| /* |
| ** $Id: ltable.c,v 2.72 2012/09/11 19:37:16 roberto Exp $ |
| ** Lua tables (hash) |
| ** See Copyright Notice in lua.h |
| */ |
| |
| |
| /* |
| ** Implementation of tables (aka arrays, objects, or hash tables). |
| ** Tables keep its elements in two parts: an array part and a hash part. |
| ** Non-negative integer keys are all candidates to be kept in the array |
| ** part. The actual size of the array is the largest `n' such that at |
| ** least half the slots between 0 and n are in use. |
| ** Hash uses a mix of chained scatter table with Brent's variation. |
| ** A main invariant of these tables is that, if an element is not |
| ** in its main position (i.e. the `original' position that its hash gives |
| ** to it), then the colliding element is in its own main position. |
| ** Hence even when the load factor reaches 100%, performance remains good. |
| */ |
| |
| #include <string.h> |
| |
| #define ltable_c |
| #define LUA_CORE |
| |
| #include "lua.h" |
| |
| #include "ldebug.h" |
| #include "ldo.h" |
| #include "lgc.h" |
| #include "lmem.h" |
| #include "lobject.h" |
| #include "lstate.h" |
| #include "lstring.h" |
| #include "ltable.h" |
| #include "lvm.h" |
| |
| |
| /* |
| ** max size of array part is 2^MAXBITS |
| */ |
| #if LUAI_BITSINT >= 32 |
| #define MAXBITS 30 |
| #else |
| #define MAXBITS (LUAI_BITSINT-2) |
| #endif |
| |
| #define MAXASIZE (1 << MAXBITS) |
| |
| |
| #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t)))) |
| |
| #define hashstr(t,str) hashpow2(t, (str)->tsv.hash) |
| #define hashboolean(t,p) hashpow2(t, p) |
| |
| |
| /* |
| ** for some types, it is better to avoid modulus by power of 2, as |
| ** they tend to have many 2 factors. |
| */ |
| #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1)))) |
| |
| |
| #define hashpointer(t,p) hashmod(t, IntPoint(p)) |
| |
| |
| #define dummynode (&dummynode_) |
| |
| #define isdummy(n) ((n) == dummynode) |
| |
| static const Node dummynode_ = { |
| {NILCONSTANT}, /* value */ |
| {{NILCONSTANT, NULL}} /* key */ |
| }; |
| |
| |
| /* |
| ** hash for lua_Numbers |
| */ |
| static Node *hashnum (const Table *t, lua_Number n) { |
| int i; |
| luai_hashnum(i, n); |
| if (i < 0) { |
| if (cast(unsigned int, i) == 0u - i) /* use unsigned to avoid overflows */ |
| i = 0; /* handle INT_MIN */ |
| i = -i; /* must be a positive value */ |
| } |
| return hashmod(t, i); |
| } |
| |
| |
| |
| /* |
| ** returns the `main' position of an element in a table (that is, the index |
| ** of its hash value) |
| */ |
| static Node *mainposition (const Table *t, const TValue *key) { |
| switch (ttype(key)) { |
| case LUA_TNUMBER: |
| return hashnum(t, nvalue(key)); |
| case LUA_TLNGSTR: { |
| TString *s = rawtsvalue(key); |
| if (s->tsv.extra == 0) { /* no hash? */ |
| s->tsv.hash = luaS_hash(getstr(s), s->tsv.len, s->tsv.hash); |
| s->tsv.extra = 1; /* now it has its hash */ |
| } |
| return hashstr(t, rawtsvalue(key)); |
| } |
| case LUA_TSHRSTR: |
| return hashstr(t, rawtsvalue(key)); |
| case LUA_TBOOLEAN: |
| return hashboolean(t, bvalue(key)); |
| case LUA_TLIGHTUSERDATA: |
| return hashpointer(t, pvalue(key)); |
| case LUA_TLCF: |
| return hashpointer(t, fvalue(key)); |
| default: |
| return hashpointer(t, gcvalue(key)); |
| } |
| } |
| |
| |
| /* |
| ** returns the index for `key' if `key' is an appropriate key to live in |
| ** the array part of the table, -1 otherwise. |
| */ |
| static int arrayindex (const TValue *key) { |
| if (ttisnumber(key)) { |
| lua_Number n = nvalue(key); |
| int k; |
| lua_number2int(k, n); |
| if (luai_numeq(cast_num(k), n)) |
| return k; |
| } |
| return -1; /* `key' did not match some condition */ |
| } |
| |
| |
| /* |
| ** returns the index of a `key' for table traversals. First goes all |
| ** elements in the array part, then elements in the hash part. The |
| ** beginning of a traversal is signaled by -1. |
| */ |
| static int findindex (lua_State *L, Table *t, StkId key) { |
| int i; |
| if (ttisnil(key)) return -1; /* first iteration */ |
| i = arrayindex(key); |
| if (0 < i && i <= t->sizearray) /* is `key' inside array part? */ |
| return i-1; /* yes; that's the index (corrected to C) */ |
| else { |
| Node *n = mainposition(t, key); |
| for (;;) { /* check whether `key' is somewhere in the chain */ |
| /* key may be dead already, but it is ok to use it in `next' */ |
| if (luaV_rawequalobj(gkey(n), key) || |
| (ttisdeadkey(gkey(n)) && iscollectable(key) && |
| deadvalue(gkey(n)) == gcvalue(key))) { |
| i = cast_int(n - gnode(t, 0)); /* key index in hash table */ |
| /* hash elements are numbered after array ones */ |
| return i + t->sizearray; |
| } |
| else n = gnext(n); |
| if (n == NULL) |
| luaG_runerror(L, "invalid key to " LUA_QL("next")); /* key not found */ |
| } |
| } |
| } |
| |
| |
| int luaH_next (lua_State *L, Table *t, StkId key) { |
| int i = findindex(L, t, key); /* find original element */ |
| for (i++; i < t->sizearray; i++) { /* try first array part */ |
| if (!ttisnil(&t->array[i])) { /* a non-nil value? */ |
| setnvalue(key, cast_num(i+1)); |
| setobj2s(L, key+1, &t->array[i]); |
| return 1; |
| } |
| } |
| for (i -= t->sizearray; i < sizenode(t); i++) { /* then hash part */ |
| if (!ttisnil(gval(gnode(t, i)))) { /* a non-nil value? */ |
| setobj2s(L, key, gkey(gnode(t, i))); |
| setobj2s(L, key+1, gval(gnode(t, i))); |
| return 1; |
| } |
| } |
| return 0; /* no more elements */ |
| } |
| |
| |
| /* |
| ** {============================================================= |
| ** Rehash |
| ** ============================================================== |
| */ |
| |
| |
| static int computesizes (int nums[], int *narray) { |
| int i; |
| int twotoi; /* 2^i */ |
| int a = 0; /* number of elements smaller than 2^i */ |
| int na = 0; /* number of elements to go to array part */ |
| int n = 0; /* optimal size for array part */ |
| for (i = 0, twotoi = 1; twotoi/2 < *narray; i++, twotoi *= 2) { |
| if (nums[i] > 0) { |
| a += nums[i]; |
| if (a > twotoi/2) { /* more than half elements present? */ |
| n = twotoi; /* optimal size (till now) */ |
| na = a; /* all elements smaller than n will go to array part */ |
| } |
| } |
| if (a == *narray) break; /* all elements already counted */ |
| } |
| *narray = n; |
| lua_assert(*narray/2 <= na && na <= *narray); |
| return na; |
| } |
| |
| |
| static int countint (const TValue *key, int *nums) { |
| int k = arrayindex(key); |
| if (0 < k && k <= MAXASIZE) { /* is `key' an appropriate array index? */ |
| nums[luaO_ceillog2(k)]++; /* count as such */ |
| return 1; |
| } |
| else |
| return 0; |
| } |
| |
| |
| static int numusearray (const Table *t, int *nums) { |
| int lg; |
| int ttlg; /* 2^lg */ |
| int ause = 0; /* summation of `nums' */ |
| int i = 1; /* count to traverse all array keys */ |
| for (lg=0, ttlg=1; lg<=MAXBITS; lg++, ttlg*=2) { /* for each slice */ |
| int lc = 0; /* counter */ |
| int lim = ttlg; |
| if (lim > t->sizearray) { |
| lim = t->sizearray; /* adjust upper limit */ |
| if (i > lim) |
| break; /* no more elements to count */ |
| } |
| /* count elements in range (2^(lg-1), 2^lg] */ |
| for (; i <= lim; i++) { |
| if (!ttisnil(&t->array[i-1])) |
| lc++; |
| } |
| nums[lg] += lc; |
| ause += lc; |
| } |
| return ause; |
| } |
| |
| |
| static int numusehash (const Table *t, int *nums, int *pnasize) { |
| int totaluse = 0; /* total number of elements */ |
| int ause = 0; /* summation of `nums' */ |
| int i = sizenode(t); |
| while (i--) { |
| Node *n = &t->node[i]; |
| if (!ttisnil(gval(n))) { |
| ause += countint(gkey(n), nums); |
| totaluse++; |
| } |
| } |
| *pnasize += ause; |
| return totaluse; |
| } |
| |
| |
| static void setarrayvector (lua_State *L, Table *t, int size) { |
| int i; |
| luaM_reallocvector(L, t->array, t->sizearray, size, TValue); |
| for (i=t->sizearray; i<size; i++) |
| setnilvalue(&t->array[i]); |
| t->sizearray = size; |
| } |
| |
| |
| static void setnodevector (lua_State *L, Table *t, int size) { |
| int lsize; |
| if (size == 0) { /* no elements to hash part? */ |
| t->node = cast(Node *, dummynode); /* use common `dummynode' */ |
| lsize = 0; |
| } |
| else { |
| int i; |
| lsize = luaO_ceillog2(size); |
| if (lsize > MAXBITS) |
| luaG_runerror(L, "table overflow"); |
| size = twoto(lsize); |
| t->node = luaM_newvector(L, size, Node); |
| for (i=0; i<size; i++) { |
| Node *n = gnode(t, i); |
| gnext(n) = NULL; |
| setnilvalue(gkey(n)); |
| setnilvalue(gval(n)); |
| } |
| } |
| t->lsizenode = cast_byte(lsize); |
| t->lastfree = gnode(t, size); /* all positions are free */ |
| } |
| |
| |
| void luaH_resize (lua_State *L, Table *t, int nasize, int nhsize) { |
| int i; |
| int oldasize = t->sizearray; |
| int oldhsize = t->lsizenode; |
| Node *nold = t->node; /* save old hash ... */ |
| if (nasize > oldasize) /* array part must grow? */ |
| setarrayvector(L, t, nasize); |
| /* create new hash part with appropriate size */ |
| setnodevector(L, t, nhsize); |
| if (nasize < oldasize) { /* array part must shrink? */ |
| t->sizearray = nasize; |
| /* re-insert elements from vanishing slice */ |
| for (i=nasize; i<oldasize; i++) { |
| if (!ttisnil(&t->array[i])) |
| luaH_setint(L, t, i + 1, &t->array[i]); |
| } |
| /* shrink array */ |
| luaM_reallocvector(L, t->array, oldasize, nasize, TValue); |
| } |
| /* re-insert elements from hash part */ |
| for (i = twoto(oldhsize) - 1; i >= 0; i--) { |
| Node *old = nold+i; |
| if (!ttisnil(gval(old))) { |
| /* doesn't need barrier/invalidate cache, as entry was |
| already present in the table */ |
| setobjt2t(L, luaH_set(L, t, gkey(old)), gval(old)); |
| } |
| } |
| if (!isdummy(nold)) |
| luaM_freearray(L, nold, cast(size_t, twoto(oldhsize))); /* free old array */ |
| } |
| |
| |
| void luaH_resizearray (lua_State *L, Table *t, int nasize) { |
| int nsize = isdummy(t->node) ? 0 : sizenode(t); |
| luaH_resize(L, t, nasize, nsize); |
| } |
| |
| |
| static void rehash (lua_State *L, Table *t, const TValue *ek) { |
| int nasize, na; |
| int nums[MAXBITS+1]; /* nums[i] = number of keys with 2^(i-1) < k <= 2^i */ |
| int i; |
| int totaluse; |
| for (i=0; i<=MAXBITS; i++) nums[i] = 0; /* reset counts */ |
| nasize = numusearray(t, nums); /* count keys in array part */ |
| totaluse = nasize; /* all those keys are integer keys */ |
| totaluse += numusehash(t, nums, &nasize); /* count keys in hash part */ |
| /* count extra key */ |
| nasize += countint(ek, nums); |
| totaluse++; |
| /* compute new size for array part */ |
| na = computesizes(nums, &nasize); |
| /* resize the table to new computed sizes */ |
| luaH_resize(L, t, nasize, totaluse - na); |
| } |
| |
| |
| |
| /* |
| ** }============================================================= |
| */ |
| |
| |
| Table *luaH_new (lua_State *L) { |
| Table *t = &luaC_newobj(L, LUA_TTABLE, sizeof(Table), NULL, 0)->h; |
| t->metatable = NULL; |
| t->flags = cast_byte(~0); |
| t->array = NULL; |
| t->sizearray = 0; |
| setnodevector(L, t, 0); |
| return t; |
| } |
| |
| |
| void luaH_free (lua_State *L, Table *t) { |
| if (!isdummy(t->node)) |
| luaM_freearray(L, t->node, cast(size_t, sizenode(t))); |
| luaM_freearray(L, t->array, t->sizearray); |
| luaM_free(L, t); |
| } |
| |
| |
| static Node *getfreepos (Table *t) { |
| while (t->lastfree > t->node) { |
| t->lastfree--; |
| if (ttisnil(gkey(t->lastfree))) |
| return t->lastfree; |
| } |
| return NULL; /* could not find a free place */ |
| } |
| |
| |
| |
| /* |
| ** inserts a new key into a hash table; first, check whether key's main |
| ** position is free. If not, check whether colliding node is in its main |
| ** position or not: if it is not, move colliding node to an empty place and |
| ** put new key in its main position; otherwise (colliding node is in its main |
| ** position), new key goes to an empty position. |
| */ |
| TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) { |
| Node *mp; |
| if (ttisnil(key)) luaG_runerror(L, "table index is nil"); |
| else if (ttisnumber(key) && luai_numisnan(L, nvalue(key))) |
| luaG_runerror(L, "table index is NaN"); |
| mp = mainposition(t, key); |
| if (!ttisnil(gval(mp)) || isdummy(mp)) { /* main position is taken? */ |
| Node *othern; |
| Node *n = getfreepos(t); /* get a free place */ |
| if (n == NULL) { /* cannot find a free place? */ |
| rehash(L, t, key); /* grow table */ |
| /* whatever called 'newkey' take care of TM cache and GC barrier */ |
| return luaH_set(L, t, key); /* insert key into grown table */ |
| } |
| lua_assert(!isdummy(n)); |
| othern = mainposition(t, gkey(mp)); |
| if (othern != mp) { /* is colliding node out of its main position? */ |
| /* yes; move colliding node into free position */ |
| while (gnext(othern) != mp) othern = gnext(othern); /* find previous */ |
| gnext(othern) = n; /* redo the chain with `n' in place of `mp' */ |
| *n = *mp; /* copy colliding node into free pos. (mp->next also goes) */ |
| gnext(mp) = NULL; /* now `mp' is free */ |
| setnilvalue(gval(mp)); |
| } |
| else { /* colliding node is in its own main position */ |
| /* new node will go into free position */ |
| gnext(n) = gnext(mp); /* chain new position */ |
| gnext(mp) = n; |
| mp = n; |
| } |
| } |
| setobj2t(L, gkey(mp), key); |
| luaC_barrierback(L, obj2gco(t), key); |
| lua_assert(ttisnil(gval(mp))); |
| return gval(mp); |
| } |
| |
| |
| /* |
| ** search function for integers |
| */ |
| const TValue *luaH_getint (Table *t, int key) { |
| /* (1 <= key && key <= t->sizearray) */ |
| if (cast(unsigned int, key-1) < cast(unsigned int, t->sizearray)) |
| return &t->array[key-1]; |
| else { |
| lua_Number nk = cast_num(key); |
| Node *n = hashnum(t, nk); |
| do { /* check whether `key' is somewhere in the chain */ |
| if (ttisnumber(gkey(n)) && luai_numeq(nvalue(gkey(n)), nk)) |
| return gval(n); /* that's it */ |
| else n = gnext(n); |
| } while (n); |
| return luaO_nilobject; |
| } |
| } |
| |
| |
| /* |
| ** search function for short strings |
| */ |
| const TValue *luaH_getstr (Table *t, TString *key) { |
| Node *n = hashstr(t, key); |
| lua_assert(key->tsv.tt == LUA_TSHRSTR); |
| do { /* check whether `key' is somewhere in the chain */ |
| if (ttisshrstring(gkey(n)) && eqshrstr(rawtsvalue(gkey(n)), key)) |
| return gval(n); /* that's it */ |
| else n = gnext(n); |
| } while (n); |
| return luaO_nilobject; |
| } |
| |
| |
| /* |
| ** main search function |
| */ |
| const TValue *luaH_get (Table *t, const TValue *key) { |
| switch (ttype(key)) { |
| case LUA_TSHRSTR: return luaH_getstr(t, rawtsvalue(key)); |
| case LUA_TNIL: return luaO_nilobject; |
| case LUA_TNUMBER: { |
| int k; |
| lua_Number n = nvalue(key); |
| lua_number2int(k, n); |
| if (luai_numeq(cast_num(k), n)) /* index is int? */ |
| return luaH_getint(t, k); /* use specialized version */ |
| /* else go through */ |
| } |
| default: { |
| Node *n = mainposition(t, key); |
| do { /* check whether `key' is somewhere in the chain */ |
| if (luaV_rawequalobj(gkey(n), key)) |
| return gval(n); /* that's it */ |
| else n = gnext(n); |
| } while (n); |
| return luaO_nilobject; |
| } |
| } |
| } |
| |
| |
| /* |
| ** beware: when using this function you probably need to check a GC |
| ** barrier and invalidate the TM cache. |
| */ |
| TValue *luaH_set (lua_State *L, Table *t, const TValue *key) { |
| const TValue *p = luaH_get(t, key); |
| if (p != luaO_nilobject) |
| return cast(TValue *, p); |
| else return luaH_newkey(L, t, key); |
| } |
| |
| |
| void luaH_setint (lua_State *L, Table *t, int key, TValue *value) { |
| const TValue *p = luaH_getint(t, key); |
| TValue *cell; |
| if (p != luaO_nilobject) |
| cell = cast(TValue *, p); |
| else { |
| TValue k; |
| setnvalue(&k, cast_num(key)); |
| cell = luaH_newkey(L, t, &k); |
| } |
| setobj2t(L, cell, value); |
| } |
| |
| |
| static int unbound_search (Table *t, unsigned int j) { |
| unsigned int i = j; /* i is zero or a present index */ |
| j++; |
| /* find `i' and `j' such that i is present and j is not */ |
| while (!ttisnil(luaH_getint(t, j))) { |
| i = j; |
| j *= 2; |
| if (j > cast(unsigned int, MAX_INT)) { /* overflow? */ |
| /* table was built with bad purposes: resort to linear search */ |
| i = 1; |
| while (!ttisnil(luaH_getint(t, i))) i++; |
| return i - 1; |
| } |
| } |
| /* now do a binary search between them */ |
| while (j - i > 1) { |
| unsigned int m = (i+j)/2; |
| if (ttisnil(luaH_getint(t, m))) j = m; |
| else i = m; |
| } |
| return i; |
| } |
| |
| |
| /* |
| ** Try to find a boundary in table `t'. A `boundary' is an integer index |
| ** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil). |
| */ |
| int luaH_getn (Table *t) { |
| unsigned int j = t->sizearray; |
| if (j > 0 && ttisnil(&t->array[j - 1])) { |
| /* there is a boundary in the array part: (binary) search for it */ |
| unsigned int i = 0; |
| while (j - i > 1) { |
| unsigned int m = (i+j)/2; |
| if (ttisnil(&t->array[m - 1])) j = m; |
| else i = m; |
| } |
| return i; |
| } |
| /* else must find a boundary in hash part */ |
| else if (isdummy(t->node)) /* hash part is empty? */ |
| return j; /* that is easy... */ |
| else return unbound_search(t, j); |
| } |
| |
| |
| |
| #if defined(LUA_DEBUG) |
| |
| Node *luaH_mainposition (const Table *t, const TValue *key) { |
| return mainposition(t, key); |
| } |
| |
| int luaH_isdummy (Node *n) { return isdummy(n); } |
| |
| #endif |