { |
| public: |
| SkNx(const __m128i& vec) : fVec(vec) {} |
| |
| SkNx() {} |
| SkNx(uint16_t val) : fVec(_mm_set1_epi16(val)) {} |
| static SkNx Load(const void* ptr) { return _mm_loadu_si128((const __m128i*)ptr); } |
| SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d, |
| uint16_t e, uint16_t f, uint16_t g, uint16_t h) : fVec(_mm_setr_epi16(a,b,c,d,e,f,g,h)) {} |
| |
| void store(void* ptr) const { _mm_storeu_si128((__m128i*)ptr, fVec); } |
| |
| SkNx operator + (const SkNx& o) const { return _mm_add_epi16(fVec, o.fVec); } |
| SkNx operator - (const SkNx& o) const { return _mm_sub_epi16(fVec, o.fVec); } |
| SkNx operator * (const SkNx& o) const { return _mm_mullo_epi16(fVec, o.fVec); } |
| |
| SkNx operator << (int bits) const { return _mm_slli_epi16(fVec, bits); } |
| SkNx operator >> (int bits) const { return _mm_srli_epi16(fVec, bits); } |
| |
| static SkNx Min(const SkNx& a, const SkNx& b) { |
| // No unsigned _mm_min_epu16, so we'll shift into a space where we can use the |
| // signed version, _mm_min_epi16, then shift back. |
| const uint16_t top = 0x8000; // Keep this separate from _mm_set1_epi16 or MSVC will whine. |
| const __m128i top_8x = _mm_set1_epi16(top); |
| return _mm_add_epi8(top_8x, _mm_min_epi16(_mm_sub_epi8(a.fVec, top_8x), |
| _mm_sub_epi8(b.fVec, top_8x))); |
| } |
| |
| SkNx thenElse(const SkNx& t, const SkNx& e) const { |
| return _mm_or_si128(_mm_and_si128 (fVec, t.fVec), |
| _mm_andnot_si128(fVec, e.fVec)); |
| } |
| |
| uint16_t operator[](int k) const { |
| SkASSERT(0 <= k && k < 8); |
| union { __m128i v; uint16_t us[8]; } pun = {fVec}; |
| return pun.us[k&7]; |
| } |
| |
| __m128i fVec; |
| }; |
| |
| template <> |
| class SkNx<4, uint8_t> { |
| public: |
| SkNx() {} |
| SkNx(const __m128i& vec) : fVec(vec) {} |
| SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d) |
| : fVec(_mm_setr_epi8(a,b,c,d, 0,0,0,0, 0,0,0,0, 0,0,0,0)) {} |
| |
| |
| static SkNx Load(const void* ptr) { return _mm_cvtsi32_si128(*(const int*)ptr); } |
| void store(void* ptr) const { *(int*)ptr = _mm_cvtsi128_si32(fVec); } |
| |
| uint8_t operator[](int k) const { |
| SkASSERT(0 <= k && k < 4); |
| union { __m128i v; uint8_t us[16]; } pun = {fVec}; |
| return pun.us[k&3]; |
| } |
| |
| // TODO as needed |
| |
| __m128i fVec; |
| }; |
| |
| template <> |
| class SkNx<16, uint8_t> { |
| public: |
| SkNx(const __m128i& vec) : fVec(vec) {} |
| |
| SkNx() {} |
| SkNx(uint8_t val) : fVec(_mm_set1_epi8(val)) {} |
| static SkNx Load(const void* ptr) { return _mm_loadu_si128((const __m128i*)ptr); } |
| SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d, |
| uint8_t e, uint8_t f, uint8_t g, uint8_t h, |
| uint8_t i, uint8_t j, uint8_t k, uint8_t l, |
| uint8_t m, uint8_t n, uint8_t o, uint8_t p) |
| : fVec(_mm_setr_epi8(a,b,c,d, e,f,g,h, i,j,k,l, m,n,o,p)) {} |
| |
| void store(void* ptr) const { _mm_storeu_si128((__m128i*)ptr, fVec); } |
| |
| SkNx saturatedAdd(const SkNx& o) const { return _mm_adds_epu8(fVec, o.fVec); } |
| |
| SkNx operator + (const SkNx& o) const { return _mm_add_epi8(fVec, o.fVec); } |
| SkNx operator - (const SkNx& o) const { return _mm_sub_epi8(fVec, o.fVec); } |
| |
| static SkNx Min(const SkNx& a, const SkNx& b) { return _mm_min_epu8(a.fVec, b.fVec); } |
| SkNx operator < (const SkNx& o) const { |
| // There's no unsigned _mm_cmplt_epu8, so we flip the sign bits then use a signed compare. |
| auto flip = _mm_set1_epi8(char(0x80)); |
| return _mm_cmplt_epi8(_mm_xor_si128(flip, fVec), _mm_xor_si128(flip, o.fVec)); |
| } |
| |
| uint8_t operator[](int k) const { |
| SkASSERT(0 <= k && k < 16); |
| union { __m128i v; uint8_t us[16]; } pun = {fVec}; |
| return pun.us[k&15]; |
| } |
| |
| SkNx thenElse(const SkNx& t, const SkNx& e) const { |
| return _mm_or_si128(_mm_and_si128 (fVec, t.fVec), |
| _mm_andnot_si128(fVec, e.fVec)); |
| } |
| |
| __m128i fVec; |
| }; |
| |
| template<> /*static*/ inline Sk4f SkNx_cast<float, int>(const Sk4i& src) { |
| return _mm_cvtepi32_ps(src.fVec); |
| } |
| |
| template <> /*static*/ inline Sk4i SkNx_cast<int, float>(const Sk4f& src) { |
| return _mm_cvttps_epi32(src.fVec); |
| } |
| |
| template<> /*static*/ inline Sk4h SkNx_cast<uint16_t, float>(const Sk4f& src) { |
| auto _32 = _mm_cvttps_epi32(src.fVec); |
| // Ideally we'd use _mm_packus_epi32 here. But that's SSE4.1+. |
| #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 |
| // With SSSE3, we can just shuffle the low 2 bytes from each lane right into place. |
| const int _ = ~0; |
| return _mm_shuffle_epi8(_32, _mm_setr_epi8(0,1, 4,5, 8,9, 12,13, _,_,_,_,_,_,_,_)); |
| #else |
| // With SSE2, we have to emulate _mm_packus_epi32 with _mm_packs_epi32: |
| _32 = _mm_sub_epi32(_32, _mm_set1_epi32((int)0x00008000)); |
| return _mm_add_epi16(_mm_packs_epi32(_32, _32), _mm_set1_epi16((short)0x8000)); |
| #endif |
| } |
| |
| template<> /*static*/ inline Sk4b SkNx_cast<uint8_t, float>(const Sk4f& src) { |
| auto _32 = _mm_cvttps_epi32(src.fVec); |
| #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 |
| const int _ = ~0; |
| return _mm_shuffle_epi8(_32, _mm_setr_epi8(0,4,8,12, _,_,_,_, _,_,_,_, _,_,_,_)); |
| #else |
| auto _16 = _mm_packus_epi16(_32, _32); |
| return _mm_packus_epi16(_16, _16); |
| #endif |
| } |
| |
| template<> /*static*/ inline Sk4f SkNx_cast<float, uint8_t>(const Sk4b& src) { |
| #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 |
| const int _ = ~0; |
| auto _32 = _mm_shuffle_epi8(src.fVec, _mm_setr_epi8(0,_,_,_, 1,_,_,_, 2,_,_,_, 3,_,_,_)); |
| #else |
| auto _16 = _mm_unpacklo_epi8(src.fVec, _mm_setzero_si128()), |
| _32 = _mm_unpacklo_epi16(_16, _mm_setzero_si128()); |
| #endif |
| return _mm_cvtepi32_ps(_32); |
| } |
| |
| template<> /*static*/ inline Sk4f SkNx_cast<float, uint16_t>(const Sk4h& src) { |
| auto _32 = _mm_unpacklo_epi16(src.fVec, _mm_setzero_si128()); |
| return _mm_cvtepi32_ps(_32); |
| } |
| |
| template<> /*static*/ inline Sk16b SkNx_cast<uint8_t, float>(const Sk16f& src) { |
| Sk8f ab, cd; |
| SkNx_split(src, &ab, &cd); |
| |
| Sk4f a,b,c,d; |
| SkNx_split(ab, &a, &b); |
| SkNx_split(cd, &c, &d); |
| |
| return _mm_packus_epi16(_mm_packus_epi16(_mm_cvttps_epi32(a.fVec), |
| _mm_cvttps_epi32(b.fVec)), |
| _mm_packus_epi16(_mm_cvttps_epi32(c.fVec), |
| _mm_cvttps_epi32(d.fVec))); |
| } |
| |
| template<> /*static*/ inline Sk4h SkNx_cast<uint16_t, uint8_t>(const Sk4b& src) { |
| return _mm_unpacklo_epi8(src.fVec, _mm_setzero_si128()); |
| } |
| |
| template<> /*static*/ inline Sk4b SkNx_cast<uint8_t, uint16_t>(const Sk4h& src) { |
| return _mm_packus_epi16(src.fVec, src.fVec); |
| } |
| |
| #endif//SkNx_sse_DEFINED |