blob: 7108a1a71e84ae19a45bf2e9c340c48ae843f4bb [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkImage_Base.h"
#include "SkImageCacherator.h"
#include "SkBitmap.h"
#include "SkBitmapCache.h"
#include "SkColorSpace_Base.h"
#include "SkData.h"
#include "SkImageGenerator.h"
#include "SkImagePriv.h"
#include "SkNextID.h"
#include "SkPixelRef.h"
#if SK_SUPPORT_GPU
#include "GrContext.h"
#include "GrContextPriv.h"
#include "GrGpuResourcePriv.h"
#include "GrImageTextureMaker.h"
#include "GrResourceKey.h"
#include "GrResourceProvider.h"
#include "GrSamplerParams.h"
#include "GrYUVProvider.h"
#include "SkGr.h"
#endif
// Ref-counted tuple(SkImageGenerator, SkMutex) which allows sharing one generator among N images
class SharedGenerator final : public SkNVRefCnt<SharedGenerator> {
public:
static sk_sp<SharedGenerator> Make(std::unique_ptr<SkImageGenerator> gen) {
return gen ? sk_sp<SharedGenerator>(new SharedGenerator(std::move(gen))) : nullptr;
}
private:
explicit SharedGenerator(std::unique_ptr<SkImageGenerator> gen)
: fGenerator(std::move(gen)) {
SkASSERT(fGenerator);
}
friend class ScopedGenerator;
friend class SkImage_Lazy;
std::unique_ptr<SkImageGenerator> fGenerator;
SkMutex fMutex;
};
class SkImage_Lazy : public SkImage_Base, public SkImageCacherator {
public:
struct Validator {
Validator(sk_sp<SharedGenerator>, const SkIRect* subset);
operator bool() const { return fSharedGenerator.get(); }
sk_sp<SharedGenerator> fSharedGenerator;
SkImageInfo fInfo;
SkIPoint fOrigin;
uint32_t fUniqueID;
};
SkImage_Lazy(Validator* validator);
SkImageInfo onImageInfo() const override {
return fInfo;
}
SkAlphaType onAlphaType() const override {
return fInfo.alphaType();
}
bool onReadPixels(const SkImageInfo&, void*, size_t, int srcX, int srcY,
CachingHint) const override;
#if SK_SUPPORT_GPU
sk_sp<GrTextureProxy> asTextureProxyRef(GrContext*, const GrSamplerParams&,
SkColorSpace*, sk_sp<SkColorSpace>*,
SkScalar scaleAdjust[2]) const override;
#endif
SkData* onRefEncoded() const override;
sk_sp<SkImage> onMakeSubset(const SkIRect&) const override;
bool getROPixels(SkBitmap*, SkColorSpace* dstColorSpace, CachingHint) const override;
bool onIsLazyGenerated() const override { return true; }
bool onCanLazyGenerateOnGPU() const override;
sk_sp<SkImage> onMakeColorSpace(sk_sp<SkColorSpace>, SkColorType,
SkTransferFunctionBehavior) const override;
bool onIsValid(GrContext*) const override;
SkImageCacherator* peekCacherator() const override {
return const_cast<SkImage_Lazy*>(this);
}
// Only return true if the generate has already been cached.
bool lockAsBitmapOnlyIfAlreadyCached(SkBitmap*, CachedFormat) const;
// Call the underlying generator directly
bool directGeneratePixels(const SkImageInfo& dstInfo, void* dstPixels, size_t dstRB,
int srcX, int srcY, SkTransferFunctionBehavior behavior) const;
// SkImageCacherator interface
#if SK_SUPPORT_GPU
// Returns the texture proxy. If the cacherator is generating the texture and wants to cache it,
// it should use the passed in key (if the key is valid).
sk_sp<GrTextureProxy> lockTextureProxy(GrContext*,
const GrUniqueKey& key,
SkImage::CachingHint,
bool willBeMipped,
SkColorSpace* dstColorSpace) override;
// Returns the color space of the texture that would be returned if you called lockTexture.
// Separate code path to allow querying of the color space for textures that cached (even
// externally).
sk_sp<SkColorSpace> getColorSpace(GrContext*, SkColorSpace* dstColorSpace) override;
void makeCacheKeyFromOrigKey(const GrUniqueKey& origKey, CachedFormat,
GrUniqueKey* cacheKey) override;
#endif
CachedFormat chooseCacheFormat(SkColorSpace* dstColorSpace,
const GrCaps* = nullptr) const override;
SkImageInfo buildCacheInfo(CachedFormat) const override;
private:
class ScopedGenerator;
/**
* On success (true), bitmap will point to the pixels for this generator. If this returns
* false, the bitmap will be reset to empty.
*/
bool lockAsBitmap(SkBitmap*, SkImage::CachingHint, CachedFormat, const SkImageInfo&) const;
sk_sp<SharedGenerator> fSharedGenerator;
const SkImageInfo fInfo;
const SkIPoint fOrigin;
struct IDRec {
SkOnce fOnce;
uint32_t fUniqueID;
};
mutable IDRec fIDRecs[kNumCachedFormats];
uint32_t getUniqueID(CachedFormat) const;
typedef SkImage_Base INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
SkImage_Lazy::Validator::Validator(sk_sp<SharedGenerator> gen, const SkIRect* subset)
: fSharedGenerator(std::move(gen)) {
if (!fSharedGenerator) {
return;
}
// The following generator accessors are safe without acquiring the mutex (const getters).
// TODO: refactor to use a ScopedGenerator instead, for clarity.
const SkImageInfo& info = fSharedGenerator->fGenerator->getInfo();
if (info.isEmpty()) {
fSharedGenerator.reset();
return;
}
fUniqueID = fSharedGenerator->fGenerator->uniqueID();
const SkIRect bounds = SkIRect::MakeWH(info.width(), info.height());
if (subset) {
if (!bounds.contains(*subset)) {
fSharedGenerator.reset();
return;
}
if (*subset != bounds) {
// we need a different uniqueID since we really are a subset of the raw generator
fUniqueID = SkNextID::ImageID();
}
} else {
subset = &bounds;
}
fInfo = info.makeWH(subset->width(), subset->height());
fOrigin = SkIPoint::Make(subset->x(), subset->y());
// colortables are poorly to not-at-all supported in our resourcecache, so we
// bully them into N32 (the generator will perform the up-sample)
if (fInfo.colorType() == kIndex_8_SkColorType) {
fInfo = fInfo.makeColorType(kN32_SkColorType);
}
}
///////////////////////////////////////////////////////////////////////////////
// Helper for exclusive access to a shared generator.
class SkImage_Lazy::ScopedGenerator {
public:
ScopedGenerator(const sk_sp<SharedGenerator>& gen)
: fSharedGenerator(gen)
, fAutoAquire(gen->fMutex) {}
SkImageGenerator* operator->() const {
fSharedGenerator->fMutex.assertHeld();
return fSharedGenerator->fGenerator.get();
}
operator SkImageGenerator*() const {
fSharedGenerator->fMutex.assertHeld();
return fSharedGenerator->fGenerator.get();
}
private:
const sk_sp<SharedGenerator>& fSharedGenerator;
SkAutoExclusive fAutoAquire;
};
///////////////////////////////////////////////////////////////////////////////
SkImage_Lazy::SkImage_Lazy(Validator* validator)
: INHERITED(validator->fInfo.width(), validator->fInfo.height(), validator->fUniqueID)
, fSharedGenerator(std::move(validator->fSharedGenerator))
, fInfo(validator->fInfo)
, fOrigin(validator->fOrigin) {
SkASSERT(fSharedGenerator);
SkASSERT(kIndex_8_SkColorType != fInfo.colorType());
// We explicit set the legacy format slot, but leave the others uninitialized (via SkOnce)
// and only resolove them to IDs as needed (by calling getUniqueID()).
fIDRecs[kLegacy_CachedFormat].fOnce([this, validator] {
fIDRecs[kLegacy_CachedFormat].fUniqueID = validator->fUniqueID;
});
}
uint32_t SkImage_Lazy::getUniqueID(CachedFormat format) const {
IDRec* rec = &fIDRecs[format];
rec->fOnce([rec] {
rec->fUniqueID = SkNextID::ImageID();
});
return rec->fUniqueID;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Abstraction of GrCaps that handles the cases where we don't have a caps pointer (because
// we're in raster mode), or where GPU support is entirely missing. In theory, we only need the
// chosen format to be texturable, but that lets us choose F16 on GLES implemenations where we
// won't be able to read the texture back. We'd like to ensure that SkImake::makeNonTextureImage
// works, so we require that the formats we choose are renderable (as a proxy for being readable).
struct CacheCaps {
CacheCaps(const GrCaps* caps) : fCaps(caps) {}
#if SK_SUPPORT_GPU
bool supportsHalfFloat() const {
return !fCaps ||
(fCaps->isConfigTexturable(kRGBA_half_GrPixelConfig) &&
fCaps->isConfigRenderable(kRGBA_half_GrPixelConfig, false));
}
bool supportsSRGB() const {
return !fCaps ||
(fCaps->srgbSupport() && fCaps->isConfigTexturable(kSRGBA_8888_GrPixelConfig));
}
bool supportsSBGR() const {
return !fCaps || fCaps->srgbSupport();
}
#else
bool supportsHalfFloat() const { return true; }
bool supportsSRGB() const { return true; }
bool supportsSBGR() const { return true; }
#endif
const GrCaps* fCaps;
};
SkImageCacherator::CachedFormat SkImage_Lazy::chooseCacheFormat(SkColorSpace* dstColorSpace,
const GrCaps* grCaps) const {
SkColorSpace* cs = fInfo.colorSpace();
if (!cs || !dstColorSpace) {
return kLegacy_CachedFormat;
}
CacheCaps caps(grCaps);
switch (fInfo.colorType()) {
case kUnknown_SkColorType:
case kAlpha_8_SkColorType:
case kRGB_565_SkColorType:
case kARGB_4444_SkColorType:
// We don't support color space on these formats, so always decode in legacy mode:
// TODO: Ask the codec to decode these to something else (at least sRGB 8888)?
return kLegacy_CachedFormat;
case kIndex_8_SkColorType:
SkDEBUGFAIL("Index_8 should have been remapped at construction time.");
return kLegacy_CachedFormat;
case kGray_8_SkColorType:
// TODO: What do we do with grayscale sources that have strange color spaces attached?
// The codecs and color space xform don't handle this correctly (yet), so drop it on
// the floor. (Also, inflating by a factor of 8 is going to be unfortunate).
// As it is, we don't directly support sRGB grayscale, so ask the codec to convert
// it for us. This bypasses some really sketchy code GrUploadPixmapToTexture.
if (cs->gammaCloseToSRGB() && caps.supportsSRGB()) {
return kSRGB8888_CachedFormat;
} else {
return kLegacy_CachedFormat;
}
case kRGBA_8888_SkColorType:
if (cs->gammaCloseToSRGB()) {
if (caps.supportsSRGB()) {
return kSRGB8888_CachedFormat;
} else if (caps.supportsHalfFloat()) {
return kLinearF16_CachedFormat;
} else {
return kLegacy_CachedFormat;
}
} else {
if (caps.supportsHalfFloat()) {
return kLinearF16_CachedFormat;
} else if (caps.supportsSRGB()) {
return kSRGB8888_CachedFormat;
} else {
return kLegacy_CachedFormat;
}
}
case kBGRA_8888_SkColorType:
// Odd case. sBGRA isn't a real thing, so we may not have this texturable.
if (caps.supportsSBGR()) {
if (cs->gammaCloseToSRGB()) {
return kSBGR8888_CachedFormat;
} else if (caps.supportsHalfFloat()) {
return kLinearF16_CachedFormat;
} else if (caps.supportsSRGB()) {
return kSRGB8888_CachedFormat;
} else {
// sBGRA support without sRGBA is highly unlikely (impossible?) Nevertheless.
return kLegacy_CachedFormat;
}
} else {
if (cs->gammaCloseToSRGB()) {
if (caps.supportsSRGB()) {
return kSRGB8888_CachedFormat;
} else if (caps.supportsHalfFloat()) {
return kLinearF16_CachedFormat;
} else {
return kLegacy_CachedFormat;
}
} else {
if (caps.supportsHalfFloat()) {
return kLinearF16_CachedFormat;
} else if (caps.supportsSRGB()) {
return kSRGB8888_CachedFormat;
} else {
return kLegacy_CachedFormat;
}
}
}
case kRGBA_F16_SkColorType:
if (caps.supportsHalfFloat()) {
return kLinearF16_CachedFormat;
} else if (caps.supportsSRGB()) {
return kSRGB8888_CachedFormat;
} else {
return kLegacy_CachedFormat;
}
}
SkDEBUGFAIL("Unreachable");
return kLegacy_CachedFormat;
}
SkImageInfo SkImage_Lazy::buildCacheInfo(CachedFormat format) const {
switch (format) {
case kLegacy_CachedFormat:
return fInfo.makeColorSpace(nullptr);
case kLinearF16_CachedFormat:
return fInfo.makeColorType(kRGBA_F16_SkColorType)
.makeColorSpace(as_CSB(fInfo.colorSpace())->makeLinearGamma());
case kSRGB8888_CachedFormat:
// If the transfer function is nearly (but not exactly) sRGB, we don't want the codec
// to bother trans-coding. It would be slow, and do more harm than good visually,
// so we make sure to leave the colorspace as-is.
if (fInfo.colorSpace()->gammaCloseToSRGB()) {
return fInfo.makeColorType(kRGBA_8888_SkColorType);
} else {
return fInfo.makeColorType(kRGBA_8888_SkColorType)
.makeColorSpace(as_CSB(fInfo.colorSpace())->makeSRGBGamma());
}
case kSBGR8888_CachedFormat:
// See note above about not-quite-sRGB transfer functions.
if (fInfo.colorSpace()->gammaCloseToSRGB()) {
return fInfo.makeColorType(kBGRA_8888_SkColorType);
} else {
return fInfo.makeColorType(kBGRA_8888_SkColorType)
.makeColorSpace(as_CSB(fInfo.colorSpace())->makeSRGBGamma());
}
default:
SkDEBUGFAIL("Invalid cached format");
return fInfo;
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////
static bool check_output_bitmap(const SkBitmap& bitmap, uint32_t expectedID) {
SkASSERT(bitmap.getGenerationID() == expectedID);
SkASSERT(bitmap.isImmutable());
SkASSERT(bitmap.getPixels());
return true;
}
bool SkImage_Lazy::directGeneratePixels(const SkImageInfo& info, void* pixels, size_t rb,
int srcX, int srcY,
SkTransferFunctionBehavior behavior) const {
ScopedGenerator generator(fSharedGenerator);
const SkImageInfo& genInfo = generator->getInfo();
// Currently generators do not natively handle subsets, so check that first.
if (srcX || srcY || genInfo.width() != info.width() || genInfo.height() != info.height()) {
return false;
}
SkImageGenerator::Options opts;
opts.fBehavior = behavior;
return generator->getPixels(info, pixels, rb, &opts);
}
//////////////////////////////////////////////////////////////////////////////////////////////////
bool SkImage_Lazy::lockAsBitmapOnlyIfAlreadyCached(SkBitmap* bitmap, CachedFormat format) const {
uint32_t uniqueID = this->getUniqueID(format);
return SkBitmapCache::Find(SkBitmapCacheDesc::Make(uniqueID,
fInfo.width(), fInfo.height()), bitmap) &&
check_output_bitmap(*bitmap, uniqueID);
}
static bool generate_pixels(SkImageGenerator* gen, const SkPixmap& pmap, int originX, int originY) {
const int genW = gen->getInfo().width();
const int genH = gen->getInfo().height();
const SkIRect srcR = SkIRect::MakeWH(genW, genH);
const SkIRect dstR = SkIRect::MakeXYWH(originX, originY, pmap.width(), pmap.height());
if (!srcR.contains(dstR)) {
return false;
}
// If they are requesting a subset, we have to have a temp allocation for full image, and
// then copy the subset into their allocation
SkBitmap full;
SkPixmap fullPM;
const SkPixmap* dstPM = &pmap;
if (srcR != dstR) {
if (!full.tryAllocPixels(pmap.info().makeWH(genW, genH))) {
return false;
}
if (!full.peekPixels(&fullPM)) {
return false;
}
dstPM = &fullPM;
}
if (!gen->getPixels(dstPM->info(), dstPM->writable_addr(), dstPM->rowBytes())) {
return false;
}
if (srcR != dstR) {
if (!full.readPixels(pmap, originX, originY)) {
return false;
}
}
return true;
}
bool SkImage_Lazy::lockAsBitmap(SkBitmap* bitmap, SkImage::CachingHint chint,
CachedFormat format, const SkImageInfo& info) const {
if (this->lockAsBitmapOnlyIfAlreadyCached(bitmap, format)) {
return true;
}
uint32_t uniqueID = this->getUniqueID(format);
SkBitmap tmpBitmap;
SkBitmapCache::RecPtr cacheRec;
SkPixmap pmap;
if (SkImage::kAllow_CachingHint == chint) {
auto desc = SkBitmapCacheDesc::Make(uniqueID, info.width(), info.height());
cacheRec = SkBitmapCache::Alloc(desc, info, &pmap);
if (!cacheRec) {
return false;
}
} else {
if (!tmpBitmap.tryAllocPixels(info)) {
return false;
}
if (!tmpBitmap.peekPixels(&pmap)) {
return false;
}
}
ScopedGenerator generator(fSharedGenerator);
if (!generate_pixels(generator, pmap, fOrigin.x(), fOrigin.y())) {
return false;
}
if (cacheRec) {
SkBitmapCache::Add(std::move(cacheRec), bitmap);
SkASSERT(bitmap->getPixels()); // we're locked
SkASSERT(bitmap->isImmutable());
SkASSERT(bitmap->getGenerationID() == uniqueID);
this->notifyAddedToCache();
} else {
*bitmap = tmpBitmap;
bitmap->pixelRef()->setImmutableWithID(uniqueID);
}
check_output_bitmap(*bitmap, uniqueID);
return true;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
bool SkImage_Lazy::onReadPixels(const SkImageInfo& dstInfo, void* dstPixels, size_t dstRB,
int srcX, int srcY, CachingHint chint) const {
SkColorSpace* dstColorSpace = dstInfo.colorSpace();
SkBitmap bm;
if (kDisallow_CachingHint == chint) {
CachedFormat cacheFormat = this->chooseCacheFormat(dstColorSpace);
if (this->lockAsBitmapOnlyIfAlreadyCached(&bm, cacheFormat)) {
return bm.readPixels(dstInfo, dstPixels, dstRB, srcX, srcY);
} else {
// Try passing the caller's buffer directly down to the generator. If this fails we
// may still succeed in the general case, as the generator may prefer some other
// config, which we could then convert via SkBitmap::readPixels.
if (this->directGeneratePixels(dstInfo, dstPixels, dstRB, srcX, srcY,
SkTransferFunctionBehavior::kRespect)) {
return true;
}
// else fall through
}
}
if (this->getROPixels(&bm, dstColorSpace, chint)) {
return bm.readPixels(dstInfo, dstPixels, dstRB, srcX, srcY);
}
return false;
}
SkData* SkImage_Lazy::onRefEncoded() const {
ScopedGenerator generator(fSharedGenerator);
return generator->refEncodedData();
}
bool SkImage_Lazy::getROPixels(SkBitmap* bitmap, SkColorSpace* dstColorSpace,
CachingHint chint) const {
CachedFormat cacheFormat = this->chooseCacheFormat(dstColorSpace);
SkImageInfo cacheInfo = this->buildCacheInfo(cacheFormat);
return this->lockAsBitmap(bitmap, chint, cacheFormat, cacheInfo);
}
bool SkImage_Lazy::onIsValid(GrContext* context) const {
ScopedGenerator generator(fSharedGenerator);
return generator->isValid(context);
}
bool SkImage_Lazy::onCanLazyGenerateOnGPU() const {
#if SK_SUPPORT_GPU
ScopedGenerator generator(fSharedGenerator);
return generator->onCanGenerateTexture();
#else
return false;
#endif
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
sk_sp<GrTextureProxy> SkImage_Lazy::asTextureProxyRef(GrContext* context,
const GrSamplerParams& params,
SkColorSpace* dstColorSpace,
sk_sp<SkColorSpace>* texColorSpace,
SkScalar scaleAdjust[2]) const {
if (!context) {
return nullptr;
}
GrImageTextureMaker textureMaker(context, this, kAllow_CachingHint);
return textureMaker.refTextureProxyForParams(params, dstColorSpace, texColorSpace, scaleAdjust);
}
#endif
sk_sp<SkImage> SkImage_Lazy::onMakeSubset(const SkIRect& subset) const {
SkASSERT(fInfo.bounds().contains(subset));
SkASSERT(fInfo.bounds() != subset);
const SkIRect generatorSubset = subset.makeOffset(fOrigin.x(), fOrigin.y());
Validator validator(fSharedGenerator, &generatorSubset);
return validator ? sk_sp<SkImage>(new SkImage_Lazy(&validator)) : nullptr;
}
sk_sp<SkImage> SkImage_Lazy::onMakeColorSpace(sk_sp<SkColorSpace> target,
SkColorType targetColorType,
SkTransferFunctionBehavior premulBehavior) const {
SkBitmap dst;
SkImageInfo dstInfo = fInfo.makeColorType(targetColorType).makeColorSpace(target);
dst.allocPixels(dstInfo);
if (!this->directGeneratePixels(dstInfo, dst.getPixels(), dst.rowBytes(), 0, 0,
premulBehavior)) {
return nullptr;
}
dst.setImmutable();
return SkImage::MakeFromBitmap(dst);
}
sk_sp<SkImage> SkImage::MakeFromGenerator(std::unique_ptr<SkImageGenerator> generator,
const SkIRect* subset) {
SkImage_Lazy::Validator validator(SharedGenerator::Make(std::move(generator)), subset);
return validator ? sk_make_sp<SkImage_Lazy>(&validator) : nullptr;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Implementation of SkImageCacherator interface, as needed by GrImageTextureMaker
*/
#if SK_SUPPORT_GPU
void SkImage_Lazy::makeCacheKeyFromOrigKey(const GrUniqueKey& origKey, CachedFormat format,
GrUniqueKey* cacheKey) {
SkASSERT(!cacheKey->isValid());
if (origKey.isValid()) {
static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
GrUniqueKey::Builder builder(cacheKey, origKey, kDomain, 1);
builder[0] = format;
}
}
class Generator_GrYUVProvider : public GrYUVProvider {
SkImageGenerator* fGen;
public:
Generator_GrYUVProvider(SkImageGenerator* gen) : fGen(gen) {}
uint32_t onGetID() override { return fGen->uniqueID(); }
bool onQueryYUV8(SkYUVSizeInfo* sizeInfo, SkYUVColorSpace* colorSpace) const override {
return fGen->queryYUV8(sizeInfo, colorSpace);
}
bool onGetYUV8Planes(const SkYUVSizeInfo& sizeInfo, void* planes[3]) override {
return fGen->getYUV8Planes(sizeInfo, planes);
}
};
static void set_key_on_proxy(GrResourceProvider* resourceProvider,
GrTextureProxy* proxy, const GrUniqueKey& key) {
if (key.isValid()) {
resourceProvider->assignUniqueKeyToProxy(key, proxy);
}
}
sk_sp<SkColorSpace> SkImage_Lazy::getColorSpace(GrContext* ctx, SkColorSpace* dstColorSpace) {
// TODO: This isn't always correct. Picture generator currently produces textures in N32,
// and will (soon) emit them in an arbitrary (destination) space. We will need to stash that
// information in/on the key so we can return the correct space in case #1 of lockTexture.
CachedFormat format = this->chooseCacheFormat(dstColorSpace, ctx->caps());
SkImageInfo cacheInfo = this->buildCacheInfo(format);
return sk_ref_sp(cacheInfo.colorSpace());
}
/*
* We have 4 ways to try to return a texture (in sorted order)
*
* 1. Check the cache for a pre-existing one
* 2. Ask the generator to natively create one
* 3. Ask the generator to return YUV planes, which the GPU can convert
* 4. Ask the generator to return RGB(A) data, which the GPU can convert
*/
sk_sp<GrTextureProxy> SkImage_Lazy::lockTextureProxy(GrContext* ctx,
const GrUniqueKey& origKey,
SkImage::CachingHint chint,
bool willBeMipped,
SkColorSpace* dstColorSpace) {
// Values representing the various texture lock paths we can take. Used for logging the path
// taken to a histogram.
enum LockTexturePath {
kFailure_LockTexturePath,
kPreExisting_LockTexturePath,
kNative_LockTexturePath,
kCompressed_LockTexturePath, // Deprecated
kYUV_LockTexturePath,
kRGBA_LockTexturePath,
};
enum { kLockTexturePathCount = kRGBA_LockTexturePath + 1 };
// Determine which cached format we're going to use (which may involve decoding to a different
// info than the generator provides).
CachedFormat format = this->chooseCacheFormat(dstColorSpace, ctx->caps());
// Fold the cache format into our texture key
GrUniqueKey key;
this->makeCacheKeyFromOrigKey(origKey, format, &key);
// 1. Check the cache for a pre-existing one
if (key.isValid()) {
if (sk_sp<GrTextureProxy> proxy = ctx->resourceProvider()->findProxyByUniqueKey(key)) {
SK_HISTOGRAM_ENUMERATION("LockTexturePath", kPreExisting_LockTexturePath,
kLockTexturePathCount);
return proxy;
}
}
// The CachedFormat is both an index for which cache "slot" we'll use to store this particular
// decoded variant of the encoded data, and also a recipe for how to transform the original
// info to get the one that we're going to decode to.
SkImageInfo cacheInfo = this->buildCacheInfo(format);
// 2. Ask the generator to natively create one
{
ScopedGenerator generator(fSharedGenerator);
if (sk_sp<GrTextureProxy> proxy = generator->generateTexture(ctx, cacheInfo, fOrigin)) {
SK_HISTOGRAM_ENUMERATION("LockTexturePath", kNative_LockTexturePath,
kLockTexturePathCount);
set_key_on_proxy(ctx->resourceProvider(), proxy.get(), key);
return proxy;
}
}
// 3. Ask the generator to return YUV planes, which the GPU can convert
if (!ctx->contextPriv().disableGpuYUVConversion()) {
const GrSurfaceDesc desc = GrImageInfoToSurfaceDesc(cacheInfo, *ctx->caps());
ScopedGenerator generator(fSharedGenerator);
Generator_GrYUVProvider provider(generator);
if (sk_sp<GrTextureProxy> proxy = provider.refAsTextureProxy(ctx, desc, true)) {
SK_HISTOGRAM_ENUMERATION("LockTexturePath", kYUV_LockTexturePath,
kLockTexturePathCount);
set_key_on_proxy(ctx->resourceProvider(), proxy.get(), key);
return proxy;
}
}
// 4. Ask the generator to return RGB(A) data, which the GPU can convert
SkBitmap bitmap;
if (this->lockAsBitmap(&bitmap, chint, format, cacheInfo)) {
sk_sp<GrTextureProxy> proxy;
if (willBeMipped) {
proxy = GrGenerateMipMapsAndUploadToTextureProxy(ctx, bitmap, dstColorSpace);
}
if (!proxy) {
proxy = GrUploadBitmapToTextureProxy(ctx->resourceProvider(), bitmap, dstColorSpace);
}
if (proxy) {
SK_HISTOGRAM_ENUMERATION("LockTexturePath", kRGBA_LockTexturePath,
kLockTexturePathCount);
set_key_on_proxy(ctx->resourceProvider(), proxy.get(), key);
return proxy;
}
}
SK_HISTOGRAM_ENUMERATION("LockTexturePath", kFailure_LockTexturePath,
kLockTexturePathCount);
return nullptr;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#endif