blob: 6888f54ca53c454c7e69215cdad1c212093d3dd0 [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkPDFDevice.h"
#include "SkAdvancedTypefaceMetrics.h"
#include "SkAnnotationKeys.h"
#include "SkBitmapDevice.h"
#include "SkBitmapKey.h"
#include "SkClipOpPriv.h"
#include "SkColor.h"
#include "SkColorFilter.h"
#include "SkDraw.h"
#include "SkDrawFilter.h"
#include "SkGlyphCache.h"
#include "SkImageFilterCache.h"
#include "SkJpegEncoder.h"
#include "SkMakeUnique.h"
#include "SkMaskFilter.h"
#include "SkPDFBitmap.h"
#include "SkPDFCanon.h"
#include "SkPDFCanvas.h"
#include "SkPDFDocument.h"
#include "SkPDFFont.h"
#include "SkPDFFormXObject.h"
#include "SkPDFGraphicState.h"
#include "SkPDFResourceDict.h"
#include "SkPDFShader.h"
#include "SkPDFTypes.h"
#include "SkPDFUtils.h"
#include "SkPath.h"
#include "SkPathEffect.h"
#include "SkPathOps.h"
#include "SkPixelRef.h"
#include "SkRRect.h"
#include "SkRasterClip.h"
#include "SkScopeExit.h"
#include "SkString.h"
#include "SkSurface.h"
#include "SkTemplates.h"
#include "SkTextBlobRunIterator.h"
#include "SkTextFormatParams.h"
#include "SkUtils.h"
#include "SkXfermodeInterpretation.h"
#ifndef SK_PDF_MASK_QUALITY
// If MASK_QUALITY is in [0,100], will be used for JpegEncoder.
// Otherwise, just encode masks losslessly.
#define SK_PDF_MASK_QUALITY 50
// Since these masks are used for blurry shadows, we shouldn't need
// high quality. Raise this value if your shadows have visible JPEG
// artifacts.
// If SkJpegEncoder::Encode fails, we will fall back to the lossless
// encoding.
#endif
// Utility functions
// This function destroys the mask and either frees or takes the pixels.
sk_sp<SkImage> mask_to_greyscale_image(SkMask* mask) {
sk_sp<SkImage> img;
SkPixmap pm(SkImageInfo::Make(mask->fBounds.width(), mask->fBounds.height(),
kGray_8_SkColorType, kOpaque_SkAlphaType),
mask->fImage, mask->fRowBytes);
const int imgQuality = SK_PDF_MASK_QUALITY;
if (imgQuality <= 100 && imgQuality >= 0) {
SkDynamicMemoryWStream buffer;
SkJpegEncoder::Options jpegOptions;
jpegOptions.fQuality = imgQuality;
if (SkJpegEncoder::Encode(&buffer, pm, jpegOptions)) {
img = SkImage::MakeFromEncoded(buffer.detachAsData());
SkASSERT(img);
if (img) {
SkMask::FreeImage(mask->fImage);
}
}
}
if (!img) {
img = SkImage::MakeFromRaster(pm, [](const void* p, void*) { SkMask::FreeImage((void*)p); },
nullptr);
}
*mask = SkMask(); // destructive;
return img;
}
static void draw_points(SkCanvas::PointMode mode,
size_t count,
const SkPoint* points,
const SkPaint& paint,
const SkIRect& bounds,
const SkMatrix& ctm,
SkBaseDevice* device) {
SkRasterClip rc(bounds);
SkDraw draw;
draw.fDst = SkPixmap(SkImageInfo::MakeUnknown(bounds.right(), bounds.bottom()), nullptr, 0);
draw.fMatrix = &ctm;
draw.fRC = &rc;
draw.drawPoints(mode, count, points, paint, device);
}
static SkIRect size(const SkBaseDevice& dev) { return {0, 0, dev.width(), dev.height()}; }
// If the paint will definitely draw opaquely, replace kSrc with
// kSrcOver. http://crbug.com/473572
static void replace_srcmode_on_opaque_paint(SkPaint* paint) {
if (kSrcOver_SkXfermodeInterpretation == SkInterpretXfermode(*paint, false)) {
paint->setBlendMode(SkBlendMode::kSrcOver);
}
}
// A shader's matrix is: CTMM x LocalMatrix x WrappingLocalMatrix. We want to
// switch to device space, where CTM = I, while keeping the original behavior.
//
// I * LocalMatrix * NewWrappingMatrix = CTM * LocalMatrix
// LocalMatrix * NewWrappingMatrix = CTM * LocalMatrix
// InvLocalMatrix * LocalMatrix * NewWrappingMatrix = InvLocalMatrix * CTM * LocalMatrix
// NewWrappingMatrix = InvLocalMatrix * CTM * LocalMatrix
//
static void transform_shader(SkPaint* paint, const SkMatrix& ctm) {
SkMatrix lm = SkPDFUtils::GetShaderLocalMatrix(paint->getShader());
SkMatrix lmInv;
if (lm.invert(&lmInv)) {
SkMatrix m = SkMatrix::Concat(SkMatrix::Concat(lmInv, ctm), lm);
paint->setShader(paint->getShader()->makeWithLocalMatrix(m));
}
}
static void emit_pdf_color(SkColor color, SkWStream* result) {
SkASSERT(SkColorGetA(color) == 0xFF); // We handle alpha elsewhere.
SkPDFUtils::AppendColorComponent(SkColorGetR(color), result);
result->writeText(" ");
SkPDFUtils::AppendColorComponent(SkColorGetG(color), result);
result->writeText(" ");
SkPDFUtils::AppendColorComponent(SkColorGetB(color), result);
result->writeText(" ");
}
static SkPaint calculate_text_paint(const SkPaint& paint) {
SkPaint result = paint;
if (result.isFakeBoldText()) {
SkScalar fakeBoldScale = SkScalarInterpFunc(result.getTextSize(),
kStdFakeBoldInterpKeys,
kStdFakeBoldInterpValues,
kStdFakeBoldInterpLength);
SkScalar width = result.getTextSize() * fakeBoldScale;
if (result.getStyle() == SkPaint::kFill_Style) {
result.setStyle(SkPaint::kStrokeAndFill_Style);
} else {
width += result.getStrokeWidth();
}
result.setStrokeWidth(width);
}
return result;
}
static SkImageSubset make_image_subset(const SkBitmap& bitmap) {
SkASSERT(!bitmap.drawsNothing());
SkIRect subset = bitmap.getSubset();
SkASSERT(bitmap.pixelRef());
SkBitmap tmp;
SkImageInfo pixelRefInfo =
bitmap.info().makeWH(bitmap.pixelRef()->width(), bitmap.pixelRef()->height());
tmp.setInfo(pixelRefInfo, bitmap.rowBytes());
tmp.setPixelRef(sk_ref_sp(bitmap.pixelRef()), 0, 0);
auto img = SkImage::MakeFromBitmap(tmp);
if (img) {
SkASSERT(!bitmap.isImmutable() || img->uniqueID() == bitmap.getGenerationID());
SkASSERT(img->bounds().contains(subset));
}
SkImageSubset imageSubset(std::move(img), subset);
// SkImage::MakeFromBitmap only preserves genID for immutable
// bitmaps. Use the bitmap's original ID for de-duping.
imageSubset.setID(bitmap.getGenerationID());
return imageSubset;
}
// If the paint has a color filter, apply the color filter to the shader or the
// paint color. Remove the color filter.
void remove_color_filter(SkPaint* paint) {
if (SkColorFilter* cf = paint->getColorFilter()) {
if (SkShader* shader = paint->getShader()) {
paint->setShader(shader->makeWithColorFilter(paint->refColorFilter()));
} else {
paint->setColor(cf->filterColor(paint->getColor()));
}
paint->setColorFilter(nullptr);
}
}
SkPDFDevice::GraphicStateEntry::GraphicStateEntry()
: fColor(SK_ColorBLACK)
, fTextScaleX(SK_Scalar1)
, fTextFill(SkPaint::kFill_Style)
, fShaderIndex(-1)
, fGraphicStateIndex(-1) {
fMatrix.reset();
}
bool SkPDFDevice::GraphicStateEntry::compareInitialState(
const GraphicStateEntry& cur) {
return fColor == cur.fColor &&
fShaderIndex == cur.fShaderIndex &&
fGraphicStateIndex == cur.fGraphicStateIndex &&
fMatrix == cur.fMatrix &&
fClipStack == cur.fClipStack &&
(fTextScaleX == 0 ||
(fTextScaleX == cur.fTextScaleX && fTextFill == cur.fTextFill));
}
class GraphicStackState {
public:
GraphicStackState(const SkClipStack& existingClipStack,
SkWStream* contentStream)
: fStackDepth(0),
fContentStream(contentStream) {
fEntries[0].fClipStack = existingClipStack;
}
void updateClip(const SkClipStack& clipStack,
const SkPoint& translation, const SkRect& bounds);
void updateMatrix(const SkMatrix& matrix);
void updateDrawingState(const SkPDFDevice::GraphicStateEntry& state);
void drainStack();
private:
void push();
void pop();
SkPDFDevice::GraphicStateEntry* currentEntry() { return &fEntries[fStackDepth]; }
// Conservative limit on save depth, see impl. notes in PDF 1.4 spec.
static const int kMaxStackDepth = 12;
SkPDFDevice::GraphicStateEntry fEntries[kMaxStackDepth + 1];
int fStackDepth;
SkWStream* fContentStream;
};
void GraphicStackState::drainStack() {
while (fStackDepth) {
pop();
}
}
void GraphicStackState::push() {
SkASSERT(fStackDepth < kMaxStackDepth);
fContentStream->writeText("q\n");
fStackDepth++;
fEntries[fStackDepth] = fEntries[fStackDepth - 1];
}
void GraphicStackState::pop() {
SkASSERT(fStackDepth > 0);
fContentStream->writeText("Q\n");
fStackDepth--;
}
/* Calculate an inverted path's equivalent non-inverted path, given the
* canvas bounds.
* outPath may alias with invPath (since this is supported by PathOps).
*/
static bool calculate_inverse_path(const SkRect& bounds, const SkPath& invPath,
SkPath* outPath) {
SkASSERT(invPath.isInverseFillType());
SkPath clipPath;
clipPath.addRect(bounds);
return Op(clipPath, invPath, kIntersect_SkPathOp, outPath);
}
bool apply_clip(SkClipOp op, const SkPath& u, const SkPath& v, SkPath* r) {
switch (op) {
case SkClipOp::kDifference:
return Op(u, v, kDifference_SkPathOp, r);
case SkClipOp::kIntersect:
return Op(u, v, kIntersect_SkPathOp, r);
#ifdef SK_SUPPORT_DEPRECATED_CLIPOPS
case SkClipOp::kUnion_deprecated:
return Op(u, v, kUnion_SkPathOp, r);
case SkClipOp::kXOR_deprecated:
return Op(u, v, kXOR_SkPathOp, r);
case SkClipOp::kReverseDifference_deprecated:
return Op(u, v, kReverseDifference_SkPathOp, r);
case SkClipOp::kReplace_deprecated:
*r = v;
return true;
#endif
default:
return false;
}
}
/* Uses Path Ops to calculate a vector SkPath clip from a clip stack.
* Returns true if successful, or false if not successful.
* If successful, the resulting clip is stored in outClipPath.
* If not successful, outClipPath is undefined, and a fallback method
* should be used.
*/
static bool get_clip_stack_path(const SkMatrix& transform,
const SkClipStack& clipStack,
const SkRect& bounds,
SkPath* outClipPath) {
outClipPath->reset();
outClipPath->setFillType(SkPath::kInverseWinding_FillType);
const SkClipStack::Element* clipEntry;
SkClipStack::Iter iter;
iter.reset(clipStack, SkClipStack::Iter::kBottom_IterStart);
for (clipEntry = iter.next(); clipEntry; clipEntry = iter.next()) {
SkPath entryPath;
if (SkClipStack::Element::kEmpty_Type == clipEntry->getType()) {
outClipPath->reset();
outClipPath->setFillType(SkPath::kInverseWinding_FillType);
continue;
} else {
clipEntry->asPath(&entryPath);
}
entryPath.transform(transform);
if (!apply_clip(clipEntry->getOp(), *outClipPath, entryPath, outClipPath)) {
return false;
}
}
if (outClipPath->isInverseFillType()) {
// The bounds are slightly outset to ensure this is correct in the
// face of floating-point accuracy and possible SkRegion bitmap
// approximations.
SkRect clipBounds = bounds;
clipBounds.outset(SK_Scalar1, SK_Scalar1);
if (!calculate_inverse_path(clipBounds, *outClipPath, outClipPath)) {
return false;
}
}
return true;
}
// TODO(vandebo): Take advantage of SkClipStack::getSaveCount(), the PDF
// graphic state stack, and the fact that we can know all the clips used
// on the page to optimize this.
void GraphicStackState::updateClip(const SkClipStack& clipStack,
const SkPoint& translation,
const SkRect& bounds) {
if (clipStack == currentEntry()->fClipStack) {
return;
}
while (fStackDepth > 0) {
pop();
if (clipStack == currentEntry()->fClipStack) {
return;
}
}
push();
currentEntry()->fClipStack = clipStack;
SkMatrix transform;
transform.setTranslate(translation.fX, translation.fY);
SkPath clipPath;
if (get_clip_stack_path(transform, clipStack, bounds, &clipPath)) {
SkPDFUtils::EmitPath(clipPath, SkPaint::kFill_Style, fContentStream);
SkPath::FillType clipFill = clipPath.getFillType();
NOT_IMPLEMENTED(clipFill == SkPath::kInverseEvenOdd_FillType, false);
NOT_IMPLEMENTED(clipFill == SkPath::kInverseWinding_FillType, false);
if (clipFill == SkPath::kEvenOdd_FillType) {
fContentStream->writeText("W* n\n");
} else {
fContentStream->writeText("W n\n");
}
}
// If Op() fails (pathological case; e.g. input values are
// extremely large or NaN), emit no clip at all.
}
void GraphicStackState::updateMatrix(const SkMatrix& matrix) {
if (matrix == currentEntry()->fMatrix) {
return;
}
if (currentEntry()->fMatrix.getType() != SkMatrix::kIdentity_Mask) {
SkASSERT(fStackDepth > 0);
SkASSERT(fEntries[fStackDepth].fClipStack ==
fEntries[fStackDepth -1].fClipStack);
pop();
SkASSERT(currentEntry()->fMatrix.getType() == SkMatrix::kIdentity_Mask);
}
if (matrix.getType() == SkMatrix::kIdentity_Mask) {
return;
}
push();
SkPDFUtils::AppendTransform(matrix, fContentStream);
currentEntry()->fMatrix = matrix;
}
void GraphicStackState::updateDrawingState(const SkPDFDevice::GraphicStateEntry& state) {
// PDF treats a shader as a color, so we only set one or the other.
if (state.fShaderIndex >= 0) {
if (state.fShaderIndex != currentEntry()->fShaderIndex) {
SkPDFUtils::ApplyPattern(state.fShaderIndex, fContentStream);
currentEntry()->fShaderIndex = state.fShaderIndex;
}
} else {
if (state.fColor != currentEntry()->fColor ||
currentEntry()->fShaderIndex >= 0) {
emit_pdf_color(state.fColor, fContentStream);
fContentStream->writeText("RG ");
emit_pdf_color(state.fColor, fContentStream);
fContentStream->writeText("rg\n");
currentEntry()->fColor = state.fColor;
currentEntry()->fShaderIndex = -1;
}
}
if (state.fGraphicStateIndex != currentEntry()->fGraphicStateIndex) {
SkPDFUtils::ApplyGraphicState(state.fGraphicStateIndex, fContentStream);
currentEntry()->fGraphicStateIndex = state.fGraphicStateIndex;
}
if (state.fTextScaleX) {
if (state.fTextScaleX != currentEntry()->fTextScaleX) {
SkScalar pdfScale = state.fTextScaleX * 1000;
SkPDFUtils::AppendScalar(pdfScale, fContentStream);
fContentStream->writeText(" Tz\n");
currentEntry()->fTextScaleX = state.fTextScaleX;
}
if (state.fTextFill != currentEntry()->fTextFill) {
static_assert(SkPaint::kFill_Style == 0, "enum_must_match_value");
static_assert(SkPaint::kStroke_Style == 1, "enum_must_match_value");
static_assert(SkPaint::kStrokeAndFill_Style == 2, "enum_must_match_value");
fContentStream->writeDecAsText(state.fTextFill);
fContentStream->writeText(" Tr\n");
currentEntry()->fTextFill = state.fTextFill;
}
}
}
static bool not_supported_for_layers(const SkPaint& layerPaint) {
// PDF does not support image filters, so render them on CPU.
// Note that this rendering is done at "screen" resolution (100dpi), not
// printer resolution.
// TODO: It may be possible to express some filters natively using PDF
// to improve quality and file size (https://bug.skia.org/3043)
// TODO: should we return true if there is a colorfilter?
return layerPaint.getImageFilter() != nullptr;
}
SkBaseDevice* SkPDFDevice::onCreateDevice(const CreateInfo& cinfo, const SkPaint* layerPaint) {
if (layerPaint && not_supported_for_layers(*layerPaint)) {
// need to return a raster device, which we will detect in drawDevice()
return SkBitmapDevice::Create(cinfo.fInfo, SkSurfaceProps(0, kUnknown_SkPixelGeometry));
}
SkISize size = SkISize::Make(cinfo.fInfo.width(), cinfo.fInfo.height());
return new SkPDFDevice(size, fDocument);
}
SkPDFCanon* SkPDFDevice::getCanon() const { return fDocument->canon(); }
// A helper class to automatically finish a ContentEntry at the end of a
// drawing method and maintain the state needed between set up and finish.
class ScopedContentEntry {
public:
ScopedContentEntry(SkPDFDevice* device,
const SkClipStack& clipStack,
const SkMatrix& matrix,
const SkPaint& paint,
bool hasText = false)
: fDevice(device)
, fContentEntry(nullptr)
, fBlendMode(SkBlendMode::kSrcOver)
, fDstFormXObject(nullptr)
{
if (matrix.hasPerspective()) {
NOT_IMPLEMENTED(!matrix.hasPerspective(), false);
return;
}
fBlendMode = paint.getBlendMode();
fContentEntry =
fDevice->setUpContentEntry(clipStack, matrix, paint, hasText, &fDstFormXObject);
}
ScopedContentEntry(SkPDFDevice* dev, const SkPaint& paint, bool hasText = false)
: ScopedContentEntry(dev, dev->cs(), dev->ctm(), paint, hasText) {}
~ScopedContentEntry() {
if (fContentEntry) {
SkPath* shape = &fShape;
if (shape->isEmpty()) {
shape = nullptr;
}
fDevice->finishContentEntry(fBlendMode, std::move(fDstFormXObject), shape);
}
}
SkPDFDevice::ContentEntry* entry() { return fContentEntry; }
SkDynamicMemoryWStream* stream() { return &fContentEntry->fContent; }
/* Returns true when we explicitly need the shape of the drawing. */
bool needShape() {
switch (fBlendMode) {
case SkBlendMode::kClear:
case SkBlendMode::kSrc:
case SkBlendMode::kSrcIn:
case SkBlendMode::kSrcOut:
case SkBlendMode::kDstIn:
case SkBlendMode::kDstOut:
case SkBlendMode::kSrcATop:
case SkBlendMode::kDstATop:
case SkBlendMode::kModulate:
return true;
default:
return false;
}
}
/* Returns true unless we only need the shape of the drawing. */
bool needSource() {
if (fBlendMode == SkBlendMode::kClear) {
return false;
}
return true;
}
/* If the shape is different than the alpha component of the content, then
* setShape should be called with the shape. In particular, images and
* devices have rectangular shape.
*/
void setShape(const SkPath& shape) {
fShape = shape;
}
private:
SkPDFDevice* fDevice;
SkPDFDevice::ContentEntry* fContentEntry;
SkBlendMode fBlendMode;
sk_sp<SkPDFObject> fDstFormXObject;
SkPath fShape;
};
////////////////////////////////////////////////////////////////////////////////
SkPDFDevice::SkPDFDevice(SkISize pageSize, SkPDFDocument* doc)
: INHERITED(SkImageInfo::MakeUnknown(pageSize.width(), pageSize.height()),
SkSurfaceProps(0, kUnknown_SkPixelGeometry))
, fPageSize(pageSize)
, fInitialTransform(SkMatrix::I())
, fDocument(doc)
{
SkASSERT(pageSize.width() > 0);
SkASSERT(pageSize.height() > 0);
}
void SkPDFDevice::setFlip() {
// Skia generally uses the top left as the origin but PDF
// natively has the origin at the bottom left. This matrix
// corrects for that. But that only needs to be done once, we
// don't do it when layering.
fInitialTransform.setTranslate(0, SkIntToScalar(fPageSize.fHeight));
fInitialTransform.preScale(SK_Scalar1, -SK_Scalar1);
}
SkPDFDevice::~SkPDFDevice() {
this->cleanUp();
}
void SkPDFDevice::init() {
fContentEntries.reset();
}
void SkPDFDevice::cleanUp() {
fGraphicStateResources.unrefAll();
fXObjectResources.unrefAll();
fFontResources.unrefAll();
fShaderResources.unrefAll();
}
void SkPDFDevice::drawAnnotation(const SkRect& rect, const char key[], SkData* value) {
if (!value) {
return;
}
if (rect.isEmpty()) {
if (!strcmp(SkAnnotationKeys::Define_Named_Dest_Key(), key)) {
SkPoint transformedPoint;
this->ctm().mapXY(rect.x(), rect.y(), &transformedPoint);
fNamedDestinations.emplace_back(NamedDestination{sk_ref_sp(value), transformedPoint});
}
return;
}
// Convert to path to handle non-90-degree rotations.
SkPath path;
path.addRect(rect);
path.transform(this->ctm(), &path);
SkPath clip;
(void)this->cs().asPath(&clip);
Op(clip, path, kIntersect_SkPathOp, &path);
// PDF wants a rectangle only.
SkRect transformedRect = path.getBounds();
if (transformedRect.isEmpty()) {
return;
}
if (!strcmp(SkAnnotationKeys::URL_Key(), key)) {
fLinkToURLs.emplace_back(RectWithData{transformedRect, sk_ref_sp(value)});
} else if (!strcmp(SkAnnotationKeys::Link_Named_Dest_Key(), key)) {
fLinkToDestinations.emplace_back(RectWithData{transformedRect, sk_ref_sp(value)});
}
}
void SkPDFDevice::drawPaint(const SkPaint& srcPaint) {
SkPaint newPaint = srcPaint;
remove_color_filter(&newPaint);
replace_srcmode_on_opaque_paint(&newPaint);
newPaint.setStyle(SkPaint::kFill_Style);
SkMatrix ctm = this->ctm();
if (ctm.getType() & SkMatrix::kPerspective_Mask) {
if (newPaint.getShader()) {
transform_shader(&newPaint, ctm);
}
ctm = SkMatrix::I();
}
ScopedContentEntry content(this, this->cs(), ctm, newPaint);
this->internalDrawPaint(newPaint, content.entry());
}
void SkPDFDevice::internalDrawPaint(const SkPaint& paint,
SkPDFDevice::ContentEntry* contentEntry) {
if (!contentEntry) {
return;
}
SkRect bbox = SkRect::MakeWH(SkIntToScalar(this->width()),
SkIntToScalar(this->height()));
SkMatrix inverse;
if (!contentEntry->fState.fMatrix.invert(&inverse)) {
return;
}
inverse.mapRect(&bbox);
SkPDFUtils::AppendRectangle(bbox, &contentEntry->fContent);
SkPDFUtils::PaintPath(paint.getStyle(), SkPath::kWinding_FillType,
&contentEntry->fContent);
}
void SkPDFDevice::drawPoints(SkCanvas::PointMode mode,
size_t count,
const SkPoint* points,
const SkPaint& srcPaint) {
SkPaint passedPaint = srcPaint;
remove_color_filter(&passedPaint);
replace_srcmode_on_opaque_paint(&passedPaint);
if (SkCanvas::kPoints_PointMode != mode) {
passedPaint.setStyle(SkPaint::kStroke_Style);
}
if (count == 0) {
return;
}
// SkDraw::drawPoints converts to multiple calls to fDevice->drawPath.
// We only use this when there's a path effect because of the overhead
// of multiple calls to setUpContentEntry it causes.
if (passedPaint.getPathEffect()) {
if (this->cs().isEmpty(size(*this))) {
return;
}
draw_points(mode, count, points, passedPaint,
this->devClipBounds(), this->ctm(), this);
return;
}
const SkPaint* paint = &passedPaint;
SkPaint modifiedPaint;
if (mode == SkCanvas::kPoints_PointMode &&
paint->getStrokeCap() != SkPaint::kRound_Cap) {
modifiedPaint = *paint;
paint = &modifiedPaint;
if (paint->getStrokeWidth()) {
// PDF won't draw a single point with square/butt caps because the
// orientation is ambiguous. Draw a rectangle instead.
modifiedPaint.setStyle(SkPaint::kFill_Style);
SkScalar strokeWidth = paint->getStrokeWidth();
SkScalar halfStroke = SkScalarHalf(strokeWidth);
for (size_t i = 0; i < count; i++) {
SkRect r = SkRect::MakeXYWH(points[i].fX, points[i].fY, 0, 0);
r.inset(-halfStroke, -halfStroke);
this->drawRect(r, modifiedPaint);
}
return;
} else {
modifiedPaint.setStrokeCap(SkPaint::kRound_Cap);
}
}
ScopedContentEntry content(this, *paint);
if (!content.entry()) {
return;
}
SkDynamicMemoryWStream* contentStream = content.stream();
switch (mode) {
case SkCanvas::kPolygon_PointMode:
SkPDFUtils::MoveTo(points[0].fX, points[0].fY, contentStream);
for (size_t i = 1; i < count; i++) {
SkPDFUtils::AppendLine(points[i].fX, points[i].fY, contentStream);
}
SkPDFUtils::StrokePath(contentStream);
break;
case SkCanvas::kLines_PointMode:
for (size_t i = 0; i < count/2; i++) {
SkPDFUtils::MoveTo(points[i * 2].fX, points[i * 2].fY, contentStream);
SkPDFUtils::AppendLine(points[i * 2 + 1].fX, points[i * 2 + 1].fY, contentStream);
SkPDFUtils::StrokePath(contentStream);
}
break;
case SkCanvas::kPoints_PointMode:
SkASSERT(paint->getStrokeCap() == SkPaint::kRound_Cap);
for (size_t i = 0; i < count; i++) {
SkPDFUtils::MoveTo(points[i].fX, points[i].fY, contentStream);
SkPDFUtils::ClosePath(contentStream);
SkPDFUtils::StrokePath(contentStream);
}
break;
default:
SkASSERT(false);
}
}
static sk_sp<SkPDFDict> create_link_annotation(const SkRect& translatedRect) {
auto annotation = sk_make_sp<SkPDFDict>("Annot");
annotation->insertName("Subtype", "Link");
annotation->insertInt("F", 4); // required by ISO 19005
auto border = sk_make_sp<SkPDFArray>();
border->reserve(3);
border->appendInt(0); // Horizontal corner radius.
border->appendInt(0); // Vertical corner radius.
border->appendInt(0); // Width, 0 = no border.
annotation->insertObject("Border", std::move(border));
auto rect = sk_make_sp<SkPDFArray>();
rect->reserve(4);
rect->appendScalar(translatedRect.fLeft);
rect->appendScalar(translatedRect.fTop);
rect->appendScalar(translatedRect.fRight);
rect->appendScalar(translatedRect.fBottom);
annotation->insertObject("Rect", std::move(rect));
return annotation;
}
static sk_sp<SkPDFDict> create_link_to_url(const SkData* urlData, const SkRect& r) {
sk_sp<SkPDFDict> annotation = create_link_annotation(r);
SkString url(static_cast<const char *>(urlData->data()),
urlData->size() - 1);
auto action = sk_make_sp<SkPDFDict>("Action");
action->insertName("S", "URI");
action->insertString("URI", url);
annotation->insertObject("A", std::move(action));
return annotation;
}
static sk_sp<SkPDFDict> create_link_named_dest(const SkData* nameData,
const SkRect& r) {
sk_sp<SkPDFDict> annotation = create_link_annotation(r);
SkString name(static_cast<const char *>(nameData->data()),
nameData->size() - 1);
annotation->insertName("Dest", name);
return annotation;
}
void SkPDFDevice::drawRect(const SkRect& rect,
const SkPaint& srcPaint) {
SkPaint paint = srcPaint;
remove_color_filter(&paint);
replace_srcmode_on_opaque_paint(&paint);
SkRect r = rect;
r.sort();
if (paint.getPathEffect() || paint.getMaskFilter()) {
if (this->cs().isEmpty(size(*this))) {
return;
}
SkPath path;
path.addRect(r);
this->drawPath(path, paint, nullptr, true);
return;
}
ScopedContentEntry content(this, paint);
if (!content.entry()) {
return;
}
SkPDFUtils::AppendRectangle(r, content.stream());
SkPDFUtils::PaintPath(paint.getStyle(), SkPath::kWinding_FillType, content.stream());
}
void SkPDFDevice::drawRRect(const SkRRect& rrect,
const SkPaint& srcPaint) {
SkPaint paint = srcPaint;
remove_color_filter(&paint);
replace_srcmode_on_opaque_paint(&paint);
SkPath path;
path.addRRect(rrect);
this->drawPath(path, paint, nullptr, true);
}
void SkPDFDevice::drawOval(const SkRect& oval,
const SkPaint& srcPaint) {
SkPaint paint = srcPaint;
remove_color_filter(&paint);
replace_srcmode_on_opaque_paint(&paint);
SkPath path;
path.addOval(oval);
this->drawPath(path, paint, nullptr, true);
}
void SkPDFDevice::drawPath(const SkPath& origPath,
const SkPaint& srcPaint,
const SkMatrix* prePathMatrix,
bool pathIsMutable) {
this->internalDrawPath(
this->cs(), this->ctm(), origPath, srcPaint, prePathMatrix, pathIsMutable);
}
void SkPDFDevice::internalDrawPathWithFilter(const SkClipStack& clipStack,
const SkMatrix& ctm,
const SkPath& origPath,
const SkPaint& origPaint,
const SkMatrix* prePathMatrix) {
SkASSERT(origPaint.getMaskFilter());
SkPath path(origPath);
SkTCopyOnFirstWrite<SkPaint> paint(origPaint);
if (prePathMatrix) {
path.transform(*prePathMatrix, &path);
}
SkStrokeRec::InitStyle initStyle = paint->getFillPath(path, &path)
? SkStrokeRec::kFill_InitStyle
: SkStrokeRec::kHairline_InitStyle;
path.transform(ctm, &path);
// TODO(halcanary): respect fDocument->rasterDpi().
// SkScalar rasterScale = (float)rasterDpi / SkPDFUtils::kDpiForRasterScaleOne;
// Would it be easier to just change the device size (and pre-scale the canvas)?
SkIRect bounds = clipStack.bounds(size(*this)).roundOut();
SkMask sourceMask;
if (!SkDraw::DrawToMask(path, &bounds, paint->getMaskFilter(), &SkMatrix::I(),
&sourceMask, SkMask::kComputeBoundsAndRenderImage_CreateMode,
initStyle)) {
return;
}
SkAutoMaskFreeImage srcAutoMaskFreeImage(sourceMask.fImage);
SkMask dstMask;
SkIPoint margin;
if (!paint->getMaskFilter()->filterMask(&dstMask, sourceMask, ctm, &margin)) {
return;
}
SkIRect dstMaskBounds = dstMask.fBounds;
sk_sp<SkImage> mask = mask_to_greyscale_image(&dstMask);
// PDF doesn't seem to allow masking vector graphics with an Image XObject.
// Must mask with a Form XObject.
sk_sp<SkPDFDevice> maskDevice = this->makeCongruentDevice();
{
SkPDFCanvas canvas(maskDevice);
canvas.drawImage(mask, dstMaskBounds.x(), dstMaskBounds.y());
}
if (!ctm.isIdentity() && paint->getShader()) {
transform_shader(paint.writable(), ctm); // Since we are using identity matrix.
}
ScopedContentEntry content(this, clipStack, SkMatrix::I(), *paint);
if (!content.entry()) {
return;
}
this->addSMaskGraphicState(std::move(maskDevice), content.stream());
SkPDFUtils::AppendRectangle(SkRect::Make(dstMaskBounds), content.stream());
SkPDFUtils::PaintPath(SkPaint::kFill_Style, path.getFillType(), content.stream());
this->clearMaskOnGraphicState(content.stream());
}
void SkPDFDevice::addSMaskGraphicState(sk_sp<SkPDFDevice> maskDevice,
SkDynamicMemoryWStream* contentStream) {
sk_sp<SkPDFDict> sMaskGS = SkPDFGraphicState::GetSMaskGraphicState(
maskDevice->makeFormXObjectFromDevice(), false,
SkPDFGraphicState::kLuminosity_SMaskMode, this->getCanon());
SkPDFUtils::ApplyGraphicState(this->addGraphicStateResource(sMaskGS.get()), contentStream);
}
void SkPDFDevice::clearMaskOnGraphicState(SkDynamicMemoryWStream* contentStream) {
// The no-softmask graphic state is used to "turn off" the mask for later draw calls.
sk_sp<SkPDFDict>& noSMaskGS = this->getCanon()->fNoSmaskGraphicState;
if (!noSMaskGS) {
noSMaskGS = sk_make_sp<SkPDFDict>("ExtGState");
noSMaskGS->insertName("SMask", "None");
}
SkPDFUtils::ApplyGraphicState(this->addGraphicStateResource(noSMaskGS.get()), contentStream);
}
void SkPDFDevice::internalDrawPath(const SkClipStack& clipStack,
const SkMatrix& ctm,
const SkPath& origPath,
const SkPaint& srcPaint,
const SkMatrix* prePathMatrix,
bool pathIsMutable) {
SkPaint paint = srcPaint;
remove_color_filter(&paint);
replace_srcmode_on_opaque_paint(&paint);
SkPath modifiedPath;
SkPath* pathPtr = const_cast<SkPath*>(&origPath);
if (paint.getMaskFilter()) {
this->internalDrawPathWithFilter(clipStack, ctm, origPath, paint, prePathMatrix);
return;
}
SkMatrix matrix = ctm;
if (prePathMatrix) {
if (paint.getPathEffect() || paint.getStyle() != SkPaint::kFill_Style) {
if (!pathIsMutable) {
pathPtr = &modifiedPath;
pathIsMutable = true;
}
origPath.transform(*prePathMatrix, pathPtr);
} else {
matrix.preConcat(*prePathMatrix);
}
}
if (paint.getPathEffect()) {
if (clipStack.isEmpty(size(*this))) {
return;
}
if (!pathIsMutable) {
modifiedPath = origPath;
pathPtr = &modifiedPath;
pathIsMutable = true;
}
if (paint.getFillPath(*pathPtr, pathPtr)) {
paint.setStyle(SkPaint::kFill_Style);
} else {
paint.setStyle(SkPaint::kStroke_Style);
paint.setStrokeWidth(0);
}
paint.setPathEffect(nullptr);
}
if (this->handleInversePath(*pathPtr, paint, pathIsMutable, prePathMatrix)) {
return;
}
if (matrix.getType() & SkMatrix::kPerspective_Mask) {
if (!pathIsMutable) {
modifiedPath = origPath;
pathPtr = &modifiedPath;
pathIsMutable = true;
}
pathPtr->transform(matrix);
if (paint.getShader()) {
transform_shader(&paint, matrix);
}
matrix = SkMatrix::I();
}
ScopedContentEntry content(this, clipStack, matrix, paint);
if (!content.entry()) {
return;
}
SkScalar matrixScale = matrix.mapRadius(1.0f);
SkScalar tolerance = matrixScale > 0.0f ? 0.25f / matrixScale : 0.25f;
bool consumeDegeratePathSegments =
paint.getStyle() == SkPaint::kFill_Style ||
(paint.getStrokeCap() != SkPaint::kRound_Cap &&
paint.getStrokeCap() != SkPaint::kSquare_Cap);
SkPDFUtils::EmitPath(*pathPtr, paint.getStyle(), consumeDegeratePathSegments, content.stream(),
tolerance);
SkPDFUtils::PaintPath(paint.getStyle(), pathPtr->getFillType(), content.stream());
}
void SkPDFDevice::drawImageRect(const SkImage* image,
const SkRect* src,
const SkRect& dst,
const SkPaint& srcPaint,
SkCanvas::SrcRectConstraint) {
if (!image) {
return;
}
SkIRect bounds = image->bounds();
SkPaint paint = srcPaint;
if (image->isOpaque()) {
replace_srcmode_on_opaque_paint(&paint);
}
SkRect srcRect = src ? *src : SkRect::Make(bounds);
SkMatrix transform;
transform.setRectToRect(srcRect, dst, SkMatrix::kFill_ScaleToFit);
if (src) {
if (!srcRect.intersect(SkRect::Make(bounds))) {
return;
}
srcRect.roundOut(&bounds);
transform.preTranslate(SkIntToScalar(bounds.x()),
SkIntToScalar(bounds.y()));
}
SkImageSubset imageSubset(sk_ref_sp(const_cast<SkImage*>(image)), bounds);
if (!imageSubset.isValid()) {
return;
}
transform.postConcat(this->ctm());
this->internalDrawImage(transform, this->cs(), std::move(imageSubset), paint);
}
void SkPDFDevice::drawBitmapRect(const SkBitmap& bitmap,
const SkRect* src,
const SkRect& dst,
const SkPaint& srcPaint,
SkCanvas::SrcRectConstraint) {
if (bitmap.drawsNothing()) {
return;
}
SkIRect bounds = bitmap.bounds();
SkPaint paint = srcPaint;
if (bitmap.isOpaque()) {
replace_srcmode_on_opaque_paint(&paint);
}
SkRect srcRect = src ? *src : SkRect::Make(bounds);
SkMatrix transform;
transform.setRectToRect(srcRect, dst, SkMatrix::kFill_ScaleToFit);
if (src) {
if (!srcRect.intersect(SkRect::Make(bounds))) {
return;
}
srcRect.roundOut(&bounds);
transform.preTranslate(SkIntToScalar(bounds.x()),
SkIntToScalar(bounds.y()));
}
SkBitmap bitmapSubset;
if (!bitmap.extractSubset(&bitmapSubset, bounds)) {
return;
}
SkImageSubset imageSubset = make_image_subset(bitmapSubset);
if (!imageSubset.isValid()) {
return;
}
transform.postConcat(this->ctm());
this->internalDrawImage(transform, this->cs(), std::move(imageSubset), paint);
}
void SkPDFDevice::drawBitmap(const SkBitmap& bitmap,
SkScalar x,
SkScalar y,
const SkPaint& srcPaint) {
if (bitmap.drawsNothing() || this->cs().isEmpty(size(*this))) {
return;
}
SkPaint paint = srcPaint;
if (bitmap.isOpaque()) {
replace_srcmode_on_opaque_paint(&paint);
}
SkImageSubset imageSubset = make_image_subset(bitmap);
if (!imageSubset.isValid()) {
return;
}
SkMatrix transform = SkMatrix::MakeTrans(x, y);
transform.postConcat(this->ctm());
this->internalDrawImage(transform, this->cs(), std::move(imageSubset), paint);
}
void SkPDFDevice::drawSprite(const SkBitmap& bitmap,
int x,
int y,
const SkPaint& srcPaint) {
if (bitmap.drawsNothing() || this->cs().isEmpty(size(*this))) {
return;
}
SkPaint paint = srcPaint;
if (bitmap.isOpaque()) {
replace_srcmode_on_opaque_paint(&paint);
}
SkImageSubset imageSubset = make_image_subset(bitmap);
if (!imageSubset.isValid()) {
return;
}
SkMatrix transform = SkMatrix::MakeTrans(SkIntToScalar(x), SkIntToScalar(y));
this->internalDrawImage(transform, this->cs(), std::move(imageSubset), paint);
}
void SkPDFDevice::drawImage(const SkImage* image,
SkScalar x,
SkScalar y,
const SkPaint& srcPaint) {
SkPaint paint = srcPaint;
if (!image) {
return;
}
if (image->isOpaque()) {
replace_srcmode_on_opaque_paint(&paint);
}
SkImageSubset imageSubset(sk_ref_sp(const_cast<SkImage*>(image)));
if (!imageSubset.isValid()) {
return;
}
SkMatrix transform = SkMatrix::MakeTrans(x, y);
transform.postConcat(this->ctm());
this->internalDrawImage(transform, this->cs(), std::move(imageSubset), paint);
}
namespace {
class GlyphPositioner {
public:
GlyphPositioner(SkDynamicMemoryWStream* content,
SkScalar textSkewX,
bool wideChars,
bool defaultPositioning,
SkPoint origin)
: fContent(content)
, fCurrentMatrixOrigin(origin)
, fTextSkewX(textSkewX)
, fWideChars(wideChars)
, fDefaultPositioning(defaultPositioning) {
}
~GlyphPositioner() { this->flush(); }
void flush() {
if (fInText) {
fContent->writeText("> Tj\n");
fInText = false;
}
}
void writeGlyph(SkPoint xy,
SkScalar advanceWidth,
uint16_t glyph) {
if (!fInitialized) {
// Flip the text about the x-axis to account for origin swap and include
// the passed parameters.
fContent->writeText("1 0 ");
SkPDFUtils::AppendScalar(-fTextSkewX, fContent);
fContent->writeText(" -1 ");
SkPDFUtils::AppendScalar(fCurrentMatrixOrigin.x(), fContent);
fContent->writeText(" ");
SkPDFUtils::AppendScalar(fCurrentMatrixOrigin.y(), fContent);
fContent->writeText(" Tm\n");
fCurrentMatrixOrigin.set(0.0f, 0.0f);
fInitialized = true;
}
if (!fDefaultPositioning) {
SkPoint position = xy - fCurrentMatrixOrigin;
if (position != SkPoint{fXAdvance, 0}) {
this->flush();
SkPDFUtils::AppendScalar(position.x(), fContent);
fContent->writeText(" ");
SkPDFUtils::AppendScalar(-position.y(), fContent);
fContent->writeText(" Td ");
fCurrentMatrixOrigin = xy;
fXAdvance = 0;
}
fXAdvance += advanceWidth;
}
if (!fInText) {
fContent->writeText("<");
fInText = true;
}
if (fWideChars) {
SkPDFUtils::WriteUInt16BE(fContent, glyph);
} else {
SkASSERT(0 == glyph >> 8);
SkPDFUtils::WriteUInt8(fContent, static_cast<uint8_t>(glyph));
}
}
private:
SkDynamicMemoryWStream* fContent;
SkPoint fCurrentMatrixOrigin;
SkScalar fXAdvance = 0.0f;
SkScalar fTextSkewX;
bool fWideChars;
bool fInText = false;
bool fInitialized = false;
const bool fDefaultPositioning;
};
/** Given the m-to-n glyph-to-character mapping data (as returned by
harfbuzz), iterate over the clusters. */
class Clusterator {
public:
Clusterator() : fClusters(nullptr), fUtf8Text(nullptr), fGlyphCount(0), fTextByteLength(0) {}
explicit Clusterator(uint32_t glyphCount)
: fClusters(nullptr)
, fUtf8Text(nullptr)
, fGlyphCount(glyphCount)
, fTextByteLength(0) {}
// The clusters[] array is an array of offsets into utf8Text[],
// one offset for each glyph. See SkTextBlobBuilder for more info.
Clusterator(const uint32_t* clusters,
const char* utf8Text,
uint32_t glyphCount,
uint32_t textByteLength)
: fClusters(clusters)
, fUtf8Text(utf8Text)
, fGlyphCount(glyphCount)
, fTextByteLength(textByteLength) {
// This is a cheap heuristic for /ReversedChars which seems to
// work for clusters produced by HarfBuzz, which either
// increase from zero (LTR) or decrease to zero (RTL).
// "ReversedChars" is how PDF deals with RTL text.
fReversedChars =
fUtf8Text && fClusters && fGlyphCount && fClusters[0] != 0;
}
struct Cluster {
const char* fUtf8Text;
uint32_t fTextByteLength;
uint32_t fGlyphIndex;
uint32_t fGlyphCount;
explicit operator bool() const { return fGlyphCount != 0; }
};
// True if this looks like right-to-left text.
bool reversedChars() const { return fReversedChars; }
Cluster next() {
if ((!fUtf8Text || !fClusters) && fGlyphCount) {
// These glyphs have no text. Treat as one "cluster".
uint32_t glyphCount = fGlyphCount;
fGlyphCount = 0;
return Cluster{nullptr, 0, 0, glyphCount};
}
if (fGlyphCount == 0 || fTextByteLength == 0) {
return Cluster{nullptr, 0, 0, 0}; // empty
}
SkASSERT(fUtf8Text);
SkASSERT(fClusters);
uint32_t cluster = fClusters[0];
if (cluster >= fTextByteLength) {
return Cluster{nullptr, 0, 0, 0}; // bad input.
}
uint32_t glyphsInCluster = 1;
while (glyphsInCluster < fGlyphCount &&
fClusters[glyphsInCluster] == cluster) {
++glyphsInCluster;
}
SkASSERT(glyphsInCluster <= fGlyphCount);
uint32_t textLength = 0;
if (glyphsInCluster == fGlyphCount) {
// consumes rest of glyphs and rest of text
if (kInvalidCluster == fPreviousCluster) { // LTR text or single cluster
textLength = fTextByteLength - cluster;
} else { // RTL text; last cluster.
SkASSERT(fPreviousCluster < fTextByteLength);
if (fPreviousCluster <= cluster) { // bad input.
return Cluster{nullptr, 0, 0, 0};
}
textLength = fPreviousCluster - cluster;
}
fGlyphCount = 0;
return Cluster{fUtf8Text + cluster,
textLength,
fGlyphIndex,
glyphsInCluster};
}
SkASSERT(glyphsInCluster < fGlyphCount);
uint32_t nextCluster = fClusters[glyphsInCluster];
if (nextCluster >= fTextByteLength) {
return Cluster{nullptr, 0, 0, 0}; // bad input.
}
if (nextCluster > cluster) { // LTR text
if (kInvalidCluster != fPreviousCluster) {
return Cluster{nullptr, 0, 0, 0}; // bad input.
}
textLength = nextCluster - cluster;
} else { // RTL text
SkASSERT(nextCluster < cluster);
if (kInvalidCluster == fPreviousCluster) { // first cluster
textLength = fTextByteLength - cluster;
} else { // later cluster
if (fPreviousCluster <= cluster) {
return Cluster{nullptr, 0, 0, 0}; // bad input.
}
textLength = fPreviousCluster - cluster;
}
fPreviousCluster = cluster;
}
uint32_t glyphIndex = fGlyphIndex;
fGlyphCount -= glyphsInCluster;
fGlyphIndex += glyphsInCluster;
fClusters += glyphsInCluster;
return Cluster{fUtf8Text + cluster,
textLength,
glyphIndex,
glyphsInCluster};
}
private:
static constexpr uint32_t kInvalidCluster = 0xFFFFFFFF;
const uint32_t* fClusters;
const char* fUtf8Text;
uint32_t fGlyphCount;
uint32_t fTextByteLength;
uint32_t fGlyphIndex = 0;
uint32_t fPreviousCluster = kInvalidCluster;
bool fReversedChars = false;
};
struct TextStorage {
SkAutoTMalloc<char> fUtf8textStorage;
SkAutoTMalloc<uint32_t> fClusterStorage;
SkAutoTMalloc<SkGlyphID> fGlyphStorage;
};
} // namespace
/** Given some unicode text (as passed to drawText(), convert to
glyphs (via primitive shaping), while preserving
glyph-to-character mapping information. */
static Clusterator make_clusterator(
const void* sourceText,
size_t sourceByteCount,
const SkPaint& paint,
TextStorage* storage,
int glyphCount) {
SkASSERT(SkPaint::kGlyphID_TextEncoding != paint.getTextEncoding());
SkASSERT(glyphCount == paint.textToGlyphs(sourceText, sourceByteCount, nullptr));
SkASSERT(glyphCount > 0);
storage->fGlyphStorage.reset(SkToSizeT(glyphCount));
(void)paint.textToGlyphs(sourceText, sourceByteCount, storage->fGlyphStorage.get());
storage->fClusterStorage.reset(SkToSizeT(glyphCount));
uint32_t* clusters = storage->fClusterStorage.get();
uint32_t utf8ByteCount = 0;
const char* utf8Text = nullptr;
switch (paint.getTextEncoding()) {
case SkPaint::kUTF8_TextEncoding: {
const char* txtPtr = (const char*)sourceText;
for (int i = 0; i < glyphCount; ++i) {
clusters[i] = SkToU32(txtPtr - (const char*)sourceText);
txtPtr += SkUTF8_LeadByteToCount(*(const unsigned char*)txtPtr);
SkASSERT(txtPtr <= (const char*)sourceText + sourceByteCount);
}
SkASSERT(txtPtr == (const char*)sourceText + sourceByteCount);
utf8ByteCount = SkToU32(sourceByteCount);
utf8Text = (const char*)sourceText;
break;
}
case SkPaint::kUTF16_TextEncoding: {
const uint16_t* utf16ptr = (const uint16_t*)sourceText;
int utf16count = SkToInt(sourceByteCount / sizeof(uint16_t));
utf8ByteCount = SkToU32(SkUTF16_ToUTF8(utf16ptr, utf16count));
storage->fUtf8textStorage.reset(utf8ByteCount);
char* txtPtr = storage->fUtf8textStorage.get();
utf8Text = txtPtr;
int clusterIndex = 0;
while (utf16ptr < (const uint16_t*)sourceText + utf16count) {
clusters[clusterIndex++] = SkToU32(txtPtr - utf8Text);
SkUnichar uni = SkUTF16_NextUnichar(&utf16ptr);
txtPtr += SkUTF8_FromUnichar(uni, txtPtr);
}
SkASSERT(clusterIndex == glyphCount);
SkASSERT(txtPtr == storage->fUtf8textStorage.get() + utf8ByteCount);
SkASSERT(utf16ptr == (const uint16_t*)sourceText + utf16count);
break;
}
case SkPaint::kUTF32_TextEncoding: {
const SkUnichar* utf32 = (const SkUnichar*)sourceText;
int utf32count = SkToInt(sourceByteCount / sizeof(SkUnichar));
SkASSERT(glyphCount == utf32count);
for (int i = 0; i < utf32count; ++i) {
utf8ByteCount += SkToU32(SkUTF8_FromUnichar(utf32[i]));
}
storage->fUtf8textStorage.reset(SkToSizeT(utf8ByteCount));
char* txtPtr = storage->fUtf8textStorage.get();
utf8Text = txtPtr;
for (int i = 0; i < utf32count; ++i) {
clusters[i] = SkToU32(txtPtr - utf8Text);
txtPtr += SkUTF8_FromUnichar(utf32[i], txtPtr);
}
break;
}
default:
SkDEBUGFAIL("");
break;
}
return Clusterator(clusters, utf8Text, SkToU32(glyphCount), utf8ByteCount);
}
static SkUnichar map_glyph(const SkTDArray<SkUnichar>& glyphToUnicode, SkGlyphID glyph) {
return SkToInt(glyph) < glyphToUnicode.count() ? glyphToUnicode[SkToInt(glyph)] : -1;
}
static void update_font(SkWStream* wStream, int fontIndex, SkScalar textSize) {
wStream->writeText("/");
char prefix = SkPDFResourceDict::GetResourceTypePrefix(SkPDFResourceDict::kFont_ResourceType);
wStream->write(&prefix, 1);
wStream->writeDecAsText(fontIndex);
wStream->writeText(" ");
SkPDFUtils::AppendScalar(textSize, wStream);
wStream->writeText(" Tf\n");
}
static SkPath draw_text_as_path(const void* sourceText, size_t sourceByteCount,
const SkScalar pos[], SkTextBlob::GlyphPositioning positioning,
SkPoint offset, const SkPaint& srcPaint) {
SkPath path;
int glyphCount;
SkAutoTMalloc<SkPoint> tmpPoints;
switch (positioning) {
case SkTextBlob::kDefault_Positioning:
srcPaint.getTextPath(sourceText, sourceByteCount, offset.x(), offset.y(), &path);
break;
case SkTextBlob::kHorizontal_Positioning:
glyphCount = srcPaint.countText(sourceText, sourceByteCount);
tmpPoints.realloc(glyphCount);
for (int i = 0; i < glyphCount; ++i) {
tmpPoints[i] = {pos[i] + offset.x(), offset.y()};
}
srcPaint.getPosTextPath(sourceText, sourceByteCount, tmpPoints.get(), &path);
break;
case SkTextBlob::kFull_Positioning:
srcPaint.getPosTextPath(sourceText, sourceByteCount, (const SkPoint*)pos, &path);
path.offset(offset.x(), offset.y());
break;
}
return path;
}
static SkRect get_glyph_bounds_device_space(SkGlyphID gid, SkGlyphCache* cache,
SkScalar xScale, SkScalar yScale,
SkPoint xy, const SkMatrix& ctm) {
const SkGlyph& glyph = cache->getGlyphIDMetrics(gid);
SkRect glyphBounds = {glyph.fLeft * xScale,
glyph.fTop * yScale,
(glyph.fLeft + glyph.fWidth) * xScale,
(glyph.fTop + glyph.fHeight) * yScale};
glyphBounds.offset(xy);
ctm.mapRect(&glyphBounds); // now in dev space.
return glyphBounds;
}
static bool contains(const SkRect& r, SkPoint p) {
return r.left() <= p.x() && p.x() <= r.right() &&
r.top() <= p.y() && p.y() <= r.bottom();
}
void SkPDFDevice::internalDrawText(
const void* sourceText, size_t sourceByteCount,
const SkScalar pos[], SkTextBlob::GlyphPositioning positioning,
SkPoint offset, const SkPaint& srcPaint, const uint32_t* clusters,
uint32_t textByteLength, const char* utf8Text) {
if (0 == sourceByteCount || !sourceText) {
return;
}
if (this->cs().isEmpty(size(*this))) {
return;
}
NOT_IMPLEMENTED(srcPaint.isVerticalText(), false);
if (srcPaint.isVerticalText()) {
// Don't pretend we support drawing vertical text. It is not
// clear to me how to switch to "vertical writing" mode in PDF.
// Currently neither Chromium or Android set this flag.
// https://bug.skia.org/5665
}
if (srcPaint.getPathEffect()
|| srcPaint.getMaskFilter()
|| SkPaint::kFill_Style != srcPaint.getStyle()) {
// Stroked Text doesn't work well with Type3 fonts.
SkPath path = draw_text_as_path(sourceText, sourceByteCount, pos,
positioning, offset, srcPaint);
this->drawPath(path, srcPaint, nullptr, true);
return;
}
SkPaint paint = calculate_text_paint(srcPaint);
remove_color_filter(&paint);
replace_srcmode_on_opaque_paint(&paint);
if (!paint.getTypeface()) {
paint.setTypeface(SkTypeface::MakeDefault());
}
SkTypeface* typeface = paint.getTypeface();
if (!typeface) {
SkDebugf("SkPDF: SkTypeface::MakeDefault() returned nullptr.\n");
return;
}
const SkAdvancedTypefaceMetrics* metrics =
SkPDFFont::GetMetrics(typeface, fDocument->canon());
if (!metrics) {
return;
}
int glyphCount = paint.textToGlyphs(sourceText, sourceByteCount, nullptr);
if (glyphCount <= 0) {
return;
}
// These three heap buffers are only used in the case where no glyphs
// are passed to drawText() (most clients pass glyphs or a textblob).
TextStorage storage;
const SkGlyphID* glyphs = nullptr;
Clusterator clusterator;
if (textByteLength > 0) {
SkASSERT(glyphCount == SkToInt(sourceByteCount / sizeof(SkGlyphID)));
glyphs = (const SkGlyphID*)sourceText;
clusterator = Clusterator(clusters, utf8Text, SkToU32(glyphCount), textByteLength);
SkASSERT(clusters);
SkASSERT(utf8Text);
SkASSERT(srcPaint.getTextEncoding() == SkPaint::kGlyphID_TextEncoding);
SkASSERT(glyphCount == paint.textToGlyphs(sourceText, sourceByteCount, nullptr));
} else if (SkPaint::kGlyphID_TextEncoding == srcPaint.getTextEncoding()) {
SkASSERT(glyphCount == SkToInt(sourceByteCount / sizeof(SkGlyphID)));
glyphs = (const SkGlyphID*)sourceText;
clusterator = Clusterator(SkToU32(glyphCount));
SkASSERT(glyphCount == paint.textToGlyphs(sourceText, sourceByteCount, nullptr));
SkASSERT(nullptr == clusters);
SkASSERT(nullptr == utf8Text);
} else {
SkASSERT(nullptr == clusters);
SkASSERT(nullptr == utf8Text);
clusterator = make_clusterator(sourceText, sourceByteCount, srcPaint,
&storage, glyphCount);
glyphs = storage.fGlyphStorage;
}
bool defaultPositioning = (positioning == SkTextBlob::kDefault_Positioning);
paint.setHinting(SkPaint::kNo_Hinting);
int emSize;
SkAutoGlyphCache glyphCache = SkPDFFont::MakeVectorCache(typeface, &emSize);
SkScalar textSize = paint.getTextSize();
SkScalar advanceScale = textSize * paint.getTextScaleX() / emSize;
// textScaleX and textScaleY are used to get a conservative bounding box for glyphs.
SkScalar textScaleY = textSize / emSize;
SkScalar textScaleX = advanceScale + paint.getTextSkewX() * textScaleY;
SkPaint::Align alignment = paint.getTextAlign();
float alignmentFactor = SkPaint::kLeft_Align == alignment ? 0.0f :
SkPaint::kCenter_Align == alignment ? -0.5f :
/* SkPaint::kRight_Align */ -1.0f;
if (defaultPositioning && alignment != SkPaint::kLeft_Align) {
SkScalar advance = 0;
for (int i = 0; i < glyphCount; ++i) {
advance += advanceScale * glyphCache->getGlyphIDAdvance(glyphs[i]).fAdvanceX;
}
offset.offset(alignmentFactor * advance, 0);
}
SkRect clipStackBounds = this->cs().bounds(size(*this));
ScopedContentEntry content(this, paint, true);
if (!content.entry()) {
return;
}
SkDynamicMemoryWStream* out = content.stream();
const SkTDArray<SkUnichar>& glyphToUnicode = metrics->fGlyphToUnicode;
out->writeText("BT\n");
SK_AT_SCOPE_EXIT(out->writeText("ET\n"));
const SkGlyphID maxGlyphID = SkToU16(typeface->countGlyphs() - 1);
bool multiByteGlyphs = SkPDFFont::IsMultiByte(SkPDFFont::FontType(*metrics));
if (clusterator.reversedChars()) {
out->writeText("/ReversedChars BMC\n");
}
SK_AT_SCOPE_EXIT(if (clusterator.reversedChars()) { out->writeText("EMC\n"); } );
GlyphPositioner glyphPositioner(out,
paint.getTextSkewX(),
multiByteGlyphs,
defaultPositioning,
offset);
SkPDFFont* font = nullptr;
while (Clusterator::Cluster c = clusterator.next()) {
int index = c.fGlyphIndex;
int glyphLimit = index + c.fGlyphCount;
bool actualText = false;
SK_AT_SCOPE_EXIT(if (actualText) { glyphPositioner.flush(); out->writeText("EMC\n"); } );
if (c.fUtf8Text) { // real cluster
// Check if `/ActualText` needed.
const char* textPtr = c.fUtf8Text;
const char* textEnd = c.fUtf8Text + c.fTextByteLength;
SkUnichar unichar = SkUTF8_NextUnicharWithError(&textPtr, textEnd);
if (unichar < 0) {
return;
}
if (textPtr < textEnd || // more characters left
glyphLimit > index + 1 || // toUnicode wouldn't work
unichar != map_glyph(glyphToUnicode, glyphs[index])) // test single Unichar map
{
glyphPositioner.flush();
out->writeText("/Span<</ActualText <");
SkPDFUtils::WriteUTF16beHex(out, 0xFEFF); // U+FEFF = BYTE ORDER MARK
// the BOM marks this text as UTF-16BE, not PDFDocEncoding.
SkPDFUtils::WriteUTF16beHex(out, unichar); // first char
while (textPtr < textEnd) {
unichar = SkUTF8_NextUnicharWithError(&textPtr, textEnd);
if (unichar < 0) {
break;
}
SkPDFUtils::WriteUTF16beHex(out, unichar);
}
out->writeText("> >> BDC\n"); // begin marked-content sequence
// with an associated property list.
actualText = true;
}
}
for (; index < glyphLimit; ++index) {
SkGlyphID gid = glyphs[index];
if (gid > maxGlyphID) {
continue;
}
if (!font || !font->hasGlyph(gid)) {
// Not yet specified font or need to switch font.
int fontIndex = this->getFontResourceIndex(typeface, gid);
// All preconditions for SkPDFFont::GetFontResource are met.
SkASSERT(fontIndex >= 0);
if (fontIndex < 0) {
return;
}
glyphPositioner.flush();
update_font(out, fontIndex, textSize);
font = fFontResources[fontIndex];
SkASSERT(font); // All preconditions for SkPDFFont::GetFontResource are met.
if (!font) {
return;
}
SkASSERT(font->multiByteGlyphs() == multiByteGlyphs);
}
SkPoint xy{0, 0};
SkScalar advance{0};
if (!defaultPositioning) {
advance = advanceScale * glyphCache->getGlyphIDAdvance(gid).fAdvanceX;
xy = SkTextBlob::kFull_Positioning == positioning
? SkPoint{pos[2 * index], pos[2 * index + 1]}
: SkPoint{pos[index], 0};
if (alignment != SkPaint::kLeft_Align) {
xy.offset(alignmentFactor * advance, 0);
}
// Do a glyph-by-glyph bounds-reject if positions are absolute.
SkRect glyphBounds = get_glyph_bounds_device_space(
gid, glyphCache.get(), textScaleX, textScaleY, xy + offset, this->ctm());
if (glyphBounds.isEmpty()) {
if (!contains(clipStackBounds, {glyphBounds.x(), glyphBounds.y()})) {
continue;
}
} else {
if (!clipStackBounds.intersects(glyphBounds)) {
continue; // reject glyphs as out of bounds
}
}
}
font->noteGlyphUsage(gid);
SkGlyphID encodedGlyph = multiByteGlyphs ? gid : font->glyphToPDFFontEncoding(gid);
glyphPositioner.writeGlyph(xy, advance, encodedGlyph);
}
}
}
void SkPDFDevice::drawText(const void* text, size_t len,
SkScalar x, SkScalar y, const SkPaint& paint) {
this->internalDrawText(text, len, nullptr, SkTextBlob::kDefault_Positioning,
SkPoint{x, y}, paint, nullptr, 0, nullptr);
}
void SkPDFDevice::drawPosText(const void* text, size_t len,
const SkScalar pos[], int scalarsPerPos,
const SkPoint& offset, const SkPaint& paint) {
this->internalDrawText(text, len, pos, (SkTextBlob::GlyphPositioning)scalarsPerPos,
offset, paint, nullptr, 0, nullptr);
}
void SkPDFDevice::drawTextBlob(const SkTextBlob* blob, SkScalar x, SkScalar y,
const SkPaint &paint, SkDrawFilter* drawFilter) {
for (SkTextBlobRunIterator it(blob); !it.done(); it.next()) {
SkPaint runPaint(paint);
it.applyFontToPaint(&runPaint);
if (drawFilter && !drawFilter->filter(&runPaint, SkDrawFilter::kText_Type)) {
continue;
}
runPaint.setFlags(this->filterTextFlags(runPaint));
SkPoint offset = it.offset() + SkPoint{x, y};
this->internalDrawText(it.glyphs(), sizeof(SkGlyphID) * it.glyphCount(),
it.pos(), it.positioning(), offset, runPaint,
it.clusters(), it.textSize(), it.text());
}
}
void SkPDFDevice::drawVertices(const SkVertices*, SkBlendMode, const SkPaint&) {
if (this->cs().isEmpty(size(*this))) {
return;
}
// TODO: implement drawVertices
}
void SkPDFDevice::drawDevice(SkBaseDevice* device, int x, int y, const SkPaint& paint) {
SkASSERT(!paint.getImageFilter());
// Check if the source device is really a bitmapdevice (because that's what we returned
// from createDevice (likely due to an imagefilter)
SkPixmap pmap;
if (device->peekPixels(&pmap)) {
SkBitmap bitmap;
bitmap.installPixels(pmap);
this->drawSprite(bitmap, x, y, paint);
return;
}
// our onCreateCompatibleDevice() always creates SkPDFDevice subclasses.
SkPDFDevice* pdfDevice = static_cast<SkPDFDevice*>(device);
SkScalar scalarX = SkIntToScalar(x);
SkScalar scalarY = SkIntToScalar(y);
for (const RectWithData& l : pdfDevice->fLinkToURLs) {
SkRect r = l.rect.makeOffset(scalarX, scalarY);
fLinkToURLs.emplace_back(RectWithData{r, l.data});
}
for (const RectWithData& l : pdfDevice->fLinkToDestinations) {
SkRect r = l.rect.makeOffset(scalarX, scalarY);
fLinkToDestinations.emplace_back(RectWithData{r, l.data});
}
for (const NamedDestination& d : pdfDevice->fNamedDestinations) {
SkPoint p = d.point + SkPoint::Make(scalarX, scalarY);
fNamedDestinations.emplace_back(NamedDestination{d.nameData, p});
}
if (pdfDevice->isContentEmpty()) {
return;
}
SkMatrix matrix = SkMatrix::MakeTrans(SkIntToScalar(x), SkIntToScalar(y));
ScopedContentEntry content(this, this->cs(), matrix, paint);
if (!content.entry()) {
return;
}
if (content.needShape()) {
SkPath shape;
shape.addRect(SkRect::MakeXYWH(SkIntToScalar(x), SkIntToScalar(y),
SkIntToScalar(device->width()),
SkIntToScalar(device->height())));
content.setShape(shape);
}
if (!content.needSource()) {
return;
}
sk_sp<SkPDFObject> xObject = pdfDevice->makeFormXObjectFromDevice();
SkPDFUtils::DrawFormXObject(this->addXObjectResource(xObject.get()), content.stream());
}
sk_sp<SkSurface> SkPDFDevice::makeSurface(const SkImageInfo& info, const SkSurfaceProps& props) {
return SkSurface::MakeRaster(info, &props);
}
sk_sp<SkPDFDict> SkPDFDevice::makeResourceDict() const {
SkTDArray<SkPDFObject*> fonts;
fonts.setReserve(fFontResources.count());
for (SkPDFFont* font : fFontResources) {
fonts.push(font);
}
return SkPDFResourceDict::Make(
&fGraphicStateResources,
&fShaderResources,
&fXObjectResources,
&fonts);
}
sk_sp<SkPDFArray> SkPDFDevice::copyMediaBox() const {
auto mediaBox = sk_make_sp<SkPDFArray>();
mediaBox->reserve(4);
mediaBox->appendInt(0);
mediaBox->appendInt(0);
mediaBox->appendInt(fPageSize.width());
mediaBox->appendInt(fPageSize.height());
return mediaBox;
}
std::unique_ptr<SkStreamAsset> SkPDFDevice::content() const {
SkDynamicMemoryWStream buffer;
if (fInitialTransform.getType() != SkMatrix::kIdentity_Mask) {
SkPDFUtils::AppendTransform(fInitialTransform, &buffer);
}
GraphicStackState gsState(fExistingClipStack, &buffer);
for (const auto& entry : fContentEntries) {
gsState.updateClip(entry.fState.fClipStack,
{0, 0}, SkRect::Make(size(*this)));
gsState.updateMatrix(entry.fState.fMatrix);
gsState.updateDrawingState(entry.fState);
entry.fContent.writeToStream(&buffer);
}
gsState.drainStack();
if (buffer.bytesWritten() > 0) {
return std::unique_ptr<SkStreamAsset>(buffer.detachAsStream());
} else {
return skstd::make_unique<SkMemoryStream>();
}
}
/* Draws an inverse filled path by using Path Ops to compute the positive
* inverse using the current clip as the inverse bounds.
* Return true if this was an inverse path and was properly handled,
* otherwise returns false and the normal drawing routine should continue,
* either as a (incorrect) fallback or because the path was not inverse
* in the first place.
*/
bool SkPDFDevice::handleInversePath(const SkPath& origPath,
const SkPaint& paint, bool pathIsMutable,
const SkMatrix* prePathMatrix) {
if (!origPath.isInverseFillType()) {
return false;
}
if (this->cs().isEmpty(size(*this))) {
return false;
}
SkPath modifiedPath;
SkPath* pathPtr = const_cast<SkPath*>(&origPath);
SkPaint noInversePaint(paint);
// Merge stroking operations into final path.
if (SkPaint::kStroke_Style == paint.getStyle() ||
SkPaint::kStrokeAndFill_Style == paint.getStyle()) {
bool doFillPath = paint.getFillPath(origPath, &modifiedPath);
if (doFillPath) {
noInversePaint.setStyle(SkPaint::kFill_Style);
noInversePaint.setStrokeWidth(0);
pathPtr = &modifiedPath;
} else {
// To be consistent with the raster output, hairline strokes
// are rendered as non-inverted.
modifiedPath.toggleInverseFillType();
this->drawPath(modifiedPath, paint, nullptr, true);
return true;
}
}
// Get bounds of clip in current transform space
// (clip bounds are given in device space).
SkMatrix transformInverse;
SkMatrix totalMatrix = this->ctm();
if (prePathMatrix) {
totalMatrix.preConcat(*prePathMatrix);
}
if (!totalMatrix.invert(&transformInverse)) {
return false;
}
SkRect bounds = this->cs().bounds(size(*this));
transformInverse.mapRect(&bounds);
// Extend the bounds by the line width (plus some padding)
// so the edge doesn't cause a visible stroke.
bounds.outset(paint.getStrokeWidth() + SK_Scalar1,
paint.getStrokeWidth() + SK_Scalar1);
if (!calculate_inverse_path(bounds, *pathPtr, &modifiedPath)) {
return false;
}
this->drawPath(modifiedPath, noInversePaint, prePathMatrix, true);
return true;
}
void SkPDFDevice::appendAnnotations(SkPDFArray* array) const {
array->reserve(fLinkToURLs.count() + fLinkToDestinations.count());
for (const RectWithData& rectWithURL : fLinkToURLs) {
SkRect r;
fInitialTransform.mapRect(&r, rectWithURL.rect);
array->appendObject(create_link_to_url(rectWithURL.data.get(), r));
}
for (const RectWithData& linkToDestination : fLinkToDestinations) {
SkRect r;
fInitialTransform.mapRect(&r, linkToDestination.rect);
array->appendObject(
create_link_named_dest(linkToDestination.data.get(), r));
}
}
void SkPDFDevice::appendDestinations(SkPDFDict* dict, SkPDFObject* page) const {
for (const NamedDestination& dest : fNamedDestinations) {
auto pdfDest = sk_make_sp<SkPDFArray>();
pdfDest->reserve(5);
pdfDest->appendObjRef(sk_ref_sp(page));
pdfDest->appendName("XYZ");
SkPoint p = fInitialTransform.mapXY(dest.point.x(), dest.point.y());
pdfDest->appendScalar(p.x());
pdfDest->appendScalar(p.y());
pdfDest->appendInt(0); // Leave zoom unchanged
SkString name(static_cast<const char*>(dest.nameData->data()));
dict->insertObject(name, std::move(pdfDest));
}
}
sk_sp<SkPDFObject> SkPDFDevice::makeFormXObjectFromDevice() {
SkMatrix inverseTransform = SkMatrix::I();
if (!fInitialTransform.isIdentity()) {
if (!fInitialTransform.invert(&inverseTransform)) {
SkDEBUGFAIL("Layer initial transform should be invertible.");
inverseTransform.reset();
}
}
sk_sp<SkPDFObject> xobject =
SkPDFMakeFormXObject(this->content(), this->copyMediaBox(),
this->makeResourceDict(), inverseTransform, nullptr);
// We always draw the form xobjects that we create back into the device, so
// we simply preserve the font usage instead of pulling it out and merging
// it back in later.
this->cleanUp(); // Reset this device to have no content.
this->init();
return xobject;
}
void SkPDFDevice::drawFormXObjectWithMask(int xObjectIndex,
sk_sp<SkPDFObject> mask,
const SkClipStack& clipStack,
SkBlendMode mode,
bool invertClip) {
if (!invertClip && clipStack.isEmpty(size(*this))) {
return;
}
sk_sp<SkPDFDict> sMaskGS = SkPDFGraphicState::GetSMaskGraphicState(
std::move(mask), invertClip,
SkPDFGraphicState::kAlpha_SMaskMode, fDocument->canon());
SkPaint paint;
paint.setBlendMode(mode);
ScopedContentEntry content(this, clipStack, SkMatrix::I(), paint);
if (!content.entry()) {
return;
}
SkPDFUtils::ApplyGraphicState(addGraphicStateResource(sMaskGS.get()), content.stream());
SkPDFUtils::DrawFormXObject(xObjectIndex, content.stream());
this->clearMaskOnGraphicState(content.stream());
}
SkPDFDevice::ContentEntry* SkPDFDevice::setUpContentEntry(const SkClipStack& clipStack,
const SkMatrix& matrix,
const SkPaint& paint,
bool hasText,
sk_sp<SkPDFObject>* dst) {
*dst = nullptr;
SkBlendMode blendMode = paint.getBlendMode();
// For the following modes, we want to handle source and destination
// separately, so make an object of what's already there.
if (blendMode == SkBlendMode::kClear ||
blendMode == SkBlendMode::kSrc ||
blendMode == SkBlendMode::kSrcIn ||
blendMode == SkBlendMode::kDstIn ||
blendMode == SkBlendMode::kSrcOut ||
blendMode == SkBlendMode::kDstOut ||
blendMode == SkBlendMode::kSrcATop ||
blendMode == SkBlendMode::kDstATop ||
blendMode == SkBlendMode::kModulate) {
if (!isContentEmpty()) {
*dst = this->makeFormXObjectFromDevice();
SkASSERT(isContentEmpty());
} else if (blendMode != SkBlendMode::kSrc &&
blendMode != SkBlendMode::kSrcOut) {
// Except for Src and SrcOut, if there isn't anything already there,
// then we're done.
return nullptr;
}
}
// TODO(vandebo): Figure out how/if we can handle the following modes:
// Xor, Plus.
// Dst xfer mode doesn't draw source at all.
if (blendMode == SkBlendMode::kDst) {
return nullptr;
}
SkPDFDevice::ContentEntry* entry;
if (fContentEntries.back() && fContentEntries.back()->fContent.bytesWritten() == 0) {
entry = fContentEntries.back();
} else if (blendMode != SkBlendMode::kDstOver) {
entry = fContentEntries.emplace_back();
} else {
entry = fContentEntries.emplace_front();
}
populateGraphicStateEntryFromPaint(matrix, clipStack, paint, hasText, &entry->fState);
return entry;
}
void SkPDFDevice::finishContentEntry(SkBlendMode blendMode,
sk_sp<SkPDFObject> dst,
SkPath* shape) {
if (blendMode != SkBlendMode::kClear &&
blendMode != SkBlendMode::kSrc &&
blendMode != SkBlendMode::kDstOver &&
blendMode != SkBlendMode::kSrcIn &&
blendMode != SkBlendMode::kDstIn &&
blendMode != SkBlendMode::kSrcOut &&
blendMode != SkBlendMode::kDstOut &&
blendMode != SkBlendMode::kSrcATop &&
blendMode != SkBlendMode::kDstATop &&
blendMode != SkBlendMode::kModulate) {
SkASSERT(!dst);
return;
}
if (blendMode == SkBlendMode::kDstOver) {
SkASSERT(!dst);
if (fContentEntries.front()->fContent.bytesWritten() == 0) {
// For DstOver, an empty content entry was inserted before the rest
// of the content entries. If nothing was drawn, it needs to be
// removed.
fContentEntries.pop_front();
}
return;
}
if (!dst) {
SkASSERT(blendMode == SkBlendMode::kSrc ||
blendMode == SkBlendMode::kSrcOut);
return;
}
SkASSERT(dst);
SkASSERT(fContentEntries.count() == 1);
// Changing the current content into a form-xobject will destroy the clip
// objects which is fine since the xobject will already be clipped. However
// if source has shape, we need to clip it too, so a copy of the clip is
// saved.
SkClipStack clipStack = fContentEntries.front()->fState.fClipStack;
SkPaint stockPaint;
sk_sp<SkPDFObject> srcFormXObject;
if (isContentEmpty()) {
// If nothing was drawn and there's no shape, then the draw was a
// no-op, but dst needs to be restored for that to be true.
// If there is shape, then an empty source with Src, SrcIn, SrcOut,
// DstIn, DstAtop or Modulate reduces to Clear and DstOut or SrcAtop
// reduces to Dst.
if (shape == nullptr || blendMode == SkBlendMode::kDstOut ||
blendMode == SkBlendMode::kSrcATop) {
ScopedContentEntry content(this, fExistingClipStack, SkMatrix::I(), stockPaint);
// TODO: addXObjectResource take sk_sp
SkPDFUtils::DrawFormXObject(this->addXObjectResource(dst.get()), content.stream());
return;
} else {
blendMode = SkBlendMode::kClear;
}
} else {
SkASSERT(fContentEntries.count() == 1);
srcFormXObject = this->makeFormXObjectFromDevice();
}
// TODO(vandebo) srcFormXObject may contain alpha, but here we want it
// without alpha.
if (blendMode == SkBlendMode::kSrcATop) {
// TODO(vandebo): In order to properly support SrcATop we have to track
// the shape of what's been drawn at all times. It's the intersection of
// the non-transparent parts of the device and the outlines (shape) of
// all images and devices drawn.
drawFormXObjectWithMask(addXObjectResource(srcFormXObject.get()), dst,
fExistingClipStack, SkBlendMode::kSrcOver, true);
} else {
if (shape != nullptr) {
// Draw shape into a form-xobject.
SkPaint filledPaint;
filledPaint.setColor(SK_ColorBLACK);
filledPaint.setStyle(SkPaint::kFill_Style);
this->internalDrawPath(clipStack, SkMatrix::I(), *shape, filledPaint, nullptr, true);
this->drawFormXObjectWithMask(this->addXObjectResource(dst.get()),
this->makeFormXObjectFromDevice(),
fExistingClipStack,
SkBlendMode::kSrcOver, true);
} else {
this->drawFormXObjectWithMask(this->addXObjectResource(dst.get()),
srcFormXObject,
fExistingClipStack,
SkBlendMode::kSrcOver, true);
}
}
if (blendMode == SkBlendMode::kClear) {
return;
} else if (blendMode == SkBlendMode::kSrc ||
blendMode == SkBlendMode::kDstATop) {
ScopedContentEntry content(this, fExistingClipStack, SkMatrix::I(), stockPaint);
if (content.entry()) {
SkPDFUtils::DrawFormXObject(this->addXObjectResource(srcFormXObject.get()),
content.stream());
}
if (blendMode == SkBlendMode::kSrc) {
return;
}
} else if (blendMode == SkBlendMode::kSrcATop) {
ScopedContentEntry content(this, fExistingClipStack,
SkMatrix::I(), stockPaint);
if (content.entry()) {
SkPDFUtils::DrawFormXObject(this->addXObjectResource(dst.get()), content.stream());
}
}
SkASSERT(blendMode == SkBlendMode::kSrcIn ||
blendMode == SkBlendMode::kDstIn ||
blendMode == SkBlendMode::kSrcOut ||
blendMode == SkBlendMode::kDstOut ||
blendMode == SkBlendMode::kSrcATop ||
blendMode == SkBlendMode::kDstATop ||
blendMode == SkBlendMode::kModulate);
if (blendMode == SkBlendMode::kSrcIn ||
blendMode == SkBlendMode::kSrcOut ||
blendMode == SkBlendMode::kSrcATop) {
drawFormXObjectWithMask(addXObjectResource(srcFormXObject.get()),
std::move(dst),
fExistingClipStack,
SkBlendMode::kSrcOver,
blendMode == SkBlendMode::kSrcOut);
return;
} else {
SkBlendMode mode = SkBlendMode::kSrcOver;
int resourceID = addXObjectResource(dst.get());
if (blendMode == SkBlendMode::kModulate) {
drawFormXObjectWithMask(addXObjectResource(srcFormXObject.get()),
std::move(dst), fExistingClipStack,
SkBlendMode::kSrcOver, false);
mode = SkBlendMode::kMultiply;
}
drawFormXObjectWithMask(resourceID, std::move(srcFormXObject),
fExistingClipStack, mode,
blendMode == SkBlendMode::kDstOut);
return;
}
}
bool SkPDFDevice::isContentEmpty() {
if (!fContentEntries.front() || fContentEntries.front()->fContent.bytesWritten() == 0) {
SkASSERT(fContentEntries.count() <= 1);
return true;
}
return false;
}
void SkPDFDevice::populateGraphicStateEntryFromPaint(
const SkMatrix& matrix,
const SkClipStack& clipStack,
const SkPaint& paint,
bool hasText,
SkPDFDevice::GraphicStateEntry* entry) {
NOT_IMPLEMENTED(paint.getPathEffect() != nullptr, false);
NOT_IMPLEMENTED(paint.getMaskFilter() != nullptr, false);
NOT_IMPLEMENTED(paint.getColorFilter() != nullptr, false);
entry->fMatrix = matrix;
entry->fClipStack = clipStack;
entry->fColor = SkColorSetA(paint.getColor(), 0xFF);
entry->fShaderIndex = -1;
// PDF treats a shader as a color, so we only set one or the other.
sk_sp<SkPDFObject> pdfShader;
SkShader* shader = paint.getShader();
SkColor color = paint.getColor();
if (shader) {
if (SkShader::kColor_GradientType == shader->asAGradient(nullptr)) {
// We don't have to set a shader just for a color.
SkShader::GradientInfo gradientInfo;
SkColor gradientColor = SK_ColorBLACK;
gradientInfo.fColors = &gradientColor;
gradientInfo.fColorOffsets = nullptr;
gradientInfo.fColorCount = 1;
SkAssertResult(shader->asAGradient(&gradientInfo) == SkShader::kColor_GradientType);
entry->fColor = SkColorSetA(gradientColor, 0xFF);
color = gradientColor;
} else {
// PDF positions patterns relative to the initial transform, so
// we need to apply the current transform to the shader parameters.
SkMatrix transform = matrix;
transform.postConcat(fInitialTransform);
// PDF doesn't support kClamp_TileMode, so we simulate it by making
// a pattern the size of the current clip.
SkRect clipStackBounds = clipStack.bounds(size(*this));
// We need to apply the initial transform to bounds in order to get
// bounds in a consistent coordinate system.
fInitialTransform.mapRect(&clipStackBounds);
SkIRect bounds;
clipStackBounds.roundOut(&bounds);
pdfShader = SkPDFShader::GetPDFShader(fDocument, shader, transform, bounds);
if (pdfShader.get()) {
// pdfShader has been canonicalized so we can directly compare
// pointers.
int resourceIndex = fShaderResources.find(pdfShader.get());
if (resourceIndex < 0) {
resourceIndex = fShaderResources.count();
fShaderResources.push(pdfShader.get());
pdfShader.get()->ref();
}
entry->fShaderIndex = resourceIndex;
}
}
}
sk_sp<SkPDFDict> newGraphicState;
if (color == paint.getColor()) {
newGraphicState = SkPDFGraphicState::GetGraphicStateForPaint(fDocument->canon(), paint);
} else {
SkPaint newPaint = paint;
newPaint.setColor(color);
newGraphicState = SkPDFGraphicState::GetGraphicStateForPaint(fDocument->canon(), newPaint);
}
int resourceIndex = addGraphicStateResource(newGraphicState.get());
entry->fGraphicStateIndex = resourceIndex;
if (hasText) {
entry->fTextScaleX = paint.getTextScaleX();
entry->fTextFill = paint.getStyle();
} else {
entry->fTextScaleX = 0;
}
}
int SkPDFDevice::addGraphicStateResource(SkPDFObject* gs) {
// Assumes that gs has been canonicalized (so we can directly compare
// pointers).
int result = fGraphicStateResources.find(gs);
if (result < 0) {
result = fGraphicStateResources.count();
fGraphicStateResources.push(gs);
gs->ref();
}
return result;
}
int SkPDFDevice::addXObjectResource(SkPDFObject* xObject) {
// TODO(halcanary): make this take a sk_sp<SkPDFObject>
// Assumes that xobject has been canonicalized (so we can directly compare
// pointers).
int result = fXObjectResources.find(xObject);
if (result < 0) {
result = fXObjectResources.count();
fXObjectResources.push(SkRef(xObject));
}
return result;
}
int SkPDFDevice::getFontResourceIndex(SkTypeface* typeface, uint16_t glyphID) {
sk_sp<SkPDFFont> newFont = SkPDFFont::GetFontResource(fDocument->canon(), typeface, glyphID);
if (!newFont) {
return -1;
}
int resourceIndex = fFontResources.find(newFont.get());
if (resourceIndex < 0) {
fDocument->registerFont(newFont.get());
resourceIndex = fFontResources.count();
fFontResources.push(newFont.release());
}
return resourceIndex;
}
static SkSize rect_to_size(const SkRect& r) { return {r.width(), r.height()}; }
static sk_sp<SkImage> color_filter(const SkImageSubset& imageSubset,
SkColorFilter* colorFilter) {
auto surface =
SkSurface::MakeRaster(SkImageInfo::MakeN32Premul(imageSubset.dimensions()));
SkASSERT(surface);
SkCanvas* canvas = surface->getCanvas();
canvas->clear(SK_ColorTRANSPARENT);
SkPaint paint;
paint.setColorFilter(sk_ref_sp(colorFilter));
imageSubset.draw(canvas, &paint);
canvas->flush();
return surface->makeImageSnapshot();
}
////////////////////////////////////////////////////////////////////////////////
void SkPDFDevice::internalDrawImage(const SkMatrix& origMatrix,
const SkClipStack& clipStack,
SkImageSubset imageSubset,
const SkPaint& paint) {
if (imageSubset.dimensions().isZero()) {
return;
}
#ifdef SK_PDF_IMAGE_STATS
gDrawImageCalls.fetch_add(1);
#endif
SkMatrix matrix = origMatrix;
// Rasterize the bitmap using perspective in a new bitmap.
if (origMatrix.hasPerspective()) {
SkASSERT(fDocument->rasterDpi() > 0);
// Transform the bitmap in the new space, without taking into
// account the initial transform.
SkPath perspectiveOutline;
SkRect imageBounds = SkRect::Make(imageSubset.bounds());
perspectiveOutline.addRect(imageBounds);
perspectiveOutline.transform(origMatrix);
// TODO(edisonn): perf - use current clip too.
// Retrieve the bounds of the new shape.
SkRect bounds = perspectiveOutline.getBounds();
// Transform the bitmap in the new space, taking into
// account the initial transform.
SkMatrix total = origMatrix;
total.postConcat(fInitialTransform);
SkScalar dpiScale = SkIntToScalar(fDocument->rasterDpi()) /
SkIntToScalar(SkPDFUtils::kDpiForRasterScaleOne);
total.postScale(dpiScale, dpiScale);
SkPath physicalPerspectiveOutline;
physicalPerspectiveOutline.addRect(imageBounds);
physicalPerspectiveOutline.transform(total);
SkRect physicalPerspectiveBounds =
physicalPerspectiveOutline.getBounds();
SkScalar scaleX = physicalPerspectiveBounds.width() / bounds.width();
SkScalar scaleY = physicalPerspectiveBounds.height() / bounds.height();
// TODO(edisonn): A better approach would be to use a bitmap shader
// (in clamp mode) and draw a rect over the entire bounding box. Then
// intersect perspectiveOutline to the clip. That will avoid introducing
// alpha to the image while still giving good behavior at the edge of
// the image. Avoiding alpha will reduce the pdf size and generation
// CPU time some.
SkISize wh = rect_to_size(physicalPerspectiveBounds).toCeil();
auto surface = SkSurface::MakeRaster(SkImageInfo::MakeN32Premul(wh));
if (!surface) {
return;
}
SkCanvas* canvas = surface->getCanvas();
canvas->clear(SK_ColorTRANSPARENT);
SkScalar deltaX = bounds.left();
SkScalar deltaY = bounds.top();
SkMatrix offsetMatrix = origMatrix;
offsetMatrix.postTranslate(-deltaX, -deltaY);
offsetMatrix.postScale(scaleX, scaleY);
// Translate the draw in the new canvas, so we perfectly fit the
// shape in the bitmap.
canvas->setMatrix(offsetMatrix);
imageSubset.draw(canvas, nullptr);
// Make sure the final bits are in the bitmap.
canvas->flush();
// In the new space, we use the identity matrix translated
// and scaled to reflect DPI.
matrix.setScale(1 / scaleX, 1 / scaleY);
matrix.postTranslate(deltaX, deltaY);
imageSubset = SkImageSubset(surface->makeImageSnapshot());
}
SkMatrix scaled;
// Adjust for origin flip.
scaled.setScale(SK_Scalar1, -SK_Scalar1);
scaled.postTranslate(0, SK_Scalar1);
// Scale the image up from 1x1 to WxH.
SkIRect subset = imageSubset.bounds();
scaled.postScale(SkIntToScalar(imageSubset.dimensions().width()),
SkIntToScalar(imageSubset.dimensions().height()));
scaled.postConcat(matrix);
ScopedContentEntry content(this, clipStack, scaled, paint);
if (!content.entry()) {
return;
}
if (content.needShape()) {
SkPath shape;
shape.addRect(SkRect::Make(subset));
shape.transform(matrix);
content.setShape(shape);
}
if (!content.needSource()) {
return;
}
if (SkColorFilter* colorFilter = paint.getColorFilter()) {
// TODO(https://bug.skia.org/4378): implement colorfilter on other
// draw calls. This code here works for all
// drawBitmap*()/drawImage*() calls amd ImageFilters (which
// rasterize a layer on this backend). Fortuanely, this seems
// to be how Chromium impements most color-filters.
sk_sp<SkImage> img = color_filter(imageSubset, colorFilter);
imageSubset = SkImageSubset(std::move(img));
// TODO(halcanary): de-dupe this by caching filtered images.
// (maybe in the resource cache?)
}
SkBitmapKey key = imageSubset.getKey();
sk_sp<SkPDFObject>* pdfimagePtr = fDocument->canon()->fPDFBitmapMap.find(key);
sk_sp<SkPDFObject> pdfimage = pdfimagePtr ? *pdfimagePtr : nullptr;
if (!pdfimage) {
sk_sp<SkImage> img = imageSubset.makeImage();
if (!img) {
return;
}
pdfimage =
SkPDFCreateBitmapObject(std::move(img), fDocument->canon()->fPixelSerializer.get());
if (!pdfimage) {
return;
}
fDocument->serialize(pdfimage); // serialize images early.
fDocument->canon()->fPDFBitmapMap.set(key, pdfimage);
}
// TODO(halcanary): addXObjectResource() should take a sk_sp<SkPDFObject>
SkPDFUtils::DrawFormXObject(this->addXObjectResource(pdfimage.get()), content.stream());
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#include "SkSpecialImage.h"
#include "SkImageFilter.h"
void SkPDFDevice::drawSpecial(SkSpecialImage* srcImg, int x, int y, const SkPaint& paint,
SkImage* clipImage, const SkMatrix& clipMatrix) {
SkASSERT(!srcImg->isTextureBacked());
//TODO: clipImage support
SkBitmap resultBM;
SkImageFilter* filter = paint.getImageFilter();
if (filter) {
SkIPoint offset = SkIPoint::Make(0, 0);
SkMatrix matrix = this->ctm();
matrix.postTranslate(SkIntToScalar(-x), SkIntToScalar(-y));
const SkIRect clipBounds =
this->cs().bounds(this->imageInfo().bounds()).roundOut().makeOffset(-x, -y);
sk_sp<SkImageFilterCache> cache(this->getImageFilterCache());
// TODO: Should PDF be operating in a specified color space? For now, run the filter
// in the same color space as the source (this is different from all other backends).
SkImageFilter::OutputProperties outputProperties(srcImg->getColorSpace());
SkImageFilter::Context ctx(matrix, clipBounds, cache.get(), outputProperties);
sk_sp<SkSpecialImage> resultImg(filter->filterImage(srcImg, ctx, &offset));
if (resultImg) {
SkPaint tmpUnfiltered(paint);
tmpUnfiltered.setImageFilter(nullptr);
if (resultImg->getROPixels(&resultBM)) {
this->drawSprite(resultBM, x + offset.x(), y + offset.y(), tmpUnfiltered);
}
}
} else {
if (srcImg->getROPixels(&resultBM)) {
this->drawSprite(resultBM, x, y, paint);
}
}
}
sk_sp<SkSpecialImage> SkPDFDevice::makeSpecial(const SkBitmap& bitmap) {
return SkSpecialImage::MakeFromRaster(bitmap.bounds(), bitmap);
}
sk_sp<SkSpecialImage> SkPDFDevice::makeSpecial(const SkImage* image) {
// TODO: See comment above in drawSpecial. The color mode we use for decode should be driven
// by the destination where we're going to draw thing thing (ie this device). But we don't have
// a color space, so we always decode in legacy mode for now.
SkColorSpace* legacyColorSpace = nullptr;
return SkSpecialImage::MakeFromImage(SkIRect::MakeWH(image->width(), image->height()),
image->makeNonTextureImage(), legacyColorSpace);
}
sk_sp<SkSpecialImage> SkPDFDevice::snapSpecial() {
return nullptr;
}
SkImageFilterCache* SkPDFDevice::getImageFilterCache() {
// We always return a transient cache, so it is freed after each
// filter traversal.
return SkImageFilterCache::Create(SkImageFilterCache::kDefaultTransientSize);
}