| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "float.h" |
| |
| #include "SkColorPriv.h" |
| #include "SkEndian.h" |
| #include "SkFixed.h" |
| #include "SkFloatBits.h" |
| #include "SkFloatingPoint.h" |
| #include "SkHalf.h" |
| #include "SkMathPriv.h" |
| #include "SkPoint.h" |
| #include "SkRandom.h" |
| #include "Test.h" |
| |
| static void test_clz(skiatest::Reporter* reporter) { |
| REPORTER_ASSERT(reporter, 32 == SkCLZ(0)); |
| REPORTER_ASSERT(reporter, 31 == SkCLZ(1)); |
| REPORTER_ASSERT(reporter, 1 == SkCLZ(1 << 30)); |
| REPORTER_ASSERT(reporter, 0 == SkCLZ(~0U)); |
| |
| SkRandom rand; |
| for (int i = 0; i < 1000; ++i) { |
| uint32_t mask = rand.nextU(); |
| // need to get some zeros for testing, but in some obscure way so the |
| // compiler won't "see" that, and work-around calling the functions. |
| mask >>= (mask & 31); |
| int intri = SkCLZ(mask); |
| int porta = SkCLZ_portable(mask); |
| REPORTER_ASSERT(reporter, intri == porta); |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static float sk_fsel(float pred, float result_ge, float result_lt) { |
| return pred >= 0 ? result_ge : result_lt; |
| } |
| |
| static float fast_floor(float x) { |
| // float big = sk_fsel(x, 0x1.0p+23, -0x1.0p+23); |
| float big = sk_fsel(x, (float)(1 << 23), -(float)(1 << 23)); |
| return (float)(x + big) - big; |
| } |
| |
| static float std_floor(float x) { |
| return sk_float_floor(x); |
| } |
| |
| static void test_floor_value(skiatest::Reporter* reporter, float value) { |
| float fast = fast_floor(value); |
| float std = std_floor(value); |
| if (std != fast) { |
| ERRORF(reporter, "fast_floor(%.9g) == %.9g != %.9g == std_floor(%.9g)", |
| value, fast, std, value); |
| } |
| } |
| |
| static void test_floor(skiatest::Reporter* reporter) { |
| static const float gVals[] = { |
| 0, 1, 1.1f, 1.01f, 1.001f, 1.0001f, 1.00001f, 1.000001f, 1.0000001f |
| }; |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(gVals); ++i) { |
| test_floor_value(reporter, gVals[i]); |
| // test_floor_value(reporter, -gVals[i]); |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // test that SkMul16ShiftRound and SkMulDiv255Round return the same result |
| static void test_muldivround(skiatest::Reporter* reporter) { |
| #if 0 |
| // this "complete" test is too slow, so we test a random sampling of it |
| |
| for (int a = 0; a <= 32767; ++a) { |
| for (int b = 0; b <= 32767; ++b) { |
| unsigned prod0 = SkMul16ShiftRound(a, b, 8); |
| unsigned prod1 = SkMulDiv255Round(a, b); |
| SkASSERT(prod0 == prod1); |
| } |
| } |
| #endif |
| |
| SkRandom rand; |
| for (int i = 0; i < 10000; ++i) { |
| unsigned a = rand.nextU() & 0x7FFF; |
| unsigned b = rand.nextU() & 0x7FFF; |
| |
| unsigned prod0 = SkMul16ShiftRound(a, b, 8); |
| unsigned prod1 = SkMulDiv255Round(a, b); |
| |
| REPORTER_ASSERT(reporter, prod0 == prod1); |
| } |
| } |
| |
| static float float_blend(int src, int dst, float unit) { |
| return dst + (src - dst) * unit; |
| } |
| |
| static int blend31(int src, int dst, int a31) { |
| return dst + ((src - dst) * a31 * 2114 >> 16); |
| // return dst + ((src - dst) * a31 * 33 >> 10); |
| } |
| |
| static int blend31_slow(int src, int dst, int a31) { |
| int prod = src * a31 + (31 - a31) * dst + 16; |
| prod = (prod + (prod >> 5)) >> 5; |
| return prod; |
| } |
| |
| static int blend31_round(int src, int dst, int a31) { |
| int prod = (src - dst) * a31 + 16; |
| prod = (prod + (prod >> 5)) >> 5; |
| return dst + prod; |
| } |
| |
| static int blend31_old(int src, int dst, int a31) { |
| a31 += a31 >> 4; |
| return dst + ((src - dst) * a31 >> 5); |
| } |
| |
| // suppress unused code warning |
| static int (*blend_functions[])(int, int, int) = { |
| blend31, |
| blend31_slow, |
| blend31_round, |
| blend31_old |
| }; |
| |
| static void test_blend31() { |
| int failed = 0; |
| int death = 0; |
| if (false) { // avoid bit rot, suppress warning |
| failed = (*blend_functions[0])(0,0,0); |
| } |
| for (int src = 0; src <= 255; src++) { |
| for (int dst = 0; dst <= 255; dst++) { |
| for (int a = 0; a <= 31; a++) { |
| // int r0 = blend31(src, dst, a); |
| // int r0 = blend31_round(src, dst, a); |
| // int r0 = blend31_old(src, dst, a); |
| int r0 = blend31_slow(src, dst, a); |
| |
| float f = float_blend(src, dst, a / 31.f); |
| int r1 = (int)f; |
| int r2 = SkScalarRoundToInt(f); |
| |
| if (r0 != r1 && r0 != r2) { |
| SkDebugf("src:%d dst:%d a:%d result:%d float:%g\n", |
| src, dst, a, r0, f); |
| failed += 1; |
| } |
| if (r0 > 255) { |
| death += 1; |
| SkDebugf("death src:%d dst:%d a:%d result:%d float:%g\n", |
| src, dst, a, r0, f); |
| } |
| } |
| } |
| } |
| SkDebugf("---- failed %d death %d\n", failed, death); |
| } |
| |
| static void test_blend(skiatest::Reporter* reporter) { |
| for (int src = 0; src <= 255; src++) { |
| for (int dst = 0; dst <= 255; dst++) { |
| for (int a = 0; a <= 255; a++) { |
| int r0 = SkAlphaBlend255(src, dst, a); |
| float f1 = float_blend(src, dst, a / 255.f); |
| int r1 = SkScalarRoundToInt(f1); |
| |
| if (r0 != r1) { |
| float diff = sk_float_abs(f1 - r1); |
| diff = sk_float_abs(diff - 0.5f); |
| if (diff > (1 / 255.f)) { |
| ERRORF(reporter, "src:%d dst:%d a:%d " |
| "result:%d float:%g\n", src, dst, a, r0, f1); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| static void check_length(skiatest::Reporter* reporter, |
| const SkPoint& p, SkScalar targetLen) { |
| float x = SkScalarToFloat(p.fX); |
| float y = SkScalarToFloat(p.fY); |
| float len = sk_float_sqrt(x*x + y*y); |
| |
| len /= SkScalarToFloat(targetLen); |
| |
| REPORTER_ASSERT(reporter, len > 0.999f && len < 1.001f); |
| } |
| |
| static float nextFloat(SkRandom& rand) { |
| SkFloatIntUnion data; |
| data.fSignBitInt = rand.nextU(); |
| return data.fFloat; |
| } |
| |
| /* returns true if a == b as resulting from (int)x. Since it is undefined |
| what to do if the float exceeds 2^32-1, we check for that explicitly. |
| */ |
| static bool equal_float_native_skia(float x, int32_t ni, int32_t si) { |
| // When the float is out of integer range (NaN, above, below), |
| // the C cast is undefined, but Skia's methods should have clamped. |
| if (!(x == x)) { // NaN |
| return si == SK_MaxS32 || si == SK_MinS32; |
| } |
| if (x > SK_MaxS32) { |
| return si == SK_MaxS32; |
| } |
| if (x < SK_MinS32) { |
| return si == SK_MinS32; |
| } |
| return si == ni; |
| } |
| |
| static void assert_float_equal(skiatest::Reporter* reporter, const char op[], |
| float x, int32_t ni, int32_t si) { |
| if (!equal_float_native_skia(x, ni, si)) { |
| ERRORF(reporter, "%s float %g bits %x native %x skia %x\n", |
| op, x, SkFloat2Bits(x), ni, si); |
| } |
| } |
| |
| static void test_float_floor(skiatest::Reporter* reporter, float x) { |
| int ix = (int)floor(x); |
| int iix = SkFloatToIntFloor(x); |
| assert_float_equal(reporter, "floor", x, ix, iix); |
| } |
| |
| static void test_float_round(skiatest::Reporter* reporter, float x) { |
| double xx = x + 0.5; // need intermediate double to avoid temp loss |
| int ix = (int)floor(xx); |
| int iix = SkFloatToIntRound(x); |
| assert_float_equal(reporter, "round", x, ix, iix); |
| } |
| |
| static void test_float_ceil(skiatest::Reporter* reporter, float x) { |
| int ix = (int)ceil(x); |
| int iix = SkFloatToIntCeil(x); |
| assert_float_equal(reporter, "ceil", x, ix, iix); |
| } |
| |
| static void test_float_conversions(skiatest::Reporter* reporter, float x) { |
| test_float_floor(reporter, x); |
| test_float_round(reporter, x); |
| test_float_ceil(reporter, x); |
| } |
| |
| static void unittest_fastfloat(skiatest::Reporter* reporter) { |
| SkRandom rand; |
| size_t i; |
| |
| static const float gFloats[] = { |
| 0.f/0.f, -0.f/0.f, 1.f/0.f, -1.f/0.f, |
| 0.f, 1.f, 0.5f, 0.499999f, 0.5000001f, 1.f/3, |
| 0.000000001f, 1000000000.f, // doesn't overflow |
| 0.0000000001f, 10000000000.f // does overflow |
| }; |
| for (i = 0; i < SK_ARRAY_COUNT(gFloats); i++) { |
| test_float_conversions(reporter, gFloats[i]); |
| test_float_conversions(reporter, -gFloats[i]); |
| } |
| |
| for (int outer = 0; outer < 100; outer++) { |
| rand.setSeed(outer); |
| for (i = 0; i < 100000; i++) { |
| float x = nextFloat(rand); |
| test_float_conversions(reporter, x); |
| } |
| } |
| } |
| |
| static float make_zero() { |
| return sk_float_sin(0); |
| } |
| |
| static void unittest_isfinite(skiatest::Reporter* reporter) { |
| float nan = sk_float_asin(2); |
| float inf = 1.0f / make_zero(); |
| float big = 3.40282e+038f; |
| |
| REPORTER_ASSERT(reporter, !SkScalarIsNaN(inf)); |
| REPORTER_ASSERT(reporter, !SkScalarIsNaN(-inf)); |
| REPORTER_ASSERT(reporter, !SkScalarIsFinite(inf)); |
| REPORTER_ASSERT(reporter, !SkScalarIsFinite(-inf)); |
| |
| REPORTER_ASSERT(reporter, SkScalarIsNaN(nan)); |
| REPORTER_ASSERT(reporter, !SkScalarIsNaN(big)); |
| REPORTER_ASSERT(reporter, !SkScalarIsNaN(-big)); |
| REPORTER_ASSERT(reporter, !SkScalarIsNaN(0)); |
| |
| REPORTER_ASSERT(reporter, !SkScalarIsFinite(nan)); |
| REPORTER_ASSERT(reporter, SkScalarIsFinite(big)); |
| REPORTER_ASSERT(reporter, SkScalarIsFinite(-big)); |
| REPORTER_ASSERT(reporter, SkScalarIsFinite(0)); |
| } |
| |
| static void unittest_half(skiatest::Reporter* reporter) { |
| static const float gFloats[] = { |
| 0.f, 1.f, 0.5f, 0.499999f, 0.5000001f, 1.f/3, |
| -0.f, -1.f, -0.5f, -0.499999f, -0.5000001f, -1.f/3 |
| }; |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(gFloats); ++i) { |
| SkHalf h = SkFloatToHalf(gFloats[i]); |
| float f = SkHalfToFloat(h); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, gFloats[i])); |
| } |
| |
| // check some special values |
| union FloatUnion { |
| uint32_t fU; |
| float fF; |
| }; |
| |
| static const FloatUnion largestPositiveHalf = { ((142 << 23) | (1023 << 13)) }; |
| SkHalf h = SkFloatToHalf(largestPositiveHalf.fF); |
| float f = SkHalfToFloat(h); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, largestPositiveHalf.fF)); |
| |
| static const FloatUnion largestNegativeHalf = { (1u << 31) | (142u << 23) | (1023u << 13) }; |
| h = SkFloatToHalf(largestNegativeHalf.fF); |
| f = SkHalfToFloat(h); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, largestNegativeHalf.fF)); |
| |
| static const FloatUnion smallestPositiveHalf = { 102 << 23 }; |
| h = SkFloatToHalf(smallestPositiveHalf.fF); |
| f = SkHalfToFloat(h); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, smallestPositiveHalf.fF)); |
| |
| static const FloatUnion overflowHalf = { ((143 << 23) | (1023 << 13)) }; |
| h = SkFloatToHalf(overflowHalf.fF); |
| f = SkHalfToFloat(h); |
| REPORTER_ASSERT(reporter, !SkScalarIsFinite(f) ); |
| |
| static const FloatUnion underflowHalf = { 101 << 23 }; |
| h = SkFloatToHalf(underflowHalf.fF); |
| f = SkHalfToFloat(h); |
| REPORTER_ASSERT(reporter, f == 0.0f ); |
| |
| static const FloatUnion inf32 = { 255 << 23 }; |
| h = SkFloatToHalf(inf32.fF); |
| f = SkHalfToFloat(h); |
| REPORTER_ASSERT(reporter, !SkScalarIsFinite(f) ); |
| |
| static const FloatUnion nan32 = { 255 << 23 | 1 }; |
| h = SkFloatToHalf(nan32.fF); |
| f = SkHalfToFloat(h); |
| REPORTER_ASSERT(reporter, SkScalarIsNaN(f) ); |
| |
| } |
| |
| template <typename RSqrtFn> |
| static void test_rsqrt(skiatest::Reporter* reporter, RSqrtFn rsqrt) { |
| const float maxRelativeError = 6.50196699e-4f; |
| |
| // test close to 0 up to 1 |
| float input = 0.000001f; |
| for (int i = 0; i < 1000; ++i) { |
| float exact = 1.0f/sk_float_sqrt(input); |
| float estimate = rsqrt(input); |
| float relativeError = sk_float_abs(exact - estimate)/exact; |
| REPORTER_ASSERT(reporter, relativeError <= maxRelativeError); |
| input += 0.001f; |
| } |
| |
| // test 1 to ~100 |
| input = 1.0f; |
| for (int i = 0; i < 1000; ++i) { |
| float exact = 1.0f/sk_float_sqrt(input); |
| float estimate = rsqrt(input); |
| float relativeError = sk_float_abs(exact - estimate)/exact; |
| REPORTER_ASSERT(reporter, relativeError <= maxRelativeError); |
| input += 0.01f; |
| } |
| |
| // test some big numbers |
| input = 1000000.0f; |
| for (int i = 0; i < 100; ++i) { |
| float exact = 1.0f/sk_float_sqrt(input); |
| float estimate = rsqrt(input); |
| float relativeError = sk_float_abs(exact - estimate)/exact; |
| REPORTER_ASSERT(reporter, relativeError <= maxRelativeError); |
| input += 754326.f; |
| } |
| } |
| |
| static void test_muldiv255(skiatest::Reporter* reporter) { |
| for (int a = 0; a <= 255; a++) { |
| for (int b = 0; b <= 255; b++) { |
| int ab = a * b; |
| float s = ab / 255.0f; |
| int round = (int)floorf(s + 0.5f); |
| int trunc = (int)floorf(s); |
| |
| int iround = SkMulDiv255Round(a, b); |
| int itrunc = SkMulDiv255Trunc(a, b); |
| |
| REPORTER_ASSERT(reporter, iround == round); |
| REPORTER_ASSERT(reporter, itrunc == trunc); |
| |
| REPORTER_ASSERT(reporter, itrunc <= iround); |
| REPORTER_ASSERT(reporter, iround <= a); |
| REPORTER_ASSERT(reporter, iround <= b); |
| } |
| } |
| } |
| |
| static void test_muldiv255ceiling(skiatest::Reporter* reporter) { |
| for (int c = 0; c <= 255; c++) { |
| for (int a = 0; a <= 255; a++) { |
| int product = (c * a + 255); |
| int expected_ceiling = (product + (product >> 8)) >> 8; |
| int webkit_ceiling = (c * a + 254) / 255; |
| REPORTER_ASSERT(reporter, expected_ceiling == webkit_ceiling); |
| int skia_ceiling = SkMulDiv255Ceiling(c, a); |
| REPORTER_ASSERT(reporter, skia_ceiling == webkit_ceiling); |
| } |
| } |
| } |
| |
| static void test_copysign(skiatest::Reporter* reporter) { |
| static const int32_t gTriples[] = { |
| // x, y, expected result |
| 0, 0, 0, |
| 0, 1, 0, |
| 0, -1, 0, |
| 1, 0, 1, |
| 1, 1, 1, |
| 1, -1, -1, |
| -1, 0, 1, |
| -1, 1, 1, |
| -1, -1, -1, |
| }; |
| for (size_t i = 0; i < SK_ARRAY_COUNT(gTriples); i += 3) { |
| REPORTER_ASSERT(reporter, |
| SkCopySign32(gTriples[i], gTriples[i+1]) == gTriples[i+2]); |
| float x = (float)gTriples[i]; |
| float y = (float)gTriples[i+1]; |
| float expected = (float)gTriples[i+2]; |
| REPORTER_ASSERT(reporter, sk_float_copysign(x, y) == expected); |
| } |
| |
| SkRandom rand; |
| for (int j = 0; j < 1000; j++) { |
| int ix = rand.nextS(); |
| REPORTER_ASSERT(reporter, SkCopySign32(ix, ix) == ix); |
| REPORTER_ASSERT(reporter, SkCopySign32(ix, -ix) == -ix); |
| REPORTER_ASSERT(reporter, SkCopySign32(-ix, ix) == ix); |
| REPORTER_ASSERT(reporter, SkCopySign32(-ix, -ix) == -ix); |
| |
| SkScalar sx = rand.nextSScalar1(); |
| REPORTER_ASSERT(reporter, SkScalarCopySign(sx, sx) == sx); |
| REPORTER_ASSERT(reporter, SkScalarCopySign(sx, -sx) == -sx); |
| REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, sx) == sx); |
| REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, -sx) == -sx); |
| } |
| } |
| |
| DEF_TEST(Math, reporter) { |
| int i; |
| SkRandom rand; |
| |
| // these should assert |
| #if 0 |
| SkToS8(128); |
| SkToS8(-129); |
| SkToU8(256); |
| SkToU8(-5); |
| |
| SkToS16(32768); |
| SkToS16(-32769); |
| SkToU16(65536); |
| SkToU16(-5); |
| |
| if (sizeof(size_t) > 4) { |
| SkToS32(4*1024*1024); |
| SkToS32(-4*1024*1024); |
| SkToU32(5*1024*1024); |
| SkToU32(-5); |
| } |
| #endif |
| |
| test_muldiv255(reporter); |
| test_muldiv255ceiling(reporter); |
| test_copysign(reporter); |
| |
| { |
| SkScalar x = SK_ScalarNaN; |
| REPORTER_ASSERT(reporter, SkScalarIsNaN(x)); |
| } |
| |
| for (i = 0; i < 1000; i++) { |
| int value = rand.nextS16(); |
| int max = rand.nextU16(); |
| |
| int clamp = SkClampMax(value, max); |
| int clamp2 = value < 0 ? 0 : (value > max ? max : value); |
| REPORTER_ASSERT(reporter, clamp == clamp2); |
| } |
| |
| for (i = 0; i < 10000; i++) { |
| SkPoint p; |
| |
| // These random values are being treated as 32-bit-patterns, not as |
| // ints; calling SkIntToScalar() here produces crashes. |
| p.setLength((SkScalar) rand.nextS(), |
| (SkScalar) rand.nextS(), |
| SK_Scalar1); |
| check_length(reporter, p, SK_Scalar1); |
| p.setLength((SkScalar) (rand.nextS() >> 13), |
| (SkScalar) (rand.nextS() >> 13), |
| SK_Scalar1); |
| check_length(reporter, p, SK_Scalar1); |
| } |
| |
| { |
| SkFixed result = SkFixedDiv(100, 100); |
| REPORTER_ASSERT(reporter, result == SK_Fixed1); |
| result = SkFixedDiv(1, SK_Fixed1); |
| REPORTER_ASSERT(reporter, result == 1); |
| result = SkFixedDiv(10 - 1, SK_Fixed1 * 3); |
| REPORTER_ASSERT(reporter, result == 3); |
| } |
| |
| { |
| REPORTER_ASSERT(reporter, (SkFixedRoundToFixed(-SK_Fixed1 * 10) >> 1) == -SK_Fixed1 * 5); |
| REPORTER_ASSERT(reporter, (SkFixedFloorToFixed(-SK_Fixed1 * 10) >> 1) == -SK_Fixed1 * 5); |
| REPORTER_ASSERT(reporter, (SkFixedCeilToFixed(-SK_Fixed1 * 10) >> 1) == -SK_Fixed1 * 5); |
| } |
| |
| unittest_fastfloat(reporter); |
| unittest_isfinite(reporter); |
| unittest_half(reporter); |
| test_rsqrt(reporter, sk_float_rsqrt); |
| test_rsqrt(reporter, sk_float_rsqrt_portable); |
| |
| for (i = 0; i < 10000; i++) { |
| SkFixed numer = rand.nextS(); |
| SkFixed denom = rand.nextS(); |
| SkFixed result = SkFixedDiv(numer, denom); |
| int64_t check = SkLeftShift((int64_t)numer, 16) / denom; |
| |
| (void)SkCLZ(numer); |
| (void)SkCLZ(denom); |
| |
| REPORTER_ASSERT(reporter, result != (SkFixed)SK_NaN32); |
| if (check > SK_MaxS32) { |
| check = SK_MaxS32; |
| } else if (check < -SK_MaxS32) { |
| check = SK_MinS32; |
| } |
| if (result != (int32_t)check) { |
| ERRORF(reporter, "\nFixed Divide: %8x / %8x -> %8x %8x\n", numer, denom, result, check); |
| } |
| REPORTER_ASSERT(reporter, result == (int32_t)check); |
| } |
| |
| test_blend(reporter); |
| |
| if (false) test_floor(reporter); |
| |
| // disable for now |
| if (false) test_blend31(); // avoid bit rot, suppress warning |
| |
| test_muldivround(reporter); |
| test_clz(reporter); |
| } |
| |
| template <typename T> struct PairRec { |
| T fYin; |
| T fYang; |
| }; |
| |
| DEF_TEST(TestEndian, reporter) { |
| static const PairRec<uint16_t> g16[] = { |
| { 0x0, 0x0 }, |
| { 0xFFFF, 0xFFFF }, |
| { 0x1122, 0x2211 }, |
| }; |
| static const PairRec<uint32_t> g32[] = { |
| { 0x0, 0x0 }, |
| { 0xFFFFFFFF, 0xFFFFFFFF }, |
| { 0x11223344, 0x44332211 }, |
| }; |
| static const PairRec<uint64_t> g64[] = { |
| { 0x0, 0x0 }, |
| { 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL }, |
| { 0x1122334455667788ULL, 0x8877665544332211ULL }, |
| }; |
| |
| REPORTER_ASSERT(reporter, 0x1122 == SkTEndianSwap16<0x2211>::value); |
| REPORTER_ASSERT(reporter, 0x11223344 == SkTEndianSwap32<0x44332211>::value); |
| REPORTER_ASSERT(reporter, 0x1122334455667788ULL == SkTEndianSwap64<0x8877665544332211ULL>::value); |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(g16); ++i) { |
| REPORTER_ASSERT(reporter, g16[i].fYang == SkEndianSwap16(g16[i].fYin)); |
| } |
| for (size_t i = 0; i < SK_ARRAY_COUNT(g32); ++i) { |
| REPORTER_ASSERT(reporter, g32[i].fYang == SkEndianSwap32(g32[i].fYin)); |
| } |
| for (size_t i = 0; i < SK_ARRAY_COUNT(g64); ++i) { |
| REPORTER_ASSERT(reporter, g64[i].fYang == SkEndianSwap64(g64[i].fYin)); |
| } |
| } |
| |
| template <typename T> |
| static void test_divmod(skiatest::Reporter* r) { |
| const struct { |
| T numer; |
| T denom; |
| } kEdgeCases[] = { |
| {(T)17, (T)17}, |
| {(T)17, (T)4}, |
| {(T)0, (T)17}, |
| // For unsigned T these negatives are just some large numbers. Doesn't hurt to test them. |
| {(T)-17, (T)-17}, |
| {(T)-17, (T)4}, |
| {(T)17, (T)-4}, |
| {(T)-17, (T)-4}, |
| }; |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(kEdgeCases); i++) { |
| const T numer = kEdgeCases[i].numer; |
| const T denom = kEdgeCases[i].denom; |
| T div, mod; |
| SkTDivMod(numer, denom, &div, &mod); |
| REPORTER_ASSERT(r, numer/denom == div); |
| REPORTER_ASSERT(r, numer%denom == mod); |
| } |
| |
| SkRandom rand; |
| for (size_t i = 0; i < 10000; i++) { |
| const T numer = (T)rand.nextS(); |
| T denom = 0; |
| while (0 == denom) { |
| denom = (T)rand.nextS(); |
| } |
| T div, mod; |
| SkTDivMod(numer, denom, &div, &mod); |
| REPORTER_ASSERT(r, numer/denom == div); |
| REPORTER_ASSERT(r, numer%denom == mod); |
| } |
| } |
| |
| DEF_TEST(divmod_u8, r) { |
| test_divmod<uint8_t>(r); |
| } |
| |
| DEF_TEST(divmod_u16, r) { |
| test_divmod<uint16_t>(r); |
| } |
| |
| DEF_TEST(divmod_u32, r) { |
| test_divmod<uint32_t>(r); |
| } |
| |
| DEF_TEST(divmod_u64, r) { |
| test_divmod<uint64_t>(r); |
| } |
| |
| DEF_TEST(divmod_s8, r) { |
| test_divmod<int8_t>(r); |
| } |
| |
| DEF_TEST(divmod_s16, r) { |
| test_divmod<int16_t>(r); |
| } |
| |
| DEF_TEST(divmod_s32, r) { |
| test_divmod<int32_t>(r); |
| } |
| |
| DEF_TEST(divmod_s64, r) { |
| test_divmod<int64_t>(r); |
| } |