| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| #include "Simplify.h" |
| |
| #undef SkASSERT |
| #define SkASSERT(cond) while (!(cond)) { sk_throw(); } |
| |
| // Terminology: |
| // A Path contains one of more Contours |
| // A Contour is made up of Segment array |
| // A Segment is described by a Verb and a Point array with 2, 3, or 4 points |
| // A Verb is one of Line, Quad(ratic), or Cubic |
| // A Segment contains a Span array |
| // A Span is describes a portion of a Segment using starting and ending T |
| // T values range from 0 to 1, where 0 is the first Point in the Segment |
| |
| // FIXME: remove once debugging is complete |
| #if 0 // set to 1 for no debugging whatsoever |
| |
| //const bool gxRunTestsInOneThread = false; |
| |
| #define DEBUG_ADD_INTERSECTING_TS 0 |
| #define DEBUG_BRIDGE 0 |
| #define DEBUG_DUMP 0 |
| |
| #else |
| |
| //const bool gRunTestsInOneThread = true; |
| |
| #define DEBUG_ADD_INTERSECTING_TS 1 |
| #define DEBUG_BRIDGE 1 |
| #define DEBUG_DUMP 1 |
| |
| #endif |
| |
| #if DEBUG_DUMP |
| static const char* kLVerbStr[] = {"", "line", "quad", "cubic"}; |
| static const char* kUVerbStr[] = {"", "Line", "Quad", "Cubic"}; |
| static int gContourID; |
| static int gSegmentID; |
| #endif |
| |
| static int LineIntersect(const SkPoint a[2], const SkPoint b[2], |
| Intersections& intersections) { |
| const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}}; |
| return intersect(aLine, bLine, intersections.fT[0], intersections.fT[1]); |
| } |
| |
| static int QuadLineIntersect(const SkPoint a[3], const SkPoint b[2], |
| Intersections& intersections) { |
| const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; |
| const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}}; |
| intersect(aQuad, bLine, intersections); |
| return intersections.fUsed; |
| } |
| |
| static int CubicLineIntersect(const SkPoint a[2], const SkPoint b[3], |
| Intersections& intersections) { |
| const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, |
| {a[3].fX, a[3].fY}}; |
| const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}}; |
| return intersect(aCubic, bLine, intersections.fT[0], intersections.fT[1]); |
| } |
| |
| static int QuadIntersect(const SkPoint a[3], const SkPoint b[3], |
| Intersections& intersections) { |
| const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; |
| const Quadratic bQuad = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}, {b[2].fX, b[2].fY}}; |
| intersect(aQuad, bQuad, intersections); |
| return intersections.fUsed; |
| } |
| |
| static int CubicIntersect(const SkPoint a[4], const SkPoint b[4], |
| Intersections& intersections) { |
| const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, |
| {a[3].fX, a[3].fY}}; |
| const Cubic bCubic = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}, {b[2].fX, b[2].fY}, |
| {b[3].fX, b[3].fY}}; |
| intersect(aCubic, bCubic, intersections); |
| return intersections.fUsed; |
| } |
| |
| static int HLineIntersect(const SkPoint a[2], SkScalar left, SkScalar right, |
| SkScalar y, bool flipped, Intersections& intersections) { |
| const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| return horizontalIntersect(aLine, left, right, y, flipped, intersections); |
| } |
| |
| static int VLineIntersect(const SkPoint a[2], SkScalar left, SkScalar right, |
| SkScalar y, bool flipped, Intersections& intersections) { |
| const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| return verticalIntersect(aLine, left, right, y, flipped, intersections); |
| } |
| |
| static int HQuadIntersect(const SkPoint a[3], SkScalar left, SkScalar right, |
| SkScalar y, bool flipped, Intersections& intersections) { |
| const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; |
| return horizontalIntersect(aQuad, left, right, y, flipped, intersections); |
| } |
| |
| static int VQuadIntersect(const SkPoint a[3], SkScalar left, SkScalar right, |
| SkScalar y, bool flipped, Intersections& intersections) { |
| const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; |
| return verticalIntersect(aQuad, left, right, y, flipped, intersections); |
| } |
| |
| static int HCubicIntersect(const SkPoint a[4], SkScalar left, SkScalar right, |
| SkScalar y, bool flipped, Intersections& intersections) { |
| const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, |
| {a[3].fX, a[3].fY}}; |
| return horizontalIntersect(aCubic, left, right, y, flipped, intersections); |
| } |
| |
| static int VCubicIntersect(const SkPoint a[4], SkScalar left, SkScalar right, |
| SkScalar y, bool flipped, Intersections& intersections) { |
| const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, |
| {a[3].fX, a[3].fY}}; |
| return verticalIntersect(aCubic, left, right, y, flipped, intersections); |
| } |
| |
| static void LineXYAtT(const SkPoint a[2], double t, SkPoint* out) { |
| const _Line line = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| double x, y; |
| xy_at_t(line, t, x, y); |
| out->fX = SkDoubleToScalar(x); |
| out->fY = SkDoubleToScalar(y); |
| } |
| |
| static void QuadXYAtT(const SkPoint a[3], double t, SkPoint* out) { |
| const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; |
| double x, y; |
| xy_at_t(quad, t, x, y); |
| out->fX = SkDoubleToScalar(x); |
| out->fY = SkDoubleToScalar(y); |
| } |
| |
| static void CubicXYAtT(const SkPoint a[4], double t, SkPoint* out) { |
| const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, |
| {a[3].fX, a[3].fY}}; |
| double x, y; |
| xy_at_t(cubic, t, x, y); |
| out->fX = SkDoubleToScalar(x); |
| out->fY = SkDoubleToScalar(y); |
| } |
| |
| static void (* const SegmentXYAtT[])(const SkPoint [], double , SkPoint* ) = { |
| NULL, |
| LineXYAtT, |
| QuadXYAtT, |
| CubicXYAtT |
| }; |
| |
| static SkScalar LineXAtT(const SkPoint a[2], double t) { |
| const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| double x; |
| xy_at_t(aLine, t, x, *(double*) 0); |
| return SkDoubleToScalar(x); |
| } |
| |
| static SkScalar QuadXAtT(const SkPoint a[3], double t) { |
| const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; |
| double x; |
| xy_at_t(quad, t, x, *(double*) 0); |
| return SkDoubleToScalar(x); |
| } |
| |
| static SkScalar CubicXAtT(const SkPoint a[4], double t) { |
| const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, |
| {a[3].fX, a[3].fY}}; |
| double x; |
| xy_at_t(cubic, t, x, *(double*) 0); |
| return SkDoubleToScalar(x); |
| } |
| |
| static SkScalar (* const SegmentXAtT[])(const SkPoint [], double ) = { |
| NULL, |
| LineXAtT, |
| QuadXAtT, |
| CubicXAtT |
| }; |
| |
| static SkScalar LineYAtT(const SkPoint a[2], double t) { |
| const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| double y; |
| xy_at_t(aLine, t, *(double*) 0, y); |
| return SkDoubleToScalar(y); |
| } |
| |
| static SkScalar QuadYAtT(const SkPoint a[3], double t) { |
| const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; |
| double y; |
| xy_at_t(quad, t, *(double*) 0, y); |
| return SkDoubleToScalar(y); |
| } |
| |
| static SkScalar CubicYAtT(const SkPoint a[4], double t) { |
| const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, |
| {a[3].fX, a[3].fY}}; |
| double y; |
| xy_at_t(cubic, t, *(double*) 0, y); |
| return SkDoubleToScalar(y); |
| } |
| |
| static SkScalar (* const SegmentYAtT[])(const SkPoint [], double ) = { |
| NULL, |
| LineYAtT, |
| QuadYAtT, |
| CubicYAtT |
| }; |
| |
| static void LineSubDivide(const SkPoint a[2], double startT, double endT, |
| SkPoint sub[2]) { |
| const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| _Line dst; |
| sub_divide(aLine, startT, endT, dst); |
| sub[0].fX = SkDoubleToScalar(dst[0].x); |
| sub[0].fY = SkDoubleToScalar(dst[0].y); |
| sub[1].fX = SkDoubleToScalar(dst[1].x); |
| sub[1].fY = SkDoubleToScalar(dst[1].y); |
| } |
| |
| static void QuadSubDivide(const SkPoint a[3], double startT, double endT, |
| SkPoint sub[3]) { |
| const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| {a[2].fX, a[2].fY}}; |
| Quadratic dst; |
| sub_divide(aQuad, startT, endT, dst); |
| sub[0].fX = SkDoubleToScalar(dst[0].x); |
| sub[0].fY = SkDoubleToScalar(dst[0].y); |
| sub[1].fX = SkDoubleToScalar(dst[1].x); |
| sub[1].fY = SkDoubleToScalar(dst[1].y); |
| sub[2].fX = SkDoubleToScalar(dst[2].x); |
| sub[2].fY = SkDoubleToScalar(dst[2].y); |
| } |
| |
| static void CubicSubDivide(const SkPoint a[4], double startT, double endT, |
| SkPoint sub[4]) { |
| const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}}; |
| Cubic dst; |
| sub_divide(aCubic, startT, endT, dst); |
| sub[0].fX = SkDoubleToScalar(dst[0].x); |
| sub[0].fY = SkDoubleToScalar(dst[0].y); |
| sub[1].fX = SkDoubleToScalar(dst[1].x); |
| sub[1].fY = SkDoubleToScalar(dst[1].y); |
| sub[2].fX = SkDoubleToScalar(dst[2].x); |
| sub[2].fY = SkDoubleToScalar(dst[2].y); |
| sub[3].fX = SkDoubleToScalar(dst[3].x); |
| sub[3].fY = SkDoubleToScalar(dst[3].y); |
| } |
| |
| static void (* const SegmentSubDivide[])(const SkPoint [], double , double , |
| SkPoint []) = { |
| NULL, |
| LineSubDivide, |
| QuadSubDivide, |
| CubicSubDivide |
| }; |
| |
| static void QuadSubBounds(const SkPoint a[3], double startT, double endT, |
| SkRect& bounds) { |
| SkPoint dst[3]; |
| QuadSubDivide(a, startT, endT, dst); |
| bounds.fLeft = bounds.fRight = dst[0].fX; |
| bounds.fTop = bounds.fBottom = dst[0].fY; |
| for (int index = 1; index < 3; ++index) { |
| bounds.growToInclude(dst[index].fX, dst[index].fY); |
| } |
| } |
| |
| static void CubicSubBounds(const SkPoint a[4], double startT, double endT, |
| SkRect& bounds) { |
| SkPoint dst[4]; |
| CubicSubDivide(a, startT, endT, dst); |
| bounds.fLeft = bounds.fRight = dst[0].fX; |
| bounds.fTop = bounds.fBottom = dst[0].fY; |
| for (int index = 1; index < 4; ++index) { |
| bounds.growToInclude(dst[index].fX, dst[index].fY); |
| } |
| } |
| |
| static SkPath::Verb QuadReduceOrder(const SkPoint a[3], |
| SkTDArray<SkPoint>& reducePts) { |
| const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| {a[2].fX, a[2].fY}}; |
| Quadratic dst; |
| int order = reduceOrder(aQuad, dst); |
| if (order == 3) { |
| return SkPath::kQuad_Verb; |
| } |
| for (int index = 0; index < order; ++index) { |
| SkPoint* pt = reducePts.append(); |
| pt->fX = SkDoubleToScalar(dst[index].x); |
| pt->fY = SkDoubleToScalar(dst[index].y); |
| } |
| return (SkPath::Verb) (order - 1); |
| } |
| |
| static SkPath::Verb CubicReduceOrder(const SkPoint a[4], |
| SkTDArray<SkPoint>& reducePts) { |
| const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}}; |
| Cubic dst; |
| int order = reduceOrder(aCubic, dst, kReduceOrder_QuadraticsAllowed); |
| if (order == 4) { |
| return SkPath::kCubic_Verb; |
| } |
| for (int index = 0; index < order; ++index) { |
| SkPoint* pt = reducePts.append(); |
| pt->fX = SkDoubleToScalar(dst[index].x); |
| pt->fY = SkDoubleToScalar(dst[index].y); |
| } |
| return (SkPath::Verb) (order - 1); |
| } |
| |
| static bool QuadIsLinear(const SkPoint a[3]) { |
| const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| {a[2].fX, a[2].fY}}; |
| return isLinear(aQuad, 0, 2); |
| } |
| |
| static bool CubicIsLinear(const SkPoint a[4]) { |
| const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}}; |
| return isLinear(aCubic, 0, 3); |
| } |
| |
| static SkScalar LineLeftMost(const SkPoint a[2], double startT, double endT) { |
| const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| double x[2]; |
| xy_at_t(aLine, startT, x[0], *(double*) 0); |
| xy_at_t(aLine, endT, x[0], *(double*) 0); |
| return startT < endT ? (float) startT : (float) endT; |
| } |
| |
| static SkScalar QuadLeftMost(const SkPoint a[3], double startT, double endT) { |
| const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| {a[2].fX, a[2].fY}}; |
| return (float) leftMostT(aQuad, startT, endT); |
| } |
| |
| static SkScalar CubicLeftMost(const SkPoint a[4], double startT, double endT) { |
| const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}}; |
| return (float) leftMostT(aCubic, startT, endT); |
| } |
| |
| static SkScalar (* const SegmentLeftMost[])(const SkPoint [], double , double) = { |
| NULL, |
| LineLeftMost, |
| QuadLeftMost, |
| CubicLeftMost |
| }; |
| |
| static bool IsCoincident(const SkPoint a[2], const SkPoint& above, |
| const SkPoint& below) { |
| const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| const _Line bLine = {{above.fX, above.fY}, {below.fX, below.fY}}; |
| return implicit_matches_ulps(aLine, bLine, 32); |
| } |
| |
| class Segment; |
| |
| // sorting angles |
| // given angles of {dx dy ddx ddy dddx dddy} sort them |
| class Angle { |
| public: |
| // FIXME: this is bogus for quads and cubics |
| // if the quads and cubics' line from end pt to ctrl pt are coincident, |
| // there's no obvious way to determine the curve ordering from the |
| // derivatives alone. In particular, if one quadratic's coincident tangent |
| // is longer than the other curve, the final control point can place the |
| // longer curve on either side of the shorter one. |
| // Using Bezier curve focus http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf |
| // may provide some help, but nothing has been figured out yet. |
| bool operator<(const Angle& rh) const { |
| if ((fDy < 0) ^ (rh.fDy < 0)) { |
| return fDy < 0; |
| } |
| if (fDy == 0 && rh.fDy == 0 && fDx != rh.fDx) { |
| return fDx < rh.fDx; |
| } |
| SkScalar cmp = fDx * rh.fDy - rh.fDx * fDy; |
| if (cmp) { |
| return cmp < 0; |
| } |
| if ((fDDy < 0) ^ (rh.fDDy < 0)) { |
| return fDDy < 0; |
| } |
| if (fDDy == 0 && rh.fDDy == 0 && fDDx != rh.fDDx) { |
| return fDDx < rh.fDDx; |
| } |
| cmp = fDDx * rh.fDDy - rh.fDDx * fDDy; |
| if (cmp) { |
| return cmp < 0; |
| } |
| if ((fDDDy < 0) ^ (rh.fDDDy < 0)) { |
| return fDDDy < 0; |
| } |
| if (fDDDy == 0 && rh.fDDDy == 0) { |
| return fDDDx < rh.fDDDx; |
| } |
| return fDDDx * rh.fDDDy < rh.fDDDx * fDDDy; |
| } |
| |
| int end() const { |
| return fEnd; |
| } |
| |
| // since all angles share a point, this needs to know which point |
| // is the common origin, i.e., whether the center is at pts[0] or pts[verb] |
| // practically, this should only be called by addAngle |
| void set(const SkPoint* pts, SkPath::Verb verb, const Segment* segment, |
| int start, int end, bool coincident) { |
| SkASSERT(start != end); |
| fSegment = segment; |
| fStart = start; |
| fEnd = end; |
| fCoincident = coincident; |
| fDx = pts[1].fX - pts[0].fX; // b - a |
| fDy = pts[1].fY - pts[0].fY; |
| if (verb == SkPath::kLine_Verb) { |
| fDDx = fDDy = fDDDx = fDDDy = 0; |
| return; |
| } |
| fDDx = pts[2].fX - pts[1].fX - fDx; // a - 2b + c |
| fDDy = pts[2].fY - pts[1].fY - fDy; |
| if (verb == SkPath::kQuad_Verb) { |
| fDDDx = fDDDy = 0; |
| return; |
| } |
| fDDDx = pts[3].fX + 3 * (pts[1].fX - pts[2].fX) - pts[0].fX; |
| fDDDy = pts[3].fY + 3 * (pts[1].fY - pts[2].fY) - pts[0].fY; |
| } |
| |
| // noncoincident quads/cubics may have the same initial angle |
| // as lines, so must sort by derivatives as well |
| // if flatness turns out to be a reasonable way to sort, use the below: |
| void setFlat(const SkPoint* pts, SkPath::Verb verb, const Segment* segment, |
| int start, int end, bool coincident) { |
| fSegment = segment; |
| fStart = start; |
| fEnd = end; |
| fCoincident = coincident; |
| fDx = pts[1].fX - pts[0].fX; // b - a |
| fDy = pts[1].fY - pts[0].fY; |
| if (verb == SkPath::kLine_Verb) { |
| fDDx = fDDy = fDDDx = fDDDy = 0; |
| return; |
| } |
| if (verb == SkPath::kQuad_Verb) { |
| int uplsX = FloatAsInt(pts[2].fX - pts[1].fY - fDx); |
| int uplsY = FloatAsInt(pts[2].fY - pts[1].fY - fDy); |
| int larger = std::max(abs(uplsX), abs(uplsY)); |
| int shift = 0; |
| double flatT; |
| SkPoint ddPt; // FIXME: get rid of copy (change fDD_ to point) |
| LineParameters implicitLine; |
| _Line tangent = {{pts[0].fX, pts[0].fY}, {pts[1].fX, pts[1].fY}}; |
| implicitLine.lineEndPoints(tangent); |
| implicitLine.normalize(); |
| while (larger > UlpsEpsilon * 1024) { |
| larger >>= 2; |
| ++shift; |
| flatT = 0.5 / (1 << shift); |
| QuadXYAtT(pts, flatT, &ddPt); |
| _Point _pt = {ddPt.fX, ddPt.fY}; |
| double distance = implicitLine.pointDistance(_pt); |
| if (approximately_zero(distance)) { |
| SkDebugf("%s ulps too small %1.9g\n", __FUNCTION__, distance); |
| break; |
| } |
| } |
| flatT = 0.5 / (1 << shift); |
| QuadXYAtT(pts, flatT, &ddPt); |
| fDDx = ddPt.fX - pts[0].fX; |
| fDDy = ddPt.fY - pts[0].fY; |
| SkASSERT(fDDx != 0 || fDDy != 0); |
| fDDDx = fDDDy = 0; |
| return; |
| } |
| SkASSERT(0); // FIXME: add cubic case |
| } |
| |
| const Segment* segment() const { |
| return fSegment; |
| } |
| |
| int sign() const { |
| int result = fStart - fEnd >> 31 | 1; |
| SkASSERT(result == fStart < fEnd ? -1 : 1); |
| return result; |
| } |
| |
| int start() const { |
| return fStart; |
| } |
| |
| private: |
| SkScalar fDx; |
| SkScalar fDy; |
| SkScalar fDDx; |
| SkScalar fDDy; |
| SkScalar fDDDx; |
| SkScalar fDDDy; |
| const Segment* fSegment; |
| int fStart; |
| int fEnd; |
| bool fCoincident; |
| }; |
| |
| static void sortAngles(SkTDArray<Angle>& angles, SkTDArray<Angle*>& angleList) { |
| int angleCount = angles.count(); |
| int angleIndex; |
| angleList.setReserve(angleCount); |
| for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) { |
| *angleList.append() = &angles[angleIndex]; |
| } |
| QSort<Angle>(angleList.begin(), angleList.end() - 1); |
| } |
| |
| // Bounds, unlike Rect, does not consider a vertical line to be empty. |
| struct Bounds : public SkRect { |
| static bool Intersects(const Bounds& a, const Bounds& b) { |
| return a.fLeft <= b.fRight && b.fLeft <= a.fRight && |
| a.fTop <= b.fBottom && b.fTop <= a.fBottom; |
| } |
| |
| bool isEmpty() { |
| return fLeft > fRight || fTop > fBottom |
| || fLeft == fRight && fTop == fBottom |
| || isnan(fLeft) || isnan(fRight) |
| || isnan(fTop) || isnan(fBottom); |
| } |
| |
| void setCubicBounds(const SkPoint a[4]) { |
| _Rect dRect; |
| Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}}; |
| dRect.setBounds(cubic); |
| set((float) dRect.left, (float) dRect.top, (float) dRect.right, |
| (float) dRect.bottom); |
| } |
| |
| void setQuadBounds(const SkPoint a[3]) { |
| const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| {a[2].fX, a[2].fY}}; |
| _Rect dRect; |
| dRect.setBounds(quad); |
| set((float) dRect.left, (float) dRect.top, (float) dRect.right, |
| (float) dRect.bottom); |
| } |
| }; |
| |
| struct Span { |
| double fT; |
| Segment* fOther; |
| double fOtherT; // value at fOther[fOtherIndex].fT |
| int fOtherIndex; // can't be used during intersection |
| int fWinding; // accumulated from contours surrounding this one |
| // OPTIMIZATION: done needs only 2 bits (values are -1, 0, 1) |
| int fDone; // set when t to t+fDone is processed |
| // OPTIMIZATION: done needs only 2 bits (values are -1, 0, 1) |
| int fCoincident; // -1 start of coincidence, 0 no coincidence, 1 end |
| }; |
| |
| class Segment { |
| public: |
| Segment() { |
| #if DEBUG_DUMP |
| fID = ++gSegmentID; |
| #endif |
| } |
| |
| void addAngle(SkTDArray<Angle>& angles, int start, int end, |
| bool coincident) const { |
| SkASSERT(start != end); |
| SkPoint edge[4]; |
| (*SegmentSubDivide[fVerb])(fPts, fTs[start].fT, fTs[end].fT, edge); |
| Angle* angle = angles.append(); |
| angle->set(edge, fVerb, this, start, end, coincident); |
| } |
| |
| void addCubic(const SkPoint pts[4]) { |
| init(pts, SkPath::kCubic_Verb); |
| fBounds.setCubicBounds(pts); |
| } |
| |
| void addLine(const SkPoint pts[2]) { |
| init(pts, SkPath::kLine_Verb); |
| fBounds.set(pts, 2); |
| } |
| |
| // add 2 to edge or out of range values to get T extremes |
| void addOtherT(int index, double otherT, int otherIndex) { |
| Span& span = fTs[index]; |
| span.fOtherT = otherT; |
| span.fOtherIndex = otherIndex; |
| } |
| |
| void addQuad(const SkPoint pts[3]) { |
| init(pts, SkPath::kQuad_Verb); |
| fBounds.setQuadBounds(pts); |
| } |
| |
| int addT(double newT, Segment& other, int coincident) { |
| // FIXME: in the pathological case where there is a ton of intercepts, |
| // binary search? |
| int insertedAt = -1; |
| Span* span; |
| size_t tCount = fTs.count(); |
| double delta; |
| for (size_t idx2 = 0; idx2 < tCount; ++idx2) { |
| // OPTIMIZATION: if there are three or more identical Ts, then |
| // the fourth and following could be further insertion-sorted so |
| // that all the edges are clockwise or counterclockwise. |
| // This could later limit segment tests to the two adjacent |
| // neighbors, although it doesn't help with determining which |
| // circular direction to go in. |
| if (newT <= fTs[idx2].fT) { |
| insertedAt = idx2; |
| span = fTs.insert(idx2); |
| goto finish; |
| } |
| } |
| insertedAt = tCount; |
| span = fTs.append(); |
| finish: |
| span->fT = newT; |
| span->fOther = &other; |
| span->fWinding = 1; |
| span->fDone = 0; |
| span->fCoincident = coincident; |
| fCoincident |= coincident; |
| return insertedAt; |
| } |
| |
| void addTwoAngles(int start, int end, const SkPoint& endLoc, |
| const Span* endSpan, bool startCo, SkTDArray<Angle>& angles) const { |
| // add edge leading into junction |
| addAngle(angles, end, start, startCo); |
| // add edge leading away from junction |
| bool coincident; |
| int step = start < end ? 1 : -1; |
| int tIndex = nextSpan(end, step, endLoc, endSpan, NULL, coincident); |
| if (tIndex >= 0) { |
| lastSpan(tIndex, step, endLoc, endSpan, coincident); |
| addAngle(angles, end, tIndex, coincident); |
| } |
| } |
| |
| const Bounds& bounds() const { |
| return fBounds; |
| } |
| |
| void buildAngles(int index, int last, int step, const SkPoint& loc, |
| SkTDArray<Angle>& angles) const { |
| SkASSERT(index - last != 0); |
| SkASSERT((index - last < 0) ^ (step < 0)); |
| int end = last + step; |
| do { |
| Span* span = &fTs[index]; |
| Segment* other = span->fOther; |
| if (other->fDone) { |
| continue; |
| } |
| // if there is only one live crossing, and no coincidence, continue |
| // in the same direction |
| // if there is coincidence, the only choice may be to reverse direction |
| // find edge on either side of intersection |
| int oIndex = span->fOtherIndex; |
| Span* otherSpan = &other->fTs[oIndex]; |
| SkASSERT(otherSpan->fOther == this); |
| // if done == -1, prior span has already been processed |
| bool otherCo; |
| int localStep = step; |
| int next = other->nextSpan(oIndex, localStep, loc, otherSpan, |
| NULL, otherCo); |
| if (next < 0) { |
| localStep = -step; |
| next = other->nextSpan(oIndex, localStep, loc, otherSpan, |
| NULL, otherCo); |
| } |
| other->lastSpan(next, localStep, loc, otherSpan, otherCo); |
| // add candidate into and away from junction |
| other->addTwoAngles(next, oIndex, loc, span, otherCo, angles); |
| |
| } while ((index += step) != end); |
| } |
| |
| // figure out if the segment's ascending T goes clockwise or not |
| // not enough context to write this as shown |
| // instead, add all segments meeting at the top |
| // sort them using buildAngleList |
| // find the first in the sort |
| // see if ascendingT goes to top |
| bool clockwise(int tIndex) const { |
| SkASSERT(0); // incomplete |
| return false; |
| } |
| |
| bool done() const { |
| return fDone; |
| } |
| |
| int findCoincidentEnd(int start) const { |
| int tCount = fTs.count(); |
| SkASSERT(start < tCount); |
| const Span& span = fTs[start]; |
| SkASSERT(span.fCoincident); |
| for (int index = start + 1; index < tCount; ++index) { |
| const Span& match = fTs[index]; |
| if (match.fOther == span.fOther) { |
| SkASSERT(match.fCoincident); |
| return index; |
| } |
| } |
| SkASSERT(0); // should never get here |
| return -1; |
| } |
| |
| // start is the index of the beginning T of this edge |
| // it is guaranteed to have an end which describes a non-zero length (?) |
| // winding -1 means ccw, 1 means cw |
| // step is in/out -1 or 1 |
| // spanIndex is returned |
| Segment* findNext(int start, int winding, int& step, int& spanIndex) const { |
| SkASSERT(step == 1 || step == -1); |
| int count = fTs.count(); |
| SkASSERT(step > 0 ? start < count - 1 : start > 0); |
| Span* startSpan = &fTs[start]; |
| // FIXME: |
| // since Ts can be stepped either way, done markers must be careful |
| // not to assume that segment was only ascending in T. This shouldn't |
| // be a problem unless pathologically a segment can be partially |
| // ascending and partially descending -- maybe quads/cubic can do this? |
| startSpan->fDone = step; |
| SkPoint startLoc; // OPTIMIZATION: store this in the t span? |
| xyAtT(startSpan->fT, &startLoc); |
| SkPoint endLoc; |
| bool startCo; |
| int end = nextSpan(start, step, startLoc, startSpan, &endLoc, startCo); |
| |
| // if we hit the end looking for span end, is that always an error? |
| SkASSERT(step > 0 ? end + 1 < count : end - 1 >= 0); |
| |
| // preflight for coincidence -- if present, it may change winding |
| // considerations and whether reversed edges can be followed |
| int last = lastSpan(end, step, startLoc, startSpan, startCo); |
| |
| // Discard opposing direction candidates if no coincidence was found. |
| Span* endSpan = &fTs[end]; |
| int candidateCount = abs(last - end); |
| Segment* other; |
| if (candidateCount == 1) { |
| SkASSERT(!startCo); |
| // move in winding direction until edge in correct direction |
| // balance wrong direction edges before finding correct one |
| // this requres that the intersection is angularly sorted |
| // for a single intersection, special case -- choose the opposite |
| // edge that steps the same |
| other = endSpan->fOther; |
| SkASSERT(!other->fDone); |
| spanIndex = endSpan->fOtherIndex; |
| SkASSERT(step < 0 ? spanIndex > 0 |
| : spanIndex < other->fTs.count() - 1); |
| return other; |
| } |
| |
| // more than one viable candidate -- measure angles to find best |
| SkTDArray<Angle> angles; |
| SkASSERT(end - start != 0); |
| SkASSERT((end - start < 0) ^ (step < 0)); |
| addTwoAngles(start, end, endLoc, endSpan, startCo, angles); |
| buildAngles(end, last, step, endLoc, angles); |
| SkTDArray<Angle*> sorted; |
| sortAngles(angles, sorted); |
| // find the starting edge |
| int startIndex = -1; |
| int angleCount = angles.count(); |
| int angleIndex; |
| const Angle* angle; |
| for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) { |
| angle = sorted[angleIndex]; |
| if (angle->segment() == this && angle->start() == end && |
| angle->end() == start) { |
| startIndex = angleIndex; |
| break; |
| } |
| } |
| SkASSERT(startIndex >= 0); |
| winding += angle->sign(); |
| int nextIndex = startIndex; |
| const Angle* nextAngle; |
| do { |
| if (++nextIndex == angleCount) { |
| nextIndex = 0; |
| } |
| SkASSERT(nextIndex != startIndex); // should never wrap around |
| nextAngle = sorted[nextIndex]; |
| // OPTIMIZATION: Figure out all connections, given the initial |
| // winding info (e.g., accumulate winding in span for reuse) |
| winding -= nextAngle->sign(); |
| } while (winding); |
| // FIXME: get rid of cast |
| return const_cast<Segment*>(nextAngle->segment()); |
| |
| // so the span needs to contain the pairing info found here |
| // this should include the winding computed for the edge, and |
| // what edge it connects to, and whether it is discarded |
| // (maybe discarded == abs(winding) > 1) ? |
| // only need derivatives for duration of sorting, add a new struct |
| // for pairings, remove extra spans that have zero length and |
| // reference an unused other |
| // for coincident, the last span on the other may be marked done |
| // (always?) |
| |
| // if loop is exhausted, contour may be closed. |
| // FIXME: pass in close point so we can check for closure |
| |
| // given a segment, and a sense of where 'inside' is, return the next |
| // segment. If this segment has an intersection, or ends in multiple |
| // segments, find the mate that continues the outside. |
| // note that if there are multiples, but no coincidence, we can limit |
| // choices to connections in the correct direction |
| |
| // mark found segments as done |
| } |
| |
| void findTooCloseToCall(int winding) { |
| int count = fTs.count(); |
| if (count < 3) { // require t=0, x, 1 at minimum |
| return; |
| } |
| int matchIndex = 0; |
| int moCount; |
| Span* match; |
| Segment* mOther; |
| do { |
| match = &fTs[matchIndex]; |
| mOther = match->fOther; |
| moCount = mOther->fTs.count(); |
| } while (moCount >= 3 || ++matchIndex < count - 1); // require t=0, x, 1 at minimum |
| SkPoint matchPt; |
| // OPTIMIZATION: defer matchPt until qualifying toCount is found? |
| xyAtT(match->fT, &matchPt); |
| // look for a pair of nearby T values that map to the same (x,y) value |
| // if found, see if the pair of other segments share a common point. If |
| // so, the span from here to there is coincident. |
| for (int index = matchIndex + 1; index < count; ++index) { |
| Span* test = &fTs[index]; |
| Segment* tOther = test->fOther; |
| int toCount = tOther->fTs.count(); |
| if (toCount < 3) { // require t=0, x, 1 at minimum |
| continue; |
| } |
| SkPoint testPt; |
| xyAtT(test->fT, &testPt); |
| if (matchPt != testPt) { |
| matchIndex = index; |
| moCount = toCount; |
| match = test; |
| mOther = tOther; |
| matchPt = testPt; |
| continue; |
| } |
| int moStart = -1; // FIXME: initialization is debugging only |
| for (int moIndex = 0; moIndex < moCount; ++moIndex) { |
| Span& moSpan = mOther->fTs[moIndex]; |
| if (moSpan.fOther == this) { |
| if (moSpan.fOtherT == match->fT) { |
| moStart = moIndex; |
| } |
| continue; |
| } |
| if (moSpan.fOther != tOther) { |
| continue; |
| } |
| int toStart = -1; |
| int toIndex; // FIXME: initialization is debugging only |
| bool found = false; |
| for (toIndex = 0; toIndex < toCount; ++toIndex) { |
| Span& toSpan = tOther->fTs[toIndex]; |
| if (toSpan.fOther == this) { |
| if (toSpan.fOtherT == test->fT) { |
| toStart = toIndex; |
| } |
| continue; |
| } |
| if (toSpan.fOther == mOther && toSpan.fOtherT == moSpan.fT) { |
| found = true; |
| break; |
| } |
| } |
| if (!found) { |
| continue; |
| } |
| SkASSERT(moStart >= 0); |
| SkASSERT(toStart >= 0); |
| // test to see if the segment between there and here is linear |
| if (!mOther->isLinear(moStart, moIndex) |
| || !tOther->isLinear(toStart, toIndex)) { |
| continue; |
| } |
| mOther->fTs[moStart].fCoincident = -1; |
| tOther->fTs[toStart].fCoincident = -1; |
| mOther->fTs[moIndex].fCoincident = 1; |
| tOther->fTs[toIndex].fCoincident = 1; |
| } |
| nextStart: |
| ; |
| } |
| } |
| |
| // find the adjacent T that is leftmost, with a point != base |
| int findLefty(int tIndex, const SkPoint& base) const { |
| int bestTIndex = -1; |
| SkPoint test; |
| SkScalar bestX = FLT_MAX; |
| int testTIndex = tIndex; |
| while (--testTIndex >= 0) { |
| xyAtT(fTs[testTIndex].fT, &test); |
| if (test == base) { |
| continue; |
| } |
| bestX = test.fX; |
| bestTIndex = testTIndex; |
| break; |
| } |
| int count = fTs.count(); |
| testTIndex = tIndex; |
| while (++testTIndex < count) { |
| xyAtT(fTs[testTIndex].fT, &test); |
| if (test == base) { |
| continue; |
| } |
| if (bestX > test.fX) { |
| bestTIndex = testTIndex; |
| } |
| break; |
| } |
| SkASSERT(bestTIndex != -1); |
| return bestTIndex; |
| } |
| |
| // OPTIMIZATION : for a pair of lines, can we compute points at T (cached) |
| // and use more concise logic like the old edge walker code? |
| // FIXME: this needs to deal with coincident edges |
| const Segment* findTop(int& tIndex, int& direction) const { |
| // iterate through T intersections and return topmost |
| // topmost tangent from y-min to first pt is closer to horizontal |
| int firstT = 0; |
| int lastT = 0; |
| SkScalar topY = fPts[0].fY; |
| int count = fTs.count(); |
| int index; |
| for (index = 1; index < count; ++index) { |
| const Span& span = fTs[index]; |
| double t = span.fT; |
| SkScalar yIntercept = t == 1 ? fPts[fVerb].fY : yAtT(t); |
| if (topY > yIntercept) { |
| topY = yIntercept; |
| firstT = lastT = index; |
| } else if (topY == yIntercept) { |
| lastT = index; |
| } |
| } |
| // if there's only a pair of segments, go with the endpoint chosen above |
| if (firstT == lastT) { |
| tIndex = firstT; |
| return this; |
| } |
| // sort the edges to find the leftmost |
| SkPoint startLoc; // OPTIMIZATION: store this in the t span? |
| const Span* startSpan = &fTs[firstT]; |
| xyAtT(startSpan->fT, &startLoc); |
| SkPoint endLoc; |
| bool nextCo; |
| int end = nextSpan(firstT, 1, startLoc, startSpan, &endLoc, nextCo); |
| if (end == -1) { |
| end = nextSpan(firstT, -1, startLoc, startSpan, &endLoc, nextCo); |
| } |
| // if the topmost T is not on end, or is three-way or more, find left |
| // look for left-ness from tLeft to firstT (matching y of other) |
| SkTDArray<Angle> angles; |
| SkASSERT(firstT - end != 0); |
| addTwoAngles(end, firstT, endLoc, &fTs[firstT], nextCo, angles); |
| buildAngles(firstT, lastT, 1, startLoc, angles); |
| SkTDArray<Angle*> sorted; |
| sortAngles(angles, sorted); |
| const Segment* leftSegment = sorted[0]->segment(); |
| tIndex = sorted[0]->end(); |
| direction = sorted[0]->start() - tIndex; |
| SkASSERT(direction); |
| direction = direction < 0 ? -1 : 1; |
| return leftSegment; |
| } |
| |
| // FIXME: not crazy about this |
| // when the intersections are performed, the other index is into an |
| // incomplete array. as the array grows, the indices become incorrect |
| // while the following fixes the indices up again, it isn't smart about |
| // skipping segments whose indices are already correct |
| // assuming we leave the code that wrote the index in the first place |
| void fixOtherTIndex() { |
| int iCount = fTs.count(); |
| for (int i = 0; i < iCount; ++i) { |
| Span& iSpan = fTs[i]; |
| double oT = iSpan.fOtherT; |
| Segment* other = iSpan.fOther; |
| int oCount = other->fTs.count(); |
| for (int o = 0; o < oCount; ++o) { |
| Span& oSpan = other->fTs[o]; |
| if (oT == oSpan.fT && this == oSpan.fOther) { |
| iSpan.fOtherIndex = o; |
| } |
| } |
| } |
| } |
| |
| void init(const SkPoint pts[], SkPath::Verb verb) { |
| fPts = pts; |
| fVerb = verb; |
| fDone = false; |
| fCoincident = 0; |
| } |
| |
| bool intersected() const { |
| return fTs.count() > 0; |
| } |
| |
| bool isLinear(int start, int end) const { |
| if (fVerb == SkPath::kLine_Verb) { |
| return true; |
| } |
| if (fVerb == SkPath::kQuad_Verb) { |
| SkPoint qPart[3]; |
| QuadSubDivide(fPts, fTs[start].fT, fTs[end].fT, qPart); |
| return QuadIsLinear(qPart); |
| } else { |
| SkASSERT(fVerb == SkPath::kCubic_Verb); |
| SkPoint cPart[4]; |
| CubicSubDivide(fPts, fTs[start].fT, fTs[end].fT, cPart); |
| return CubicIsLinear(cPart); |
| } |
| } |
| |
| bool isHorizontal() const { |
| return fBounds.fTop == fBounds.fBottom; |
| } |
| |
| bool isVertical() const { |
| return fBounds.fLeft == fBounds.fRight; |
| } |
| |
| int lastSpan(int end, int step, const SkPoint& startLoc, |
| const Span* startSpan, bool& coincident) const { |
| int last = end; |
| int count = fTs.count(); |
| SkPoint lastLoc; |
| do { |
| end = last; |
| if (fTs[end].fCoincident == -step) { |
| coincident = true; |
| } |
| if (step > 0 ? ++last >= count : --last < 0) { |
| return end; |
| } |
| const Span& lastSpan = fTs[last]; |
| if (lastSpan.fDone == -step) { |
| return end; |
| } |
| if (lastSpan.fT == startSpan->fT) { |
| continue; |
| } |
| xyAtT(lastSpan.fT, &lastLoc); |
| } while (startLoc == lastLoc); |
| return end; |
| } |
| |
| SkScalar leftMost(int start, int end) const { |
| return (*SegmentLeftMost[fVerb])(fPts, fTs[start].fT, fTs[end].fT); |
| } |
| |
| int nextSpan(int from, int step, const SkPoint& fromLoc, |
| const Span* fromSpan, SkPoint* toLoc, bool& coincident) const { |
| coincident = false; |
| if (fDone) { |
| return -1; |
| } |
| int count = fTs.count(); |
| int to = from; |
| while (step > 0 ? ++to < count : --to >= 0) { |
| Span* span = &fTs[to]; |
| if (span->fCoincident == step) { |
| coincident = true; |
| } |
| if (fromSpan->fT == span->fT) { |
| continue; |
| } |
| SkPoint loc; |
| xyAtT(span->fT, &loc); |
| if (fromLoc == loc) { |
| continue; |
| } |
| if (span->fDone == -step) { |
| return -1; |
| } |
| if (toLoc) { |
| *toLoc = loc; |
| } |
| return to; |
| } |
| return -1; |
| } |
| |
| const SkPoint* pts() const { |
| return fPts; |
| } |
| |
| void reset() { |
| init(NULL, (SkPath::Verb) -1); |
| fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax); |
| fTs.reset(); |
| } |
| |
| // OPTIMIZATION: remove this function if it's never called |
| double t(int tIndex) const { |
| return fTs[tIndex].fT; |
| } |
| |
| void updatePts(const SkPoint pts[]) { |
| fPts = pts; |
| } |
| |
| SkPath::Verb verb() const { |
| return fVerb; |
| } |
| |
| SkScalar xAtT(double t) const { |
| SkASSERT(t >= 0 && t <= 1); |
| return (*SegmentXAtT[fVerb])(fPts, t); |
| } |
| |
| void xyAtT(double t, SkPoint* pt) const { |
| SkASSERT(t >= 0 && t <= 1); |
| (*SegmentXYAtT[fVerb])(fPts, t, pt); |
| } |
| |
| SkScalar yAtT(double t) const { |
| SkASSERT(t >= 0 && t <= 1); |
| return (*SegmentYAtT[fVerb])(fPts, t); |
| } |
| |
| #if DEBUG_DUMP |
| void dump() const { |
| const char className[] = "Segment"; |
| const int tab = 4; |
| for (int i = 0; i < fTs.count(); ++i) { |
| SkPoint out; |
| (*SegmentXYAtT[fVerb])(fPts, t(i), &out); |
| SkDebugf("%*s [%d] %s.fTs[%d]=%1.9g (%1.9g,%1.9g) other=%d" |
| " otherT=%1.9g winding=%d\n", |
| tab + sizeof(className), className, fID, |
| kLVerbStr[fVerb], i, fTs[i].fT, out.fX, out.fY, |
| fTs[i].fOther->fID, fTs[i].fOtherT, fTs[i].fWinding); |
| } |
| SkDebugf("%*s [%d] fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)", |
| tab + sizeof(className), className, fID, |
| fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom); |
| } |
| #endif |
| |
| private: |
| const SkPoint* fPts; |
| SkPath::Verb fVerb; |
| Bounds fBounds; |
| SkTDArray<Span> fTs; // two or more (always includes t=0 t=1) |
| // FIXME: coincident only needs two bits (-1, 0, 1) |
| int fCoincident; // non-zero if some coincident span inside |
| bool fDone; |
| #if DEBUG_DUMP |
| int fID; |
| #endif |
| }; |
| |
| class Contour { |
| public: |
| Contour() { |
| reset(); |
| #if DEBUG_DUMP |
| fID = ++gContourID; |
| #endif |
| } |
| |
| bool operator<(const Contour& rh) const { |
| return fBounds.fTop == rh.fBounds.fTop |
| ? fBounds.fLeft < rh.fBounds.fLeft |
| : fBounds.fTop < rh.fBounds.fTop; |
| } |
| |
| void addCubic(const SkPoint pts[4]) { |
| fSegments.push_back().addCubic(pts); |
| fContainsCurves = true; |
| } |
| |
| int addLine(const SkPoint pts[2]) { |
| fSegments.push_back().addLine(pts); |
| return fSegments.count(); |
| } |
| |
| int addQuad(const SkPoint pts[3]) { |
| fSegments.push_back().addQuad(pts); |
| fContainsCurves = true; |
| return fSegments.count(); |
| } |
| |
| const Bounds& bounds() const { |
| return fBounds; |
| } |
| |
| void complete() { |
| setBounds(); |
| fContainsIntercepts = false; |
| } |
| |
| void containsIntercepts() { |
| fContainsIntercepts = true; |
| } |
| |
| void findTooCloseToCall(int winding) { |
| int segmentCount = fSegments.count(); |
| for (int sIndex = 0; sIndex < segmentCount; ++sIndex) { |
| fSegments[sIndex].findTooCloseToCall(winding); |
| } |
| } |
| |
| void fixOtherTIndex() { |
| int segmentCount = fSegments.count(); |
| for (int sIndex = 0; sIndex < segmentCount; ++sIndex) { |
| fSegments[sIndex].fixOtherTIndex(); |
| } |
| } |
| |
| void reset() { |
| fSegments.reset(); |
| fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax); |
| fContainsCurves = fContainsIntercepts = false; |
| } |
| |
| // OPTIMIZATION: feel pretty uneasy about this. It seems like once again |
| // we need to sort and walk edges in y, but that on the surface opens the |
| // same can of worms as before. But then, this is a rough sort based on |
| // segments' top, and not a true sort, so it could be ameniable to regular |
| // sorting instead of linear searching. Still feel like I'm missing something |
| Segment* topSegment() { |
| int segmentCount = fSegments.count(); |
| SkASSERT(segmentCount > 0); |
| int best = -1; |
| Segment* bestSegment = NULL; |
| while (++best < segmentCount) { |
| Segment* testSegment = &fSegments[best]; |
| if (testSegment->done()) { |
| continue; |
| } |
| bestSegment = testSegment; |
| break; |
| } |
| if (!bestSegment) { |
| return NULL; |
| } |
| SkScalar bestTop = bestSegment->bounds().fTop; |
| for (int test = best + 1; test < segmentCount; ++test) { |
| Segment* testSegment = &fSegments[test]; |
| if (testSegment->done()) { |
| continue; |
| } |
| SkScalar testTop = testSegment->bounds().fTop; |
| if (bestTop > testTop) { |
| bestTop = testTop; |
| bestSegment = testSegment; |
| } |
| } |
| return bestSegment; |
| } |
| |
| #if DEBUG_DUMP |
| void dump() { |
| int i; |
| const char className[] = "Contour"; |
| const int tab = 4; |
| SkDebugf("%s %p (contour=%d)\n", className, this, fID); |
| for (i = 0; i < fSegments.count(); ++i) { |
| SkDebugf("%*s.fSegments[%d]:\n", tab + sizeof(className), |
| className, i); |
| fSegments[i].dump(); |
| } |
| SkDebugf("%*s.fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)\n", |
| tab + sizeof(className), className, |
| fBounds.fLeft, fBounds.fTop, |
| fBounds.fRight, fBounds.fBottom); |
| SkDebugf("%*s.fContainsIntercepts=%d\n", tab + sizeof(className), |
| className, fContainsIntercepts); |
| SkDebugf("%*s.fContainsCurves=%d\n", tab + sizeof(className), |
| className, fContainsCurves); |
| } |
| #endif |
| |
| protected: |
| void setBounds() { |
| int count = fSegments.count(); |
| if (count == 0) { |
| SkDebugf("%s empty contour\n", __FUNCTION__); |
| SkASSERT(0); |
| // FIXME: delete empty contour? |
| return; |
| } |
| fBounds = fSegments.front().bounds(); |
| for (int index = 1; index < count; ++index) { |
| fBounds.growToInclude(fSegments[index].bounds()); |
| } |
| } |
| |
| public: |
| SkTArray<Segment> fSegments; // not worth accessor functions? |
| |
| private: |
| Bounds fBounds; |
| bool fContainsIntercepts; |
| bool fContainsCurves; |
| #if DEBUG_DUMP |
| int fID; |
| #endif |
| }; |
| |
| class EdgeBuilder { |
| public: |
| |
| EdgeBuilder(const SkPath& path, SkTArray<Contour>& contours) |
| : fPath(path) |
| , fCurrentContour(NULL) |
| , fContours(contours) |
| { |
| #if DEBUG_DUMP |
| gContourID = 0; |
| gSegmentID = 0; |
| #endif |
| walk(); |
| } |
| |
| protected: |
| |
| void complete() { |
| if (fCurrentContour && fCurrentContour->fSegments.count()) { |
| fCurrentContour->complete(); |
| fCurrentContour = NULL; |
| } |
| } |
| |
| void walk() { |
| // FIXME:remove once we can access path pts directly |
| SkPath::RawIter iter(fPath); // FIXME: access path directly when allowed |
| SkPoint pts[4]; |
| SkPath::Verb verb; |
| do { |
| verb = iter.next(pts); |
| *fPathVerbs.append() = verb; |
| if (verb == SkPath::kMove_Verb) { |
| *fPathPts.append() = pts[0]; |
| } else if (verb >= SkPath::kLine_Verb && verb <= SkPath::kCubic_Verb) { |
| fPathPts.append(verb, &pts[1]); |
| } |
| } while (verb != SkPath::kDone_Verb); |
| // FIXME: end of section to remove once path pts are accessed directly |
| |
| SkPath::Verb reducedVerb; |
| uint8_t* verbPtr = fPathVerbs.begin(); |
| const SkPoint* pointsPtr = fPathPts.begin(); |
| const SkPoint* finalCurveStart = NULL; |
| const SkPoint* finalCurveEnd = NULL; |
| while ((verb = (SkPath::Verb) *verbPtr++) != SkPath::kDone_Verb) { |
| switch (verb) { |
| case SkPath::kMove_Verb: |
| complete(); |
| if (!fCurrentContour) { |
| fCurrentContour = fContours.push_back_n(1); |
| finalCurveEnd = pointsPtr++; |
| *fExtra.append() = -1; // start new contour |
| } |
| continue; |
| case SkPath::kLine_Verb: |
| // skip degenerate points |
| if (pointsPtr[-1].fX != pointsPtr[0].fX |
| || pointsPtr[-1].fY != pointsPtr[0].fY) { |
| fCurrentContour->addLine(&pointsPtr[-1]); |
| } |
| break; |
| case SkPath::kQuad_Verb: |
| |
| reducedVerb = QuadReduceOrder(&pointsPtr[-1], fReducePts); |
| if (reducedVerb == 0) { |
| break; // skip degenerate points |
| } |
| if (reducedVerb == 1) { |
| *fExtra.append() = |
| fCurrentContour->addLine(fReducePts.end() - 2); |
| break; |
| } |
| fCurrentContour->addQuad(&pointsPtr[-1]); |
| break; |
| case SkPath::kCubic_Verb: |
| reducedVerb = CubicReduceOrder(&pointsPtr[-1], fReducePts); |
| if (reducedVerb == 0) { |
| break; // skip degenerate points |
| } |
| if (reducedVerb == 1) { |
| *fExtra.append() = |
| fCurrentContour->addLine(fReducePts.end() - 2); |
| break; |
| } |
| if (reducedVerb == 2) { |
| *fExtra.append() = |
| fCurrentContour->addQuad(fReducePts.end() - 3); |
| break; |
| } |
| fCurrentContour->addCubic(&pointsPtr[-1]); |
| break; |
| case SkPath::kClose_Verb: |
| SkASSERT(fCurrentContour); |
| if (finalCurveStart && finalCurveEnd |
| && *finalCurveStart != *finalCurveEnd) { |
| *fReducePts.append() = *finalCurveStart; |
| *fReducePts.append() = *finalCurveEnd; |
| *fExtra.append() = |
| fCurrentContour->addLine(fReducePts.end() - 2); |
| } |
| complete(); |
| continue; |
| default: |
| SkDEBUGFAIL("bad verb"); |
| return; |
| } |
| finalCurveStart = &pointsPtr[verb - 1]; |
| pointsPtr += verb; |
| SkASSERT(fCurrentContour); |
| } |
| complete(); |
| if (fCurrentContour && !fCurrentContour->fSegments.count()) { |
| fContours.pop_back(); |
| } |
| // correct pointers in contours since fReducePts may have moved as it grew |
| int cIndex = 0; |
| fCurrentContour = &fContours[0]; |
| int extraCount = fExtra.count(); |
| SkASSERT(fExtra[0] == -1); |
| int eIndex = 0; |
| int rIndex = 0; |
| while (++eIndex < extraCount) { |
| int offset = fExtra[eIndex]; |
| if (offset < 0) { |
| fCurrentContour = &fContours[++cIndex]; |
| continue; |
| } |
| Segment& segment = fCurrentContour->fSegments[offset - 1]; |
| segment.updatePts(&fReducePts[rIndex]); |
| rIndex += segment.verb() + 1; |
| } |
| fExtra.reset(); // we're done with this |
| } |
| |
| private: |
| const SkPath& fPath; |
| SkTDArray<SkPoint> fPathPts; // FIXME: point directly to path pts instead |
| SkTDArray<uint8_t> fPathVerbs; // FIXME: remove |
| Contour* fCurrentContour; |
| SkTArray<Contour>& fContours; |
| SkTDArray<SkPoint> fReducePts; // segments created on the fly |
| SkTDArray<int> fExtra; // -1 marks new contour, > 0 offsets into contour |
| }; |
| |
| class Work { |
| public: |
| enum SegmentType { |
| kHorizontalLine_Segment = -1, |
| kVerticalLine_Segment = 0, |
| kLine_Segment = SkPath::kLine_Verb, |
| kQuad_Segment = SkPath::kQuad_Verb, |
| kCubic_Segment = SkPath::kCubic_Verb, |
| }; |
| |
| // FIXME: does it make sense to write otherIndex now if we're going to |
| // fix it up later? |
| void addOtherT(int index, double otherT, int otherIndex) { |
| fContour->fSegments[fIndex].addOtherT(index, otherT, otherIndex); |
| } |
| |
| // Avoid collapsing t values that are close to the same since |
| // we walk ts to describe consecutive intersections. Since a pair of ts can |
| // be nearly equal, any problems caused by this should be taken care |
| // of later. |
| // On the edge or out of range values are negative; add 2 to get end |
| int addT(double newT, const Work& other, int coincident) { |
| fContour->containsIntercepts(); |
| return fContour->fSegments[fIndex].addT(newT, |
| other.fContour->fSegments[other.fIndex], coincident); |
| } |
| |
| bool advance() { |
| return ++fIndex < fLast; |
| } |
| |
| SkScalar bottom() const { |
| return bounds().fBottom; |
| } |
| |
| const Bounds& bounds() const { |
| return fContour->fSegments[fIndex].bounds(); |
| } |
| |
| const SkPoint* cubic() const { |
| return fCubic; |
| } |
| |
| void init(Contour* contour) { |
| fContour = contour; |
| fIndex = 0; |
| fLast = contour->fSegments.count(); |
| } |
| |
| SkScalar left() const { |
| return bounds().fLeft; |
| } |
| |
| void promoteToCubic() { |
| fCubic[0] = pts()[0]; |
| fCubic[2] = pts()[1]; |
| fCubic[3] = pts()[2]; |
| fCubic[1].fX = (fCubic[0].fX + fCubic[2].fX * 2) / 3; |
| fCubic[1].fY = (fCubic[0].fY + fCubic[2].fY * 2) / 3; |
| fCubic[2].fX = (fCubic[3].fX + fCubic[2].fX * 2) / 3; |
| fCubic[2].fY = (fCubic[3].fY + fCubic[2].fY * 2) / 3; |
| } |
| |
| const SkPoint* pts() const { |
| return fContour->fSegments[fIndex].pts(); |
| } |
| |
| SkScalar right() const { |
| return bounds().fRight; |
| } |
| |
| ptrdiff_t segmentIndex() const { |
| return fIndex; |
| } |
| |
| SegmentType segmentType() const { |
| const Segment& segment = fContour->fSegments[fIndex]; |
| SegmentType type = (SegmentType) segment.verb(); |
| if (type != kLine_Segment) { |
| return type; |
| } |
| if (segment.isHorizontal()) { |
| return kHorizontalLine_Segment; |
| } |
| if (segment.isVertical()) { |
| return kVerticalLine_Segment; |
| } |
| return kLine_Segment; |
| } |
| |
| bool startAfter(const Work& after) { |
| fIndex = after.fIndex; |
| return advance(); |
| } |
| |
| SkScalar top() const { |
| return bounds().fTop; |
| } |
| |
| SkPath::Verb verb() const { |
| return fContour->fSegments[fIndex].verb(); |
| } |
| |
| SkScalar x() const { |
| return bounds().fLeft; |
| } |
| |
| bool xFlipped() const { |
| return x() != pts()[0].fX; |
| } |
| |
| SkScalar y() const { |
| return bounds().fTop; |
| } |
| |
| bool yFlipped() const { |
| return y() != pts()[0].fX; |
| } |
| |
| protected: |
| Contour* fContour; |
| SkPoint fCubic[4]; |
| int fIndex; |
| int fLast; |
| }; |
| |
| static void debugShowLineIntersection(int pts, const Work& wt, |
| const Work& wn, const double wtTs[2], const double wnTs[2]) { |
| #if DEBUG_ADD_INTERSECTING_TS |
| if (!pts) { |
| SkDebugf("%s no intersect (%1.9g,%1.9g %1.9g,%1.9g) (%1.9g,%1.9g %1.9g,%1.9g)\n", |
| __FUNCTION__, wt.pts()[0].fX, wt.pts()[0].fY, |
| wt.pts()[1].fX, wt.pts()[1].fY, wn.pts()[0].fX, wn.pts()[0].fY, |
| wn.pts()[1].fX, wn.pts()[1].fY); |
| return; |
| } |
| SkPoint wtOutPt, wnOutPt; |
| LineXYAtT(wt.pts(), wtTs[0], &wtOutPt); |
| LineXYAtT(wn.pts(), wnTs[0], &wnOutPt); |
| SkDebugf("%s wtTs[0]=%g (%g,%g, %g,%g) (%g,%g)", |
| __FUNCTION__, |
| wtTs[0], wt.pts()[0].fX, wt.pts()[0].fY, |
| wt.pts()[1].fX, wt.pts()[1].fY, wtOutPt.fX, wtOutPt.fY); |
| if (pts == 2) { |
| SkDebugf(" wtTs[1]=%g", wtTs[1]); |
| } |
| SkDebugf(" wnTs[0]=%g (%g,%g, %g,%g) (%g,%g)\n", |
| wnTs[0], wn.pts()[0].fX, wn.pts()[0].fY, |
| wn.pts()[1].fX, wn.pts()[1].fY, wnOutPt.fX, wnOutPt.fY); |
| if (pts == 2) { |
| SkDebugf(" wnTs[1]=%g", wnTs[1]); |
| SkDebugf("\n"); |
| } |
| #endif |
| } |
| |
| static bool addIntersectTs(Contour* test, Contour* next, int winding) { |
| |
| if (test != next) { |
| if (test->bounds().fBottom < next->bounds().fTop) { |
| return false; |
| } |
| if (!Bounds::Intersects(test->bounds(), next->bounds())) { |
| return true; |
| } |
| } |
| Work wt; |
| wt.init(test); |
| do { |
| Work wn; |
| wn.init(next); |
| if (test == next && !wn.startAfter(wt)) { |
| continue; |
| } |
| do { |
| if (!Bounds::Intersects(wt.bounds(), wn.bounds())) { |
| continue; |
| } |
| int pts; |
| Intersections ts; |
| bool swap = false; |
| switch (wt.segmentType()) { |
| case Work::kHorizontalLine_Segment: |
| swap = true; |
| switch (wn.segmentType()) { |
| case Work::kHorizontalLine_Segment: |
| case Work::kVerticalLine_Segment: |
| case Work::kLine_Segment: { |
| pts = HLineIntersect(wn.pts(), wt.left(), |
| wt.right(), wt.y(), wt.xFlipped(), ts); |
| debugShowLineIntersection(pts, wt, wn, |
| ts.fT[1], ts.fT[0]); |
| break; |
| } |
| case Work::kQuad_Segment: { |
| pts = HQuadIntersect(wn.pts(), wt.left(), |
| wt.right(), wt.y(), wt.xFlipped(), ts); |
| break; |
| } |
| case Work::kCubic_Segment: { |
| pts = HCubicIntersect(wn.pts(), wt.left(), |
| wt.right(), wt.y(), wt.xFlipped(), ts); |
| break; |
| } |
| default: |
| SkASSERT(0); |
| } |
| break; |
| case Work::kVerticalLine_Segment: |
| swap = true; |
| switch (wn.segmentType()) { |
| case Work::kHorizontalLine_Segment: |
| case Work::kVerticalLine_Segment: |
| case Work::kLine_Segment: { |
| pts = VLineIntersect(wn.pts(), wt.top(), |
| wt.bottom(), wt.x(), wt.yFlipped(), ts); |
| debugShowLineIntersection(pts, wt, wn, |
| ts.fT[1], ts.fT[0]); |
| break; |
| } |
| case Work::kQuad_Segment: { |
| pts = VQuadIntersect(wn.pts(), wt.top(), |
| wt.bottom(), wt.x(), wt.yFlipped(), ts); |
| break; |
| } |
| case Work::kCubic_Segment: { |
| pts = VCubicIntersect(wn.pts(), wt.top(), |
| wt.bottom(), wt.x(), wt.yFlipped(), ts); |
| break; |
| } |
| default: |
| SkASSERT(0); |
| } |
| break; |
| case Work::kLine_Segment: |
| switch (wn.segmentType()) { |
| case Work::kHorizontalLine_Segment: |
| pts = HLineIntersect(wt.pts(), wn.left(), |
| wn.right(), wn.y(), wn.xFlipped(), ts); |
| debugShowLineIntersection(pts, wt, wn, |
| ts.fT[1], ts.fT[0]); |
| break; |
| case Work::kVerticalLine_Segment: |
| pts = VLineIntersect(wt.pts(), wn.top(), |
| wn.bottom(), wn.x(), wn.yFlipped(), ts); |
| debugShowLineIntersection(pts, wt, wn, |
| ts.fT[1], ts.fT[0]); |
| break; |
| case Work::kLine_Segment: { |
| pts = LineIntersect(wt.pts(), wn.pts(), ts); |
| debugShowLineIntersection(pts, wt, wn, |
| ts.fT[1], ts.fT[0]); |
| break; |
| } |
| case Work::kQuad_Segment: { |
| swap = true; |
| pts = QuadLineIntersect(wn.pts(), wt.pts(), ts); |
| break; |
| } |
| case Work::kCubic_Segment: { |
| swap = true; |
| pts = CubicLineIntersect(wn.pts(), wt.pts(), ts); |
| break; |
| } |
| default: |
| SkASSERT(0); |
| } |
| break; |
| case Work::kQuad_Segment: |
| switch (wn.segmentType()) { |
| case Work::kHorizontalLine_Segment: |
| pts = HQuadIntersect(wt.pts(), wn.left(), |
| wn.right(), wn.y(), wn.xFlipped(), ts); |
| break; |
| case Work::kVerticalLine_Segment: |
| pts = VQuadIntersect(wt.pts(), wn.top(), |
| wn.bottom(), wn.x(), wn.yFlipped(), ts); |
| break; |
| case Work::kLine_Segment: { |
| pts = QuadLineIntersect(wt.pts(), wn.pts(), ts); |
| break; |
| } |
| case Work::kQuad_Segment: { |
| pts = QuadIntersect(wt.pts(), wn.pts(), ts); |
| break; |
| } |
| case Work::kCubic_Segment: { |
| wt.promoteToCubic(); |
| pts = CubicIntersect(wt.cubic(), wn.pts(), ts); |
| break; |
| } |
| default: |
| SkASSERT(0); |
| } |
| break; |
| case Work::kCubic_Segment: |
| switch (wn.segmentType()) { |
| case Work::kHorizontalLine_Segment: |
| pts = HCubicIntersect(wt.pts(), wn.left(), |
| wn.right(), wn.y(), wn.xFlipped(), ts); |
| break; |
| case Work::kVerticalLine_Segment: |
| pts = VCubicIntersect(wt.pts(), wn.top(), |
| wn.bottom(), wn.x(), wn.yFlipped(), ts); |
| break; |
| case Work::kLine_Segment: { |
| pts = CubicLineIntersect(wt.pts(), wn.pts(), ts); |
| break; |
| } |
| case Work::kQuad_Segment: { |
| wn.promoteToCubic(); |
| pts = CubicIntersect(wt.pts(), wn.cubic(), ts); |
| break; |
| } |
| case Work::kCubic_Segment: { |
| pts = CubicIntersect(wt.pts(), wn.pts(), ts); |
| break; |
| } |
| default: |
| SkASSERT(0); |
| } |
| break; |
| default: |
| SkASSERT(0); |
| } |
| // in addition to recording T values, record matching segment |
| int coincident = pts == 2 && wn.segmentType() <= Work::kLine_Segment |
| && wt.segmentType() <= Work::kLine_Segment ? -1 :0; |
| for (int pt = 0; pt < pts; ++pt) { |
| SkASSERT(ts.fT[0][pt] >= 0 && ts.fT[0][pt] <= 1); |
| SkASSERT(ts.fT[1][pt] >= 0 && ts.fT[1][pt] <= 1); |
| int testTAt = wt.addT(ts.fT[swap][pt], wn, coincident); |
| int nextTAt = wn.addT(ts.fT[!swap][pt], wt, coincident); |
| wt.addOtherT(testTAt, ts.fT[!swap][pt], nextTAt); |
| wn.addOtherT(nextTAt, ts.fT[swap][pt], testTAt); |
| coincident = -coincident; |
| } |
| } while (wn.advance()); |
| } while (wt.advance()); |
| return true; |
| } |
| |
| // see if coincidence is formed by clipping non-concident segments |
| static void coincidenceCheck(SkTDArray<Contour*>& contourList, int winding) { |
| int contourCount = contourList.count(); |
| for (size_t cIndex = 0; cIndex < contourCount; ++cIndex) { |
| Contour* contour = contourList[cIndex]; |
| contour->findTooCloseToCall(winding); |
| } |
| } |
| |
| |
| // OPTIMIZATION: not crazy about linear search here to find top active y. |
| // seems like we should break down and do the sort, or maybe sort each |
| // contours' segments? |
| // Once the segment array is built, there's no reason I can think of not to |
| // sort it in Y. hmmm |
| static Segment* findTopContour(SkTDArray<Contour*>& contourList, |
| int contourCount) { |
| int cIndex = 0; |
| Segment* topStart; |
| do { |
| Contour* topContour = contourList[cIndex]; |
| topStart = topContour->topSegment(); |
| } while (!topStart && ++cIndex < contourCount); |
| if (!topStart) { |
| return NULL; |
| } |
| SkScalar top = topStart->bounds().fTop; |
| for (int cTest = cIndex + 1; cTest < contourCount; ++cTest) { |
| Contour* contour = contourList[cTest]; |
| if (top < contour->bounds().fTop) { |
| continue; |
| } |
| Segment* test = contour->topSegment(); |
| if (top > test->bounds().fTop) { |
| cIndex = cTest; |
| topStart = test; |
| top = test->bounds().fTop; |
| } |
| } |
| return topStart; |
| } |
| |
| // Each segment may have an inside or an outside. Segments contained within |
| // winding may have insides on either side, and form a contour that should be |
| // ignored. Segments that are coincident with opposing direction segments may |
| // have outsides on either side, and should also disappear. |
| // 'Normal' segments will have one inside and one outside. Subsequent connections |
| // when winding should follow the intersection direction. If more than one edge |
| // is an option, choose first edge that continues the inside. |
| // since we start with leftmost top edge, we'll traverse through a |
| // smaller angle counterclockwise to get to the next edge. |
| static void bridge(SkTDArray<Contour*>& contourList) { |
| int contourCount = contourList.count(); |
| int winding = 0; // there are no contours outside this one |
| do { |
| Segment* topStart = findTopContour(contourList, contourCount); |
| if (!topStart) { |
| break; |
| } |
| // Start at the top. Above the top is outside, below is inside. |
| // follow edges to intersection by changing the tIndex by direction. |
| int tIndex, step; |
| const Segment* topSegment = topStart->findTop(tIndex, step); |
| const Segment* next = topSegment; |
| do { |
| int spanIndex; |
| next = next->findNext(tIndex, winding, step, spanIndex); |
| } while (next != topSegment); |
| |
| // at intersection, stay on outside, but mark remaining edges as inside |
| // or, only mark first pair as inside? |
| // how is this going to work for contained (but not intersecting) |
| // segments? |
| // start here ; |
| // find span |
| // mark neighbors winding coverage |
| // output span |
| // mark span as processed |
| |
| } while (true); |
| |
| |
| } |
| |
| static void fixOtherTIndex(SkTDArray<Contour*>& contourList) { |
| int contourCount = contourList.count(); |
| for (int cTest = 0; cTest < contourCount; ++cTest) { |
| Contour* contour = contourList[cTest]; |
| contour->fixOtherTIndex(); |
| } |
| } |
| |
| static void makeContourList(SkTArray<Contour>& contours, Contour& sentinel, |
| SkTDArray<Contour*>& list) { |
| int count = contours.count(); |
| if (count == 0) { |
| return; |
| } |
| for (int index = 0; index < count; ++index) { |
| *list.append() = &contours[index]; |
| } |
| *list.append() = &sentinel; |
| QSort<Contour>(list.begin(), list.end() - 1); |
| } |
| |
| void simplifyx(const SkPath& path, bool asFill, SkPath& simple) { |
| // returns 1 for evenodd, -1 for winding, regardless of inverse-ness |
| int winding = (path.getFillType() & 1) ? 1 : -1; |
| simple.reset(); |
| simple.setFillType(SkPath::kEvenOdd_FillType); |
| |
| // turn path into list of segments |
| SkTArray<Contour> contours; |
| // FIXME: add self-intersecting cubics' T values to segment |
| EdgeBuilder builder(path, contours); |
| SkTDArray<Contour*> contourList; |
| Contour sentinel; |
| sentinel.reset(); |
| makeContourList(contours, sentinel, contourList); |
| Contour** currentPtr = contourList.begin(); |
| if (!currentPtr) { |
| return; |
| } |
| // find all intersections between segments |
| do { |
| Contour** nextPtr = currentPtr; |
| Contour* current = *currentPtr++; |
| Contour* next; |
| do { |
| next = *nextPtr++; |
| } while (next != &sentinel && addIntersectTs(current, next, winding)); |
| } while (*currentPtr != &sentinel); |
| fixOtherTIndex(contourList); |
| // eat through coincident edges |
| coincidenceCheck(contourList, winding); |
| // construct closed contours |
| bridge(contourList); |
| } |
| |