blob: 1889b87133dc5fa1719442df80a2bb84bbc6e308 [file] [log] [blame]
/*
* Copyright 2010 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrDrawTarget.h"
#include "GrAppliedClip.h"
#include "GrAuditTrail.h"
#include "GrCaps.h"
#include "GrDrawContext.h"
#include "GrGpu.h"
#include "GrGpuCommandBuffer.h"
#include "GrPath.h"
#include "GrPipeline.h"
#include "GrMemoryPool.h"
#include "GrPipelineBuilder.h"
#include "GrRenderTarget.h"
#include "GrResourceProvider.h"
#include "GrRenderTargetPriv.h"
#include "GrStencilAttachment.h"
#include "GrSurfacePriv.h"
#include "GrTexture.h"
#include "gl/GrGLRenderTarget.h"
#include "SkStrokeRec.h"
#include "batches/GrClearBatch.h"
#include "batches/GrClearStencilClipBatch.h"
#include "batches/GrCopySurfaceBatch.h"
#include "batches/GrDiscardBatch.h"
#include "batches/GrDrawBatch.h"
#include "batches/GrDrawPathBatch.h"
#include "batches/GrRectBatchFactory.h"
#include "batches/GrStencilPathBatch.h"
#include "instanced/InstancedRendering.h"
////////////////////////////////////////////////////////////////////////////////
// Experimentally we have found that most batching occurs within the first 10 comparisons.
static const int kDefaultMaxBatchLookback = 10;
static const int kDefaultMaxBatchLookahead = 10;
GrDrawTarget::GrDrawTarget(GrRenderTarget* rt, GrGpu* gpu, GrResourceProvider* resourceProvider,
GrAuditTrail* auditTrail, const Options& options)
: fLastFullClearBatch(nullptr)
, fGpu(SkRef(gpu))
, fResourceProvider(resourceProvider)
, fAuditTrail(auditTrail)
, fFlags(0)
, fRenderTarget(rt) {
// TODO: Stop extracting the context (currently needed by GrClip)
fContext = fGpu->getContext();
fClipBatchToBounds = options.fClipBatchToBounds;
fDrawBatchBounds = options.fDrawBatchBounds;
fMaxBatchLookback = (options.fMaxBatchLookback < 0) ? kDefaultMaxBatchLookback :
options.fMaxBatchLookback;
fMaxBatchLookahead = (options.fMaxBatchLookahead < 0) ? kDefaultMaxBatchLookahead :
options.fMaxBatchLookahead;
if (GrCaps::InstancedSupport::kNone != this->caps()->instancedSupport()) {
fInstancedRendering.reset(fGpu->createInstancedRendering());
}
rt->setLastDrawTarget(this);
#ifdef SK_DEBUG
static int debugID = 0;
fDebugID = debugID++;
#endif
}
GrDrawTarget::~GrDrawTarget() {
if (fRenderTarget && this == fRenderTarget->getLastDrawTarget()) {
fRenderTarget->setLastDrawTarget(nullptr);
}
fGpu->unref();
}
////////////////////////////////////////////////////////////////////////////////
// Add a GrDrawTarget-based dependency
void GrDrawTarget::addDependency(GrDrawTarget* dependedOn) {
SkASSERT(!dependedOn->dependsOn(this)); // loops are bad
if (this->dependsOn(dependedOn)) {
return; // don't add duplicate dependencies
}
*fDependencies.push() = dependedOn;
}
// Convert from a GrSurface-based dependency to a GrDrawTarget one
void GrDrawTarget::addDependency(GrSurface* dependedOn) {
if (dependedOn->asRenderTarget() && dependedOn->asRenderTarget()->getLastDrawTarget()) {
// If it is still receiving dependencies, this DT shouldn't be closed
SkASSERT(!this->isClosed());
GrDrawTarget* dt = dependedOn->asRenderTarget()->getLastDrawTarget();
if (dt == this) {
// self-read - presumably for dst reads
} else {
this->addDependency(dt);
// Can't make it closed in the self-read case
dt->makeClosed();
}
}
}
#ifdef SK_DEBUG
void GrDrawTarget::dump() const {
SkDebugf("--------------------------------------------------------------\n");
SkDebugf("node: %d -> RT: %d\n", fDebugID, fRenderTarget ? fRenderTarget->getUniqueID() : -1);
SkDebugf("relies On (%d): ", fDependencies.count());
for (int i = 0; i < fDependencies.count(); ++i) {
SkDebugf("%d, ", fDependencies[i]->fDebugID);
}
SkDebugf("\n");
SkDebugf("batches (%d):\n", fRecordedBatches.count());
for (int i = 0; i < fRecordedBatches.count(); ++i) {
SkDebugf("*******************************\n");
if (!fRecordedBatches[i].fBatch) {
SkDebugf("%d: <combined forward>\n", i);
} else {
SkDebugf("%d: %s\n", i, fRecordedBatches[i].fBatch->name());
SkString str = fRecordedBatches[i].fBatch->dumpInfo();
SkDebugf("%s\n", str.c_str());
const SkRect& clippedBounds = fRecordedBatches[i].fClippedBounds;
SkDebugf("ClippedBounds: [L: %.2f, T: %.2f, R: %.2f, B: %.2f]\n",
clippedBounds.fLeft, clippedBounds.fTop, clippedBounds.fRight,
clippedBounds.fBottom);
}
}
}
#endif
bool GrDrawTarget::setupDstReadIfNecessary(const GrPipelineBuilder& pipelineBuilder,
GrRenderTarget* rt,
const GrClip& clip,
const GrPipelineOptimizations& optimizations,
GrXferProcessor::DstTexture* dstTexture,
const SkRect& batchBounds) {
SkRect bounds = batchBounds;
bounds.outset(0.5f, 0.5f);
if (!pipelineBuilder.willXPNeedDstTexture(*this->caps(), optimizations)) {
return true;
}
if (this->caps()->textureBarrierSupport()) {
if (GrTexture* rtTex = rt->asTexture()) {
// The render target is a texture, so we can read from it directly in the shader. The XP
// will be responsible to detect this situation and request a texture barrier.
dstTexture->setTexture(rtTex);
dstTexture->setOffset(0, 0);
return true;
}
}
SkIRect copyRect;
clip.getConservativeBounds(rt->width(), rt->height(), &copyRect);
SkIRect drawIBounds;
bounds.roundOut(&drawIBounds);
if (!copyRect.intersect(drawIBounds)) {
#ifdef SK_DEBUG
GrCapsDebugf(this->caps(), "Missed an early reject. "
"Bailing on draw from setupDstReadIfNecessary.\n");
#endif
return false;
}
// MSAA consideration: When there is support for reading MSAA samples in the shader we could
// have per-sample dst values by making the copy multisampled.
GrSurfaceDesc desc;
if (!fGpu->initCopySurfaceDstDesc(rt, &desc)) {
desc.fOrigin = kDefault_GrSurfaceOrigin;
desc.fFlags = kRenderTarget_GrSurfaceFlag;
desc.fConfig = rt->config();
}
desc.fWidth = copyRect.width();
desc.fHeight = copyRect.height();
static const uint32_t kFlags = 0;
SkAutoTUnref<GrTexture> copy(fResourceProvider->createApproxTexture(desc, kFlags));
if (!copy) {
SkDebugf("Failed to create temporary copy of destination texture.\n");
return false;
}
SkIPoint dstPoint = {0, 0};
this->copySurface(copy, rt, copyRect, dstPoint);
dstTexture->setTexture(copy);
dstTexture->setOffset(copyRect.fLeft, copyRect.fTop);
return true;
}
void GrDrawTarget::prepareBatches(GrBatchFlushState* flushState) {
// Semi-usually the drawTargets are already closed at this point, but sometimes Ganesh
// needs to flush mid-draw. In that case, the SkGpuDevice's drawTargets won't be closed
// but need to be flushed anyway. Closing such drawTargets here will mean new
// drawTargets will be created to replace them if the SkGpuDevice(s) write to them again.
this->makeClosed();
// Loop over the batches that haven't yet generated their geometry
for (int i = 0; i < fRecordedBatches.count(); ++i) {
if (fRecordedBatches[i].fBatch) {
fRecordedBatches[i].fBatch->prepare(flushState);
}
}
if (fInstancedRendering) {
fInstancedRendering->beginFlush(flushState->resourceProvider());
}
}
void GrDrawTarget::drawBatches(GrBatchFlushState* flushState) {
if (0 == fRecordedBatches.count()) {
return;
}
// Draw all the generated geometry.
SkRandom random;
GrRenderTarget* currentRT = nullptr;
SkAutoTDelete<GrGpuCommandBuffer> commandBuffer;
SkRect bounds = SkRect::MakeEmpty();
for (int i = 0; i < fRecordedBatches.count(); ++i) {
if (!fRecordedBatches[i].fBatch) {
continue;
}
if (fRecordedBatches[i].fBatch->renderTarget() != currentRT) {
if (commandBuffer) {
commandBuffer->end();
if (bounds.intersect(0, 0,
SkIntToScalar(currentRT->width()),
SkIntToScalar(currentRT->height()))) {
SkIRect iBounds;
bounds.roundOut(&iBounds);
commandBuffer->submit(iBounds);
}
commandBuffer.reset();
}
bounds.setEmpty();
currentRT = fRecordedBatches[i].fBatch->renderTarget();
if (currentRT) {
static const GrGpuCommandBuffer::LoadAndStoreInfo kBasicLoadStoreInfo
{ GrGpuCommandBuffer::LoadOp::kLoad,GrGpuCommandBuffer::StoreOp::kStore,
GrColor_ILLEGAL };
commandBuffer.reset(fGpu->createCommandBuffer(currentRT,
kBasicLoadStoreInfo, // Color
kBasicLoadStoreInfo)); // Stencil
}
flushState->setCommandBuffer(commandBuffer);
}
if (commandBuffer) {
bounds.join(fRecordedBatches[i].fClippedBounds);
}
if (fDrawBatchBounds) {
const SkRect& bounds = fRecordedBatches[i].fClippedBounds;
SkIRect ibounds;
bounds.roundOut(&ibounds);
// In multi-draw buffer all the batches use the same render target and we won't need to
// get the batchs bounds.
if (GrRenderTarget* rt = fRecordedBatches[i].fBatch->renderTarget()) {
fGpu->drawDebugWireRect(rt, ibounds, 0xFF000000 | random.nextU());
}
}
fRecordedBatches[i].fBatch->draw(flushState);
}
if (commandBuffer) {
commandBuffer->end();
if (bounds.intersect(0, 0,
SkIntToScalar(currentRT->width()),
SkIntToScalar(currentRT->height()))) {
SkIRect iBounds;
bounds.roundOut(&iBounds);
commandBuffer->submit(iBounds);
}
flushState->setCommandBuffer(nullptr);
}
fGpu->finishDrawTarget();
}
void GrDrawTarget::reset() {
fLastFullClearBatch = nullptr;
fRecordedBatches.reset();
if (fInstancedRendering) {
fInstancedRendering->endFlush();
}
}
static void batch_bounds(SkRect* bounds, const GrBatch* batch) {
*bounds = batch->bounds();
if (batch->hasZeroArea()) {
if (batch->hasAABloat()) {
bounds->outset(0.5f, 0.5f);
} else {
// We don't know which way the particular GPU will snap lines or points at integer
// coords. So we ensure that the bounds is large enough for either snap.
SkRect before = *bounds;
bounds->roundOut(bounds);
if (bounds->fLeft == before.fLeft) {
bounds->fLeft -= 1;
}
if (bounds->fTop == before.fTop) {
bounds->fTop -= 1;
}
if (bounds->fRight == before.fRight) {
bounds->fRight += 1;
}
if (bounds->fBottom == before.fBottom) {
bounds->fBottom += 1;
}
}
}
}
void GrDrawTarget::drawBatch(const GrPipelineBuilder& pipelineBuilder,
GrDrawContext* drawContext,
const GrClip& clip,
GrDrawBatch* batch) {
// Setup clip
SkRect bounds;
batch_bounds(&bounds, batch);
GrAppliedClip appliedClip(bounds);
if (!clip.apply(fContext, drawContext, pipelineBuilder.isHWAntialias(),
pipelineBuilder.hasUserStencilSettings(), &appliedClip)) {
return;
}
// TODO: this is the only remaining usage of the AutoRestoreFragmentProcessorState - remove it
GrPipelineBuilder::AutoRestoreFragmentProcessorState arfps;
if (appliedClip.clipCoverageFragmentProcessor()) {
arfps.set(&pipelineBuilder);
arfps.addCoverageFragmentProcessor(sk_ref_sp(appliedClip.clipCoverageFragmentProcessor()));
}
if (pipelineBuilder.hasUserStencilSettings() || appliedClip.hasStencilClip()) {
if (!fResourceProvider->attachStencilAttachment(drawContext->accessRenderTarget())) {
SkDebugf("ERROR creating stencil attachment. Draw skipped.\n");
return;
}
}
GrPipeline::CreateArgs args;
args.fPipelineBuilder = &pipelineBuilder;
args.fDrawContext = drawContext;
args.fCaps = this->caps();
batch->getPipelineOptimizations(&args.fOpts);
if (args.fOpts.fOverrides.fUsePLSDstRead || fClipBatchToBounds) {
GrGLIRect viewport;
viewport.fLeft = 0;
viewport.fBottom = 0;
viewport.fWidth = drawContext->width();
viewport.fHeight = drawContext->height();
SkIRect ibounds;
ibounds.fLeft = SkTPin(SkScalarFloorToInt(batch->bounds().fLeft), viewport.fLeft,
viewport.fWidth);
ibounds.fTop = SkTPin(SkScalarFloorToInt(batch->bounds().fTop), viewport.fBottom,
viewport.fHeight);
ibounds.fRight = SkTPin(SkScalarCeilToInt(batch->bounds().fRight), viewport.fLeft,
viewport.fWidth);
ibounds.fBottom = SkTPin(SkScalarCeilToInt(batch->bounds().fBottom), viewport.fBottom,
viewport.fHeight);
if (!appliedClip.addScissor(ibounds)) {
return;
}
}
args.fOpts.fColorPOI.completeCalculations(
sk_sp_address_as_pointer_address(pipelineBuilder.fColorFragmentProcessors.begin()),
pipelineBuilder.numColorFragmentProcessors());
args.fOpts.fCoveragePOI.completeCalculations(
sk_sp_address_as_pointer_address(pipelineBuilder.fCoverageFragmentProcessors.begin()),
pipelineBuilder.numCoverageFragmentProcessors());
args.fScissor = &appliedClip.scissorState();
args.fWindowRects = &appliedClip.windowRects();
args.fHasStencilClip = appliedClip.hasStencilClip();
if (!this->setupDstReadIfNecessary(pipelineBuilder, drawContext->accessRenderTarget(),
clip, args.fOpts,
&args.fDstTexture, batch->bounds())) {
return;
}
if (!batch->installPipeline(args)) {
return;
}
#ifdef ENABLE_MDB
SkASSERT(fRenderTarget);
batch->pipeline()->addDependenciesTo(fRenderTarget);
#endif
this->recordBatch(batch, appliedClip.clippedDrawBounds());
}
void GrDrawTarget::stencilPath(GrDrawContext* drawContext,
const GrClip& clip,
bool useHWAA,
const SkMatrix& viewMatrix,
const GrPath* path) {
// TODO: extract portions of checkDraw that are relevant to path stenciling.
SkASSERT(path);
SkASSERT(this->caps()->shaderCaps()->pathRenderingSupport());
// FIXME: Use path bounds instead of this WAR once
// https://bugs.chromium.org/p/skia/issues/detail?id=5640 is resolved.
SkRect bounds = SkRect::MakeIWH(drawContext->width(), drawContext->height());
// Setup clip
GrAppliedClip appliedClip(bounds);
if (!clip.apply(fContext, drawContext, useHWAA, true, &appliedClip)) {
return;
}
// TODO: respect fClipBatchToBounds if we ever start computing bounds here.
// Coverage AA does not make sense when rendering to the stencil buffer. The caller should never
// attempt this in a situation that would require coverage AA.
SkASSERT(!appliedClip.clipCoverageFragmentProcessor());
GrStencilAttachment* stencilAttachment = fResourceProvider->attachStencilAttachment(
drawContext->accessRenderTarget());
if (!stencilAttachment) {
SkDebugf("ERROR creating stencil attachment. Draw skipped.\n");
return;
}
GrBatch* batch = GrStencilPathBatch::Create(viewMatrix,
useHWAA,
path->getFillType(),
appliedClip.hasStencilClip(),
stencilAttachment->bits(),
appliedClip.scissorState(),
drawContext->accessRenderTarget(),
path);
this->recordBatch(batch, appliedClip.clippedDrawBounds());
batch->unref();
}
void GrDrawTarget::addBatch(sk_sp<GrBatch> batch) {
this->recordBatch(batch.get(), batch->bounds());
}
void GrDrawTarget::fullClear(GrRenderTarget* renderTarget, GrColor color) {
// Currently this just inserts or updates the last clear batch. However, once in MDB this can
// remove all the previously recorded batches and change the load op to clear with supplied
// color.
if (fLastFullClearBatch &&
fLastFullClearBatch->renderTargetUniqueID() == renderTarget->getUniqueID()) {
// As currently implemented, fLastFullClearBatch should be the last batch because we would
// have cleared it when another batch was recorded.
SkASSERT(fRecordedBatches.back().fBatch.get() == fLastFullClearBatch);
fLastFullClearBatch->setColor(color);
return;
}
sk_sp<GrClearBatch> batch(GrClearBatch::Make(SkIRect::MakeWH(renderTarget->width(),
renderTarget->height()),
color, renderTarget));
if (batch.get() == this->recordBatch(batch.get(), batch->bounds())) {
fLastFullClearBatch = batch.get();
}
}
void GrDrawTarget::discard(GrRenderTarget* renderTarget) {
// Currently this just inserts a discard batch. However, once in MDB this can remove all the
// previously recorded batches and change the load op to discard.
if (this->caps()->discardRenderTargetSupport()) {
GrBatch* batch = new GrDiscardBatch(renderTarget);
this->recordBatch(batch, batch->bounds());
batch->unref();
}
}
////////////////////////////////////////////////////////////////////////////////
bool GrDrawTarget::copySurface(GrSurface* dst,
GrSurface* src,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
GrBatch* batch = GrCopySurfaceBatch::Create(dst, src, srcRect, dstPoint);
if (!batch) {
return false;
}
#ifdef ENABLE_MDB
this->addDependency(src);
#endif
this->recordBatch(batch, batch->bounds());
batch->unref();
return true;
}
static inline bool can_reorder(const SkRect& a, const SkRect& b) {
return a.fRight <= b.fLeft || a.fBottom <= b.fTop ||
b.fRight <= a.fLeft || b.fBottom <= a.fTop;
}
static void join(SkRect* out, const SkRect& a, const SkRect& b) {
SkASSERT(a.fLeft <= a.fRight && a.fTop <= a.fBottom);
SkASSERT(b.fLeft <= b.fRight && b.fTop <= b.fBottom);
out->fLeft = SkTMin(a.fLeft, b.fLeft);
out->fTop = SkTMin(a.fTop, b.fTop);
out->fRight = SkTMax(a.fRight, b.fRight);
out->fBottom = SkTMax(a.fBottom, b.fBottom);
}
GrBatch* GrDrawTarget::recordBatch(GrBatch* batch, const SkRect& clippedBounds) {
// A closed drawTarget should never receive new/more batches
SkASSERT(!this->isClosed());
// Check if there is a Batch Draw we can batch with by linearly searching back until we either
// 1) check every draw
// 2) intersect with something
// 3) find a 'blocker'
GR_AUDIT_TRAIL_ADDBATCH(fAuditTrail, batch);
GrBATCH_INFO("Re-Recording (%s, B%u)\n"
"\tBounds LRTB (%f, %f, %f, %f)\n",
batch->name(),
batch->uniqueID(),
batch->bounds().fLeft, batch->bounds().fRight,
batch->bounds().fTop, batch->bounds().fBottom);
GrBATCH_INFO(SkTabString(batch->dumpInfo(), 1).c_str());
GrBATCH_INFO("\tClipped Bounds: [L: %.2f, T: %.2f, R: %.2f, B: %.2f]\n",
clippedBounds.fLeft, clippedBounds.fTop, clippedBounds.fRight,
clippedBounds.fBottom);
GrBATCH_INFO("\tOutcome:\n");
int maxCandidates = SkTMin(fMaxBatchLookback, fRecordedBatches.count());
if (maxCandidates) {
int i = 0;
while (true) {
GrBatch* candidate = fRecordedBatches.fromBack(i).fBatch.get();
// We cannot continue to search backwards if the render target changes
if (candidate->renderTargetUniqueID() != batch->renderTargetUniqueID()) {
GrBATCH_INFO("\t\tBreaking because of (%s, B%u) Rendertarget\n",
candidate->name(), candidate->uniqueID());
break;
}
if (candidate->combineIfPossible(batch, *this->caps())) {
GrBATCH_INFO("\t\tCombining with (%s, B%u)\n", candidate->name(),
candidate->uniqueID());
GR_AUDIT_TRAIL_BATCHING_RESULT_COMBINED(fAuditTrail, candidate, batch);
join(&fRecordedBatches.fromBack(i).fClippedBounds,
fRecordedBatches.fromBack(i).fClippedBounds, clippedBounds);
return candidate;
}
// Stop going backwards if we would cause a painter's order violation.
const SkRect& candidateBounds = fRecordedBatches.fromBack(i).fClippedBounds;
if (!can_reorder(candidateBounds, clippedBounds)) {
GrBATCH_INFO("\t\tIntersects with (%s, B%u)\n", candidate->name(),
candidate->uniqueID());
break;
}
++i;
if (i == maxCandidates) {
GrBATCH_INFO("\t\tReached max lookback or beginning of batch array %d\n", i);
break;
}
}
} else {
GrBATCH_INFO("\t\tFirstBatch\n");
}
GR_AUDIT_TRAIL_BATCHING_RESULT_NEW(fAuditTrail, batch);
fRecordedBatches.emplace_back(RecordedBatch{sk_ref_sp(batch), clippedBounds});
fLastFullClearBatch = nullptr;
return batch;
}
void GrDrawTarget::forwardCombine() {
for (int i = 0; i < fRecordedBatches.count() - 2; ++i) {
GrBatch* batch = fRecordedBatches[i].fBatch.get();
const SkRect& batchBounds = fRecordedBatches[i].fClippedBounds;
int maxCandidateIdx = SkTMin(i + fMaxBatchLookahead, fRecordedBatches.count() - 1);
int j = i + 1;
while (true) {
GrBatch* candidate = fRecordedBatches[j].fBatch.get();
// We cannot continue to search if the render target changes
if (candidate->renderTargetUniqueID() != batch->renderTargetUniqueID()) {
GrBATCH_INFO("\t\tBreaking because of (%s, B%u) Rendertarget\n",
candidate->name(), candidate->uniqueID());
break;
}
if (j == i +1) {
// We assume batch would have combined with candidate when the candidate was added
// via backwards combining in recordBatch.
SkASSERT(!batch->combineIfPossible(candidate, *this->caps()));
} else if (batch->combineIfPossible(candidate, *this->caps())) {
GrBATCH_INFO("\t\tCombining with (%s, B%u)\n", candidate->name(),
candidate->uniqueID());
GR_AUDIT_TRAIL_BATCHING_RESULT_COMBINED(fAuditTrail, batch, candidate);
fRecordedBatches[j].fBatch = std::move(fRecordedBatches[i].fBatch);
join(&fRecordedBatches[j].fClippedBounds, fRecordedBatches[j].fClippedBounds,
batchBounds);
break;
}
// Stop going traversing if we would cause a painter's order violation.
const SkRect& candidateBounds = fRecordedBatches[j].fClippedBounds;
if (!can_reorder(candidateBounds, batchBounds)) {
GrBATCH_INFO("\t\tIntersects with (%s, B%u)\n", candidate->name(),
candidate->uniqueID());
break;
}
++j;
if (j > maxCandidateIdx) {
GrBATCH_INFO("\t\tReached max lookahead or end of batch array %d\n", i);
break;
}
}
}
}
///////////////////////////////////////////////////////////////////////////////
void GrDrawTarget::clearStencilClip(const SkIRect& rect, bool insideClip, GrRenderTarget* rt) {
GrBatch* batch = new GrClearStencilClipBatch(rect, insideClip, rt);
this->recordBatch(batch, batch->bounds());
batch->unref();
}