| /* |
| * Copyright 2013 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| // This test only works with the GPU backend. |
| |
| #include "gm.h" |
| #include "sk_tool_utils.h" |
| |
| #include "GrContext.h" |
| #include "GrMemoryPool.h" |
| #include "GrOpFlushState.h" |
| #include "GrPathUtils.h" |
| #include "GrRenderTargetContextPriv.h" |
| #include "GrTest.h" |
| #include "SkColorPriv.h" |
| #include "SkGeometry.h" |
| #include "SkPoint3.h" |
| #include "SkPointPriv.h" |
| #include "effects/GrBezierEffect.h" |
| #include "ops/GrMeshDrawOp.h" |
| |
| namespace skiagm { |
| |
| class BezierTestOp : public GrMeshDrawOp { |
| public: |
| FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; } |
| |
| RequiresDstTexture finalize(const GrCaps& caps, const GrAppliedClip* clip, |
| GrPixelConfigIsClamped dstIsClamped) override { |
| auto analysis = fProcessorSet.finalize(fColor, GrProcessorAnalysisCoverage::kSingleChannel, |
| clip, false, caps, dstIsClamped, &fColor); |
| return analysis.requiresDstTexture() ? RequiresDstTexture::kYes : RequiresDstTexture::kNo; |
| } |
| |
| void visitProxies(const VisitProxyFunc& func) const override { |
| fProcessorSet.visitProxies(func); |
| } |
| |
| protected: |
| BezierTestOp(sk_sp<GrGeometryProcessor> gp, const SkRect& rect, GrColor color, int32_t classID) |
| : INHERITED(classID) |
| , fRect(rect) |
| , fColor(color) |
| , fGeometryProcessor(std::move(gp)) |
| , fProcessorSet(SkBlendMode::kSrc) { |
| this->setBounds(rect, HasAABloat::kYes, IsZeroArea::kNo); |
| } |
| |
| Target::PipelineAndFixedDynamicState makePipeline(Target* target) { |
| return target->makePipeline(0, std::move(fProcessorSet), target->detachAppliedClip()); |
| } |
| |
| const GrGeometryProcessor* gp() const { return fGeometryProcessor.get(); } |
| |
| const SkRect& rect() const { return fRect; } |
| GrColor color() const { return fColor; } |
| |
| private: |
| bool onCombineIfPossible(GrOp* op, const GrCaps& caps) override { return false; } |
| |
| SkRect fRect; |
| GrColor fColor; |
| sk_sp<GrGeometryProcessor> fGeometryProcessor; |
| GrProcessorSet fProcessorSet; |
| |
| typedef GrMeshDrawOp INHERITED; |
| }; |
| |
| class BezierCubicTestOp : public BezierTestOp { |
| public: |
| DEFINE_OP_CLASS_ID |
| |
| const char* name() const override { return "BezierCubicTestOp"; } |
| |
| static std::unique_ptr<GrDrawOp> Make(GrContext* context, |
| sk_sp<GrGeometryProcessor> gp, |
| const SkRect& rect, |
| GrColor color) { |
| GrOpMemoryPool* pool = context->contextPriv().opMemoryPool(); |
| |
| return pool->allocate<BezierCubicTestOp>(std::move(gp), rect, color); |
| } |
| |
| private: |
| friend class ::GrOpMemoryPool; // for ctor |
| |
| BezierCubicTestOp(sk_sp<GrGeometryProcessor> gp, const SkRect& rect, GrColor color) |
| : INHERITED(std::move(gp), rect, color, ClassID()) {} |
| |
| void onPrepareDraws(Target* target) override { |
| QuadHelper helper; |
| SkASSERT(this->gp()->debugOnly_vertexStride() == sizeof(SkPoint)); |
| SkPoint* pts = reinterpret_cast<SkPoint*>(helper.init(target, sizeof(SkPoint), 1)); |
| if (!pts) { |
| return; |
| } |
| SkRect rect = this->rect(); |
| SkPointPriv::SetRectTriStrip(pts, rect, sizeof(SkPoint)); |
| auto pipe = this->makePipeline(target); |
| helper.recordDraw(target, this->gp(), pipe.fPipeline, pipe.fFixedDynamicState); |
| } |
| |
| static constexpr int kVertsPerCubic = 4; |
| static constexpr int kIndicesPerCubic = 6; |
| |
| typedef BezierTestOp INHERITED; |
| }; |
| |
| /** |
| * This GM directly exercises effects that draw Bezier curves in the GPU backend. |
| */ |
| class BezierCubicEffects : public GM { |
| public: |
| BezierCubicEffects() { |
| this->setBGColor(0xFFFFFFFF); |
| } |
| |
| protected: |
| SkString onShortName() override { |
| return SkString("bezier_cubic_effects"); |
| } |
| |
| SkISize onISize() override { |
| return SkISize::Make(800, 800); |
| } |
| |
| void onDraw(SkCanvas* canvas) override { |
| GrRenderTargetContext* renderTargetContext = |
| canvas->internal_private_accessTopLayerRenderTargetContext(); |
| if (!renderTargetContext) { |
| skiagm::GM::DrawGpuOnlyMessage(canvas); |
| return; |
| } |
| |
| GrContext* context = canvas->getGrContext(); |
| if (!context) { |
| return; |
| } |
| |
| if (!context->contextPriv().caps()->shaderCaps()->floatIs32Bits()) { |
| SkPaint paint; |
| sk_tool_utils::set_portable_typeface(&paint); |
| paint.setAntiAlias(true); |
| paint.setTextSize(20); |
| |
| canvas->clear(SK_ColorWHITE); |
| canvas->drawString("float != fp32", 20, 40, paint); |
| return; |
| } |
| |
| struct Vertex { |
| SkPoint fPosition; |
| float fKLM[4]; // The last value is ignored. The effect expects a vec4f. |
| }; |
| |
| constexpr int kNumCubics = 15; |
| SkRandom rand; |
| |
| // Mult by 3 for each edge effect type |
| int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumCubics*3))); |
| int numRows = SkScalarCeilToInt(SkIntToScalar(kNumCubics*3) / numCols); |
| SkScalar w = SkIntToScalar(renderTargetContext->width()) / numCols; |
| SkScalar h = SkIntToScalar(renderTargetContext->height()) / numRows; |
| int row = 0; |
| int col = 0; |
| constexpr GrColor color = 0xff000000; |
| |
| for (int i = 0; i < kNumCubics; ++i) { |
| SkPoint baseControlPts[] = { |
| {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, |
| {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, |
| {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, |
| {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)} |
| }; |
| for(GrClipEdgeType edgeType : {GrClipEdgeType::kFillBW, |
| GrClipEdgeType::kFillAA, |
| GrClipEdgeType::kHairlineAA}) { |
| SkScalar x = col * w; |
| SkScalar y = row * h; |
| SkPoint controlPts[] = { |
| {x + baseControlPts[0].fX, y + baseControlPts[0].fY}, |
| {x + baseControlPts[1].fX, y + baseControlPts[1].fY}, |
| {x + baseControlPts[2].fX, y + baseControlPts[2].fY}, |
| {x + baseControlPts[3].fX, y + baseControlPts[3].fY} |
| }; |
| SkPoint chopped[10]; |
| SkMatrix klm; |
| int loopIndex; |
| int cnt = GrPathUtils::chopCubicAtLoopIntersection(controlPts, |
| chopped, |
| &klm, |
| &loopIndex); |
| |
| SkPaint ctrlPtPaint; |
| ctrlPtPaint.setColor(rand.nextU() | 0xFF000000); |
| canvas->drawCircle(controlPts[0], 8.f, ctrlPtPaint); |
| for (int i = 1; i < 4; ++i) { |
| canvas->drawCircle(controlPts[i], 6.f, ctrlPtPaint); |
| } |
| |
| SkPaint polyPaint; |
| polyPaint.setColor(0xffA0A0A0); |
| polyPaint.setStrokeWidth(0); |
| polyPaint.setStyle(SkPaint::kStroke_Style); |
| canvas->drawPoints(SkCanvas::kPolygon_PointMode, 4, controlPts, polyPaint); |
| |
| SkPaint choppedPtPaint; |
| choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000); |
| |
| for (int c = 0; c < cnt; ++c) { |
| SkPoint* pts = chopped + 3 * c; |
| |
| for (int i = 0; i < 4; ++i) { |
| canvas->drawCircle(pts[i], 3.f, choppedPtPaint); |
| } |
| |
| SkRect bounds; |
| bounds.set(pts, 4); |
| |
| SkPaint boundsPaint; |
| boundsPaint.setColor(0xff808080); |
| boundsPaint.setStrokeWidth(0); |
| boundsPaint.setStyle(SkPaint::kStroke_Style); |
| canvas->drawRect(bounds, boundsPaint); |
| |
| |
| bool flipKL = (c == loopIndex && cnt != 3); |
| sk_sp<GrGeometryProcessor> gp = |
| GrCubicEffect::Make(color, SkMatrix::I(), klm, flipKL, edgeType, |
| *context->contextPriv().caps()); |
| if (!gp) { |
| break; |
| } |
| |
| std::unique_ptr<GrDrawOp> op = |
| BezierCubicTestOp::Make(context, std::move(gp), bounds, color); |
| renderTargetContext->priv().testingOnly_addDrawOp(std::move(op)); |
| } |
| ++col; |
| if (numCols == col) { |
| col = 0; |
| ++row; |
| } |
| } |
| } |
| } |
| |
| private: |
| typedef GM INHERITED; |
| }; |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| class BezierConicTestOp : public BezierTestOp { |
| public: |
| DEFINE_OP_CLASS_ID |
| |
| const char* name() const override { return "BezierConicTestOp"; } |
| |
| static std::unique_ptr<GrDrawOp> Make(GrContext* context, |
| sk_sp<GrGeometryProcessor> gp, |
| const SkRect& rect, |
| GrColor color, |
| const SkMatrix& klm) { |
| GrOpMemoryPool* pool = context->contextPriv().opMemoryPool(); |
| |
| return pool->allocate<BezierConicTestOp>(std::move(gp), rect, color, klm); |
| } |
| |
| private: |
| friend class ::GrOpMemoryPool; // for ctor |
| |
| BezierConicTestOp(sk_sp<GrGeometryProcessor> gp, const SkRect& rect, GrColor color, |
| const SkMatrix& klm) |
| : INHERITED(std::move(gp), rect, color, ClassID()), fKLM(klm) {} |
| |
| struct Vertex { |
| SkPoint fPosition; |
| float fKLM[4]; // The last value is ignored. The effect expects a vec4f. |
| }; |
| |
| void onPrepareDraws(Target* target) override { |
| QuadHelper helper; |
| SkASSERT(this->gp()->debugOnly_vertexStride() == sizeof(Vertex)); |
| Vertex* verts = reinterpret_cast<Vertex*>(helper.init(target, sizeof(Vertex), 1)); |
| if (!verts) { |
| return; |
| } |
| SkRect rect = this->rect(); |
| SkPointPriv::SetRectTriStrip(&verts[0].fPosition, rect.fLeft, rect.fTop, rect.fRight, |
| rect.fBottom, sizeof(Vertex)); |
| for (int v = 0; v < 4; ++v) { |
| SkPoint3 pt3 = {verts[v].fPosition.x(), verts[v].fPosition.y(), 1.f}; |
| fKLM.mapHomogeneousPoints((SkPoint3* ) verts[v].fKLM, &pt3, 1); |
| } |
| auto pipe = this->makePipeline(target); |
| helper.recordDraw(target, this->gp(), pipe.fPipeline, pipe.fFixedDynamicState); |
| } |
| |
| SkMatrix fKLM; |
| |
| static constexpr int kVertsPerCubic = 4; |
| static constexpr int kIndicesPerCubic = 6; |
| |
| typedef BezierTestOp INHERITED; |
| }; |
| |
| |
| /** |
| * This GM directly exercises effects that draw Bezier curves in the GPU backend. |
| */ |
| class BezierConicEffects : public GM { |
| public: |
| BezierConicEffects() { |
| this->setBGColor(0xFFFFFFFF); |
| } |
| |
| protected: |
| SkString onShortName() override { |
| return SkString("bezier_conic_effects"); |
| } |
| |
| SkISize onISize() override { |
| return SkISize::Make(800, 800); |
| } |
| |
| |
| void onDraw(SkCanvas* canvas) override { |
| GrRenderTargetContext* renderTargetContext = |
| canvas->internal_private_accessTopLayerRenderTargetContext(); |
| if (!renderTargetContext) { |
| skiagm::GM::DrawGpuOnlyMessage(canvas); |
| return; |
| } |
| |
| GrContext* context = canvas->getGrContext(); |
| if (!context) { |
| return; |
| } |
| |
| struct Vertex { |
| SkPoint fPosition; |
| float fKLM[4]; // The last value is ignored. The effect expects a vec4f. |
| }; |
| |
| constexpr int kNumConics = 10; |
| SkRandom rand; |
| |
| // Mult by 3 for each edge effect type |
| int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumConics*3))); |
| int numRows = SkScalarCeilToInt(SkIntToScalar(kNumConics*3) / numCols); |
| SkScalar w = SkIntToScalar(renderTargetContext->width()) / numCols; |
| SkScalar h = SkIntToScalar(renderTargetContext->height()) / numRows; |
| int row = 0; |
| int col = 0; |
| constexpr GrColor color = 0xff000000; |
| |
| for (int i = 0; i < kNumConics; ++i) { |
| SkPoint baseControlPts[] = { |
| {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, |
| {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, |
| {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)} |
| }; |
| SkScalar weight = rand.nextRangeF(0.f, 2.f); |
| for(int edgeType = 0; edgeType < kGrClipEdgeTypeCnt; ++edgeType) { |
| sk_sp<GrGeometryProcessor> gp; |
| GrClipEdgeType et = (GrClipEdgeType)edgeType; |
| gp = GrConicEffect::Make(color, SkMatrix::I(), et, *context->contextPriv().caps(), |
| SkMatrix::I(), false); |
| if (!gp) { |
| continue; |
| } |
| |
| SkScalar x = col * w; |
| SkScalar y = row * h; |
| SkPoint controlPts[] = { |
| {x + baseControlPts[0].fX, y + baseControlPts[0].fY}, |
| {x + baseControlPts[1].fX, y + baseControlPts[1].fY}, |
| {x + baseControlPts[2].fX, y + baseControlPts[2].fY} |
| }; |
| SkConic dst[4]; |
| SkMatrix klm; |
| int cnt = chop_conic(controlPts, dst, weight); |
| GrPathUtils::getConicKLM(controlPts, weight, &klm); |
| |
| SkPaint ctrlPtPaint; |
| ctrlPtPaint.setColor(rand.nextU() | 0xFF000000); |
| for (int i = 0; i < 3; ++i) { |
| canvas->drawCircle(controlPts[i], 6.f, ctrlPtPaint); |
| } |
| |
| SkPaint polyPaint; |
| polyPaint.setColor(0xffA0A0A0); |
| polyPaint.setStrokeWidth(0); |
| polyPaint.setStyle(SkPaint::kStroke_Style); |
| canvas->drawPoints(SkCanvas::kPolygon_PointMode, 3, controlPts, polyPaint); |
| |
| SkPaint choppedPtPaint; |
| choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000); |
| |
| for (int c = 0; c < cnt; ++c) { |
| SkPoint* pts = dst[c].fPts; |
| for (int i = 0; i < 3; ++i) { |
| canvas->drawCircle(pts[i], 3.f, choppedPtPaint); |
| } |
| |
| SkRect bounds; |
| //SkPoint bPts[] = {{0.f, 0.f}, {800.f, 800.f}}; |
| //bounds.set(bPts, 2); |
| bounds.set(pts, 3); |
| |
| SkPaint boundsPaint; |
| boundsPaint.setColor(0xff808080); |
| boundsPaint.setStrokeWidth(0); |
| boundsPaint.setStyle(SkPaint::kStroke_Style); |
| canvas->drawRect(bounds, boundsPaint); |
| |
| std::unique_ptr<GrDrawOp> op = BezierConicTestOp::Make(context, gp, bounds, |
| color, klm); |
| renderTargetContext->priv().testingOnly_addDrawOp(std::move(op)); |
| } |
| ++col; |
| if (numCols == col) { |
| col = 0; |
| ++row; |
| } |
| } |
| } |
| } |
| |
| private: |
| // Uses the max curvature function for quads to estimate |
| // where to chop the conic. If the max curvature is not |
| // found along the curve segment it will return 1 and |
| // dst[0] is the original conic. If it returns 2 the dst[0] |
| // and dst[1] are the two new conics. |
| int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) { |
| SkScalar t = SkFindQuadMaxCurvature(src); |
| if (t == 0) { |
| if (dst) { |
| dst[0].set(src, weight); |
| } |
| return 1; |
| } else { |
| if (dst) { |
| SkConic conic; |
| conic.set(src, weight); |
| if (!conic.chopAt(t, dst)) { |
| dst[0].set(src, weight); |
| return 1; |
| } |
| } |
| return 2; |
| } |
| } |
| |
| // Calls split_conic on the entire conic and then once more on each subsection. |
| // Most cases will result in either 1 conic (chop point is not within t range) |
| // or 3 points (split once and then one subsection is split again). |
| int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) { |
| SkConic dstTemp[2]; |
| int conicCnt = split_conic(src, dstTemp, weight); |
| if (2 == conicCnt) { |
| int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW); |
| conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW); |
| } else { |
| dst[0] = dstTemp[0]; |
| } |
| return conicCnt; |
| } |
| |
| typedef GM INHERITED; |
| }; |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| class BezierQuadTestOp : public BezierTestOp { |
| public: |
| DEFINE_OP_CLASS_ID |
| const char* name() const override { return "BezierQuadTestOp"; } |
| |
| static std::unique_ptr<GrDrawOp> Make(GrContext* context, |
| sk_sp<GrGeometryProcessor> gp, |
| const SkRect& rect, |
| GrColor color, |
| const GrPathUtils::QuadUVMatrix& devToUV) { |
| GrOpMemoryPool* pool = context->contextPriv().opMemoryPool(); |
| |
| return pool->allocate<BezierQuadTestOp>(std::move(gp), rect, color, devToUV); |
| } |
| |
| private: |
| friend class ::GrOpMemoryPool; // for ctor |
| |
| BezierQuadTestOp(sk_sp<GrGeometryProcessor> gp, const SkRect& rect, GrColor color, |
| const GrPathUtils::QuadUVMatrix& devToUV) |
| : INHERITED(std::move(gp), rect, color, ClassID()), fDevToUV(devToUV) {} |
| |
| struct Vertex { |
| SkPoint fPosition; |
| float fKLM[4]; // The last value is ignored. The effect expects a vec4f. |
| }; |
| |
| void onPrepareDraws(Target* target) override { |
| QuadHelper helper; |
| SkASSERT(this->gp()->debugOnly_vertexStride() == sizeof(Vertex)); |
| Vertex* verts = reinterpret_cast<Vertex*>(helper.init(target, sizeof(Vertex), 1)); |
| if (!verts) { |
| return; |
| } |
| SkRect rect = this->rect(); |
| SkPointPriv::SetRectTriStrip(&verts[0].fPosition, rect, sizeof(Vertex)); |
| fDevToUV.apply<4, sizeof(Vertex), sizeof(SkPoint)>(verts); |
| auto pipe = this->makePipeline(target); |
| helper.recordDraw(target, this->gp(), pipe.fPipeline, pipe.fFixedDynamicState); |
| } |
| |
| GrPathUtils::QuadUVMatrix fDevToUV; |
| |
| static constexpr int kVertsPerCubic = 4; |
| static constexpr int kIndicesPerCubic = 6; |
| |
| typedef BezierTestOp INHERITED; |
| }; |
| |
| /** |
| * This GM directly exercises effects that draw Bezier quad curves in the GPU backend. |
| */ |
| class BezierQuadEffects : public GM { |
| public: |
| BezierQuadEffects() { |
| this->setBGColor(0xFFFFFFFF); |
| } |
| |
| protected: |
| SkString onShortName() override { |
| return SkString("bezier_quad_effects"); |
| } |
| |
| SkISize onISize() override { |
| return SkISize::Make(800, 800); |
| } |
| |
| |
| void onDraw(SkCanvas* canvas) override { |
| GrRenderTargetContext* renderTargetContext = |
| canvas->internal_private_accessTopLayerRenderTargetContext(); |
| if (!renderTargetContext) { |
| skiagm::GM::DrawGpuOnlyMessage(canvas); |
| return; |
| } |
| |
| GrContext* context = canvas->getGrContext(); |
| if (!context) { |
| return; |
| } |
| |
| struct Vertex { |
| SkPoint fPosition; |
| float fUV[4]; // The last two values are ignored. The effect expects a vec4f. |
| }; |
| |
| constexpr int kNumQuads = 5; |
| SkRandom rand; |
| |
| int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumQuads*3))); |
| int numRows = SkScalarCeilToInt(SkIntToScalar(kNumQuads*3) / numCols); |
| SkScalar w = SkIntToScalar(renderTargetContext->width()) / numCols; |
| SkScalar h = SkIntToScalar(renderTargetContext->height()) / numRows; |
| int row = 0; |
| int col = 0; |
| constexpr GrColor color = 0xff000000; |
| |
| for (int i = 0; i < kNumQuads; ++i) { |
| SkPoint baseControlPts[] = { |
| {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, |
| {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, |
| {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)} |
| }; |
| for(int edgeType = 0; edgeType < kGrClipEdgeTypeCnt; ++edgeType) { |
| sk_sp<GrGeometryProcessor> gp; |
| GrClipEdgeType et = (GrClipEdgeType)edgeType; |
| gp = GrQuadEffect::Make(color, SkMatrix::I(), et, *context->contextPriv().caps(), |
| SkMatrix::I(), false); |
| if (!gp) { |
| continue; |
| } |
| |
| SkScalar x = col * w; |
| SkScalar y = row * h; |
| SkPoint controlPts[] = { |
| {x + baseControlPts[0].fX, y + baseControlPts[0].fY}, |
| {x + baseControlPts[1].fX, y + baseControlPts[1].fY}, |
| {x + baseControlPts[2].fX, y + baseControlPts[2].fY} |
| }; |
| SkPoint chopped[5]; |
| int cnt = SkChopQuadAtMaxCurvature(controlPts, chopped); |
| |
| SkPaint ctrlPtPaint; |
| ctrlPtPaint.setColor(rand.nextU() | 0xFF000000); |
| for (int i = 0; i < 3; ++i) { |
| canvas->drawCircle(controlPts[i], 6.f, ctrlPtPaint); |
| } |
| |
| SkPaint polyPaint; |
| polyPaint.setColor(0xffA0A0A0); |
| polyPaint.setStrokeWidth(0); |
| polyPaint.setStyle(SkPaint::kStroke_Style); |
| canvas->drawPoints(SkCanvas::kPolygon_PointMode, 3, controlPts, polyPaint); |
| |
| SkPaint choppedPtPaint; |
| choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000); |
| |
| for (int c = 0; c < cnt; ++c) { |
| SkPoint* pts = chopped + 2 * c; |
| |
| for (int i = 0; i < 3; ++i) { |
| canvas->drawCircle(pts[i], 3.f, choppedPtPaint); |
| } |
| |
| SkRect bounds; |
| bounds.set(pts, 3); |
| |
| SkPaint boundsPaint; |
| boundsPaint.setColor(0xff808080); |
| boundsPaint.setStrokeWidth(0); |
| boundsPaint.setStyle(SkPaint::kStroke_Style); |
| canvas->drawRect(bounds, boundsPaint); |
| |
| GrPaint grPaint; |
| grPaint.setXPFactory(GrPorterDuffXPFactory::Get(SkBlendMode::kSrc)); |
| |
| GrPathUtils::QuadUVMatrix DevToUV(pts); |
| |
| std::unique_ptr<GrDrawOp> op = BezierQuadTestOp::Make(context, gp, |
| bounds, color, DevToUV); |
| renderTargetContext->priv().testingOnly_addDrawOp(std::move(op)); |
| } |
| ++col; |
| if (numCols == col) { |
| col = 0; |
| ++row; |
| } |
| } |
| } |
| } |
| |
| private: |
| typedef GM INHERITED; |
| }; |
| |
| DEF_GM(return new BezierCubicEffects;) |
| DEF_GM(return new BezierConicEffects;) |
| DEF_GM(return new BezierQuadEffects;) |
| } |