blob: a58211b9b63b24ec610ba37836179d1ee5a163cd [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrBezierEffect_DEFINED
#define GrBezierEffect_DEFINED
#include "GrDrawTargetCaps.h"
#include "GrProcessor.h"
#include "GrGeometryProcessor.h"
#include "GrInvariantOutput.h"
#include "GrTypesPriv.h"
/**
* Shader is based off of Loop-Blinn Quadratic GPU Rendering
* The output of this effect is a hairline edge for conics.
* Conics specified by implicit equation K^2 - LM.
* K, L, and M, are the first three values of the vertex attribute,
* the fourth value is not used. Distance is calculated using a
* first order approximation from the taylor series.
* Coverage for AA is max(0, 1-distance).
*
* Test were also run using a second order distance approximation.
* There were two versions of the second order approx. The first version
* is of roughly the form:
* f(q) = |f(p)| - ||f'(p)||*||q-p|| - ||f''(p)||*||q-p||^2.
* The second is similar:
* f(q) = |f(p)| + ||f'(p)||*||q-p|| + ||f''(p)||*||q-p||^2.
* The exact version of the equations can be found in the paper
* "Distance Approximations for Rasterizing Implicit Curves" by Gabriel Taubin
*
* In both versions we solve the quadratic for ||q-p||.
* Version 1:
* gFM is magnitude of first partials and gFM2 is magnitude of 2nd partials (as derived from paper)
* builder->fsCodeAppend("\t\tedgeAlpha = (sqrt(gFM*gFM+4.0*func*gF2M) - gFM)/(2.0*gF2M);\n");
* Version 2:
* builder->fsCodeAppend("\t\tedgeAlpha = (gFM - sqrt(gFM*gFM-4.0*func*gF2M))/(2.0*gF2M);\n");
*
* Also note that 2nd partials of k,l,m are zero
*
* When comparing the two second order approximations to the first order approximations,
* the following results were found. Version 1 tends to underestimate the distances, thus it
* basically increases all the error that we were already seeing in the first order
* approx. So this version is not the one to use. Version 2 has the opposite effect
* and tends to overestimate the distances. This is much closer to what we are
* looking for. It is able to render ellipses (even thin ones) without the need to chop.
* However, it can not handle thin hyperbolas well and thus would still rely on
* chopping to tighten the clipping. Another side effect of the overestimating is
* that the curves become much thinner and "ropey". If all that was ever rendered
* were "not too thin" curves and ellipses then 2nd order may have an advantage since
* only one geometry would need to be rendered. However no benches were run comparing
* chopped first order and non chopped 2nd order.
*/
class GrGLConicEffect;
class GrConicEffect : public GrGeometryProcessor {
public:
static GrGeometryProcessor* Create(GrColor color,
const GrPrimitiveEdgeType edgeType,
const GrDrawTargetCaps& caps,
uint8_t coverage = 0xff) {
switch (edgeType) {
case kFillAA_GrProcessorEdgeType:
if (!caps.shaderDerivativeSupport()) {
return NULL;
}
return SkNEW_ARGS(GrConicEffect, (color, coverage, kFillAA_GrProcessorEdgeType));
case kHairlineAA_GrProcessorEdgeType:
if (!caps.shaderDerivativeSupport()) {
return NULL;
}
return SkNEW_ARGS(GrConicEffect, (color, coverage,
kHairlineAA_GrProcessorEdgeType));
case kFillBW_GrProcessorEdgeType:
return SkNEW_ARGS(GrConicEffect, (color, coverage, kFillBW_GrProcessorEdgeType));;
default:
return NULL;
}
}
virtual ~GrConicEffect();
virtual const char* name() const SK_OVERRIDE { return "Conic"; }
inline const GrAttribute* inPosition() const { return fInPosition; }
inline const GrAttribute* inConicCoeffs() const { return fInConicCoeffs; }
inline bool isAntiAliased() const { return GrProcessorEdgeTypeIsAA(fEdgeType); }
inline bool isFilled() const { return GrProcessorEdgeTypeIsFill(fEdgeType); }
inline GrPrimitiveEdgeType getEdgeType() const { return fEdgeType; }
virtual void getGLProcessorKey(const GrBatchTracker& bt,
const GrGLCaps& caps,
GrProcessorKeyBuilder* b) const SK_OVERRIDE;
virtual GrGLGeometryProcessor* createGLInstance(const GrBatchTracker& bt) const SK_OVERRIDE;
void initBatchTracker(GrBatchTracker*, const InitBT&) const SK_OVERRIDE;
bool onCanMakeEqual(const GrBatchTracker&, const GrBatchTracker&) const SK_OVERRIDE;
private:
GrConicEffect(GrColor, uint8_t coverage, GrPrimitiveEdgeType);
virtual bool onIsEqual(const GrGeometryProcessor& other) const SK_OVERRIDE;
virtual void onGetInvariantOutputCoverage(GrInitInvariantOutput* out) const SK_OVERRIDE {
out->setUnknownSingleComponent();
}
uint8_t fCoverageScale;
GrPrimitiveEdgeType fEdgeType;
const GrAttribute* fInPosition;
const GrAttribute* fInConicCoeffs;
GR_DECLARE_GEOMETRY_PROCESSOR_TEST;
typedef GrGeometryProcessor INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
/**
* The output of this effect is a hairline edge for quadratics.
* Quadratic specified by 0=u^2-v canonical coords. u and v are the first
* two components of the vertex attribute. At the three control points that define
* the Quadratic, u, v have the values {0,0}, {1/2, 0}, and {1, 1} respectively.
* Coverage for AA is min(0, 1-distance). 3rd & 4th cimponent unused.
* Requires shader derivative instruction support.
*/
class GrGLQuadEffect;
class GrQuadEffect : public GrGeometryProcessor {
public:
static GrGeometryProcessor* Create(GrColor color,
const GrPrimitiveEdgeType edgeType,
const GrDrawTargetCaps& caps,
uint8_t coverage = 0xff) {
switch (edgeType) {
case kFillAA_GrProcessorEdgeType:
if (!caps.shaderDerivativeSupport()) {
return NULL;
}
return SkNEW_ARGS(GrQuadEffect, (color, coverage, kFillAA_GrProcessorEdgeType));
case kHairlineAA_GrProcessorEdgeType:
if (!caps.shaderDerivativeSupport()) {
return NULL;
}
return SkNEW_ARGS(GrQuadEffect, (color, coverage, kHairlineAA_GrProcessorEdgeType));
case kFillBW_GrProcessorEdgeType:
return SkNEW_ARGS(GrQuadEffect, (color, coverage, kFillBW_GrProcessorEdgeType));
default:
return NULL;
}
}
virtual ~GrQuadEffect();
virtual const char* name() const SK_OVERRIDE { return "Quad"; }
inline const GrAttribute* inPosition() const { return fInPosition; }
inline const GrAttribute* inHairQuadEdge() const { return fInHairQuadEdge; }
inline bool isAntiAliased() const { return GrProcessorEdgeTypeIsAA(fEdgeType); }
inline bool isFilled() const { return GrProcessorEdgeTypeIsFill(fEdgeType); }
inline GrPrimitiveEdgeType getEdgeType() const { return fEdgeType; }
virtual void getGLProcessorKey(const GrBatchTracker& bt,
const GrGLCaps& caps,
GrProcessorKeyBuilder* b) const SK_OVERRIDE;
virtual GrGLGeometryProcessor* createGLInstance(const GrBatchTracker& bt) const SK_OVERRIDE;
void initBatchTracker(GrBatchTracker*, const InitBT&) const SK_OVERRIDE;
bool onCanMakeEqual(const GrBatchTracker&, const GrBatchTracker&) const SK_OVERRIDE;
private:
GrQuadEffect(GrColor, uint8_t coverage, GrPrimitiveEdgeType);
virtual bool onIsEqual(const GrGeometryProcessor& other) const SK_OVERRIDE;
virtual void onGetInvariantOutputCoverage(GrInitInvariantOutput* out) const SK_OVERRIDE {
out->setUnknownSingleComponent();
}
uint8_t fCoverageScale;
GrPrimitiveEdgeType fEdgeType;
const GrAttribute* fInPosition;
const GrAttribute* fInHairQuadEdge;
GR_DECLARE_GEOMETRY_PROCESSOR_TEST;
typedef GrGeometryProcessor INHERITED;
};
//////////////////////////////////////////////////////////////////////////////
/**
* Shader is based off of "Resolution Independent Curve Rendering using
* Programmable Graphics Hardware" by Loop and Blinn.
* The output of this effect is a hairline edge for non rational cubics.
* Cubics are specified by implicit equation K^3 - LM.
* K, L, and M, are the first three values of the vertex attribute,
* the fourth value is not used. Distance is calculated using a
* first order approximation from the taylor series.
* Coverage for AA is max(0, 1-distance).
*/
class GrGLCubicEffect;
class GrCubicEffect : public GrGeometryProcessor {
public:
static GrGeometryProcessor* Create(GrColor color,
const GrPrimitiveEdgeType edgeType,
const GrDrawTargetCaps& caps) {
switch (edgeType) {
case kFillAA_GrProcessorEdgeType:
if (!caps.shaderDerivativeSupport()) {
return NULL;
}
return SkNEW_ARGS(GrCubicEffect, (color, kFillAA_GrProcessorEdgeType));
case kHairlineAA_GrProcessorEdgeType:
if (!caps.shaderDerivativeSupport()) {
return NULL;
}
return SkNEW_ARGS(GrCubicEffect, (color, kHairlineAA_GrProcessorEdgeType));
case kFillBW_GrProcessorEdgeType:
return SkNEW_ARGS(GrCubicEffect, (color, kFillBW_GrProcessorEdgeType));
default:
return NULL;
}
}
virtual ~GrCubicEffect();
virtual const char* name() const SK_OVERRIDE { return "Cubic"; }
inline const GrAttribute* inPosition() const { return fInPosition; }
inline const GrAttribute* inCubicCoeffs() const { return fInCubicCoeffs; }
inline bool isAntiAliased() const { return GrProcessorEdgeTypeIsAA(fEdgeType); }
inline bool isFilled() const { return GrProcessorEdgeTypeIsFill(fEdgeType); }
inline GrPrimitiveEdgeType getEdgeType() const { return fEdgeType; }
virtual void getGLProcessorKey(const GrBatchTracker& bt,
const GrGLCaps& caps,
GrProcessorKeyBuilder* b) const SK_OVERRIDE;
virtual GrGLGeometryProcessor* createGLInstance(const GrBatchTracker& bt) const SK_OVERRIDE;
void initBatchTracker(GrBatchTracker*, const InitBT&) const SK_OVERRIDE;
bool onCanMakeEqual(const GrBatchTracker&, const GrBatchTracker&) const SK_OVERRIDE;
private:
GrCubicEffect(GrColor, GrPrimitiveEdgeType);
virtual bool onIsEqual(const GrGeometryProcessor& other) const SK_OVERRIDE;
virtual void onGetInvariantOutputCoverage(GrInitInvariantOutput* out) const SK_OVERRIDE {
out->setUnknownSingleComponent();
}
GrPrimitiveEdgeType fEdgeType;
const GrAttribute* fInPosition;
const GrAttribute* fInCubicCoeffs;
GR_DECLARE_GEOMETRY_PROCESSOR_TEST;
typedef GrGeometryProcessor INHERITED;
};
#endif