| /* |
| * Copyright 2020 Google LLC |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/sksl/SkSLConstantFolder.h" |
| |
| #include <limits> |
| |
| #include "include/sksl/SkSLErrorReporter.h" |
| #include "src/sksl/SkSLContext.h" |
| #include "src/sksl/ir/SkSLBinaryExpression.h" |
| #include "src/sksl/ir/SkSLBoolLiteral.h" |
| #include "src/sksl/ir/SkSLConstructor.h" |
| #include "src/sksl/ir/SkSLConstructorCompound.h" |
| #include "src/sksl/ir/SkSLConstructorSplat.h" |
| #include "src/sksl/ir/SkSLExpression.h" |
| #include "src/sksl/ir/SkSLFloatLiteral.h" |
| #include "src/sksl/ir/SkSLIntLiteral.h" |
| #include "src/sksl/ir/SkSLPrefixExpression.h" |
| #include "src/sksl/ir/SkSLType.h" |
| #include "src/sksl/ir/SkSLVariable.h" |
| #include "src/sksl/ir/SkSLVariableReference.h" |
| |
| namespace SkSL { |
| |
| static std::unique_ptr<Expression> eliminate_no_op_boolean(const Expression& left, |
| Operator op, |
| const Expression& right) { |
| SkASSERT(right.is<BoolLiteral>()); |
| bool rightVal = right.as<BoolLiteral>().value(); |
| |
| // Detect no-op Boolean expressions and optimize them away. |
| if ((op.kind() == Token::Kind::TK_LOGICALAND && rightVal) || // (expr && true) -> (expr) |
| (op.kind() == Token::Kind::TK_LOGICALOR && !rightVal) || // (expr || false) -> (expr) |
| (op.kind() == Token::Kind::TK_LOGICALXOR && !rightVal) || // (expr ^^ false) -> (expr) |
| (op.kind() == Token::Kind::TK_EQEQ && rightVal) || // (expr == true) -> (expr) |
| (op.kind() == Token::Kind::TK_NEQ && !rightVal)) { // (expr != false) -> (expr) |
| |
| return left.clone(); |
| } |
| |
| return nullptr; |
| } |
| |
| static std::unique_ptr<Expression> short_circuit_boolean(const Expression& left, |
| Operator op, |
| const Expression& right) { |
| SkASSERT(left.is<BoolLiteral>()); |
| bool leftVal = left.as<BoolLiteral>().value(); |
| |
| // When the literal is on the left, we can sometimes eliminate the other expression entirely. |
| if ((op.kind() == Token::Kind::TK_LOGICALAND && !leftVal) || // (false && expr) -> (false) |
| (op.kind() == Token::Kind::TK_LOGICALOR && leftVal)) { // (true || expr) -> (true) |
| |
| return left.clone(); |
| } |
| |
| // We can't eliminate the right-side expression via short-circuit, but we might still be able to |
| // simplify away a no-op expression. |
| return eliminate_no_op_boolean(right, op, left); |
| } |
| |
| static std::unique_ptr<Expression> simplify_vector_equality(const Context& context, |
| const Expression& left, |
| Operator op, |
| const Expression& right) { |
| if (op.kind() == Token::Kind::TK_EQEQ || op.kind() == Token::Kind::TK_NEQ) { |
| bool equality = (op.kind() == Token::Kind::TK_EQEQ); |
| |
| switch (left.compareConstant(right)) { |
| case Expression::ComparisonResult::kNotEqual: |
| equality = !equality; |
| [[fallthrough]]; |
| |
| case Expression::ComparisonResult::kEqual: |
| return BoolLiteral::Make(context, left.fOffset, equality); |
| |
| case Expression::ComparisonResult::kUnknown: |
| break; |
| } |
| } |
| return nullptr; |
| } |
| |
| // 'T' is the actual stored type of the literal data (SKSL_FLOAT or SKSL_INT). |
| // 'U' is an unsigned version of that, used to perform addition, subtraction, and multiplication, |
| // to avoid signed-integer overflow errors. This mimics the use of URESULT vs. RESULT when doing |
| // scalar folding in Simplify, later in this file. |
| template <typename T, typename U = T> |
| static std::unique_ptr<Expression> simplify_vector(const Context& context, |
| const Expression& left, |
| Operator op, |
| const Expression& right) { |
| SkASSERT(left.type().isVector()); |
| SkASSERT(left.type() == right.type()); |
| const Type& type = left.type(); |
| |
| // Handle equality operations: == != |
| if (std::unique_ptr<Expression> result = simplify_vector_equality(context, left, op, right)) { |
| return result; |
| } |
| |
| // Handle floating-point arithmetic: + - * / |
| const auto vectorComponentwiseFold = [&](auto foldFn) -> std::unique_ptr<Expression> { |
| const Type& componentType = type.componentType(); |
| ExpressionArray args; |
| args.reserve_back(type.columns()); |
| for (int i = 0; i < type.columns(); i++) { |
| U value = foldFn(left.getConstantSubexpression(i)->as<Literal<T>>().value(), |
| right.getConstantSubexpression(i)->as<Literal<T>>().value()); |
| args.push_back(Literal<T>::Make(left.fOffset, value, &componentType)); |
| } |
| return ConstructorCompound::Make(context, left.fOffset, type, std::move(args)); |
| }; |
| |
| switch (op.kind()) { |
| case Token::Kind::TK_PLUS: return vectorComponentwiseFold([](U a, U b) { return a + b; }); |
| case Token::Kind::TK_MINUS: return vectorComponentwiseFold([](U a, U b) { return a - b; }); |
| case Token::Kind::TK_STAR: return vectorComponentwiseFold([](U a, U b) { return a * b; }); |
| case Token::Kind::TK_SLASH: return vectorComponentwiseFold([](T a, T b) { return a / b; }); |
| default: |
| return nullptr; |
| } |
| } |
| |
| static std::unique_ptr<Expression> cast_expression(const Context& context, |
| const Expression& expr, |
| const Type& type) { |
| ExpressionArray ctorArgs; |
| ctorArgs.push_back(expr.clone()); |
| std::unique_ptr<Expression> ctor = Constructor::Convert(context, expr.fOffset, type, |
| std::move(ctorArgs)); |
| SkASSERT(ctor); |
| return ctor; |
| } |
| |
| static ConstructorSplat splat_scalar(const Expression& scalar, const Type& type) { |
| SkASSERT(type.isVector()); |
| SkASSERT(type.componentType() == scalar.type()); |
| |
| // Use a constructor to splat the scalar expression across a vector. |
| return ConstructorSplat{scalar.fOffset, type, scalar.clone()}; |
| } |
| |
| bool ConstantFolder::GetConstantInt(const Expression& value, SKSL_INT* out) { |
| const Expression* expr = GetConstantValueForVariable(value); |
| if (!expr->is<IntLiteral>()) { |
| return false; |
| } |
| *out = expr->as<IntLiteral>().value(); |
| return true; |
| } |
| |
| bool ConstantFolder::GetConstantFloat(const Expression& value, SKSL_FLOAT* out) { |
| const Expression* expr = GetConstantValueForVariable(value); |
| if (!expr->is<FloatLiteral>()) { |
| return false; |
| } |
| *out = expr->as<FloatLiteral>().value(); |
| return true; |
| } |
| |
| static bool is_constant_scalar_value(const Expression& inExpr, float match) { |
| const Expression* expr = ConstantFolder::GetConstantValueForVariable(inExpr); |
| return (expr->is<IntLiteral>() && expr->as<IntLiteral>().value() == match) || |
| (expr->is<FloatLiteral>() && expr->as<FloatLiteral>().value() == match); |
| } |
| |
| static bool contains_constant_zero(const Expression& expr) { |
| int numSlots = expr.type().slotCount(); |
| for (int index = 0; index < numSlots; ++index) { |
| const Expression* subexpr = expr.getConstantSubexpression(index); |
| if (subexpr && is_constant_scalar_value(*subexpr, 0.0f)) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static bool is_constant_value(const Expression& expr, float value) { |
| int numSlots = expr.type().slotCount(); |
| for (int index = 0; index < numSlots; ++index) { |
| const Expression* subexpr = expr.getConstantSubexpression(index); |
| if (!subexpr || !is_constant_scalar_value(*subexpr, value)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool ConstantFolder::ErrorOnDivideByZero(const Context& context, int offset, Operator op, |
| const Expression& right) { |
| switch (op.kind()) { |
| case Token::Kind::TK_SLASH: |
| case Token::Kind::TK_SLASHEQ: |
| case Token::Kind::TK_PERCENT: |
| case Token::Kind::TK_PERCENTEQ: |
| if (contains_constant_zero(right)) { |
| context.fErrors->error(offset, "division by zero"); |
| return true; |
| } |
| return false; |
| default: |
| return false; |
| } |
| } |
| |
| const Expression* ConstantFolder::GetConstantValueForVariable(const Expression& inExpr) { |
| for (const Expression* expr = &inExpr;;) { |
| if (!expr->is<VariableReference>()) { |
| break; |
| } |
| const VariableReference& varRef = expr->as<VariableReference>(); |
| if (varRef.refKind() != VariableRefKind::kRead) { |
| break; |
| } |
| const Variable& var = *varRef.variable(); |
| if (!(var.modifiers().fFlags & Modifiers::kConst_Flag)) { |
| break; |
| } |
| expr = var.initialValue(); |
| if (!expr) { |
| // Function parameters can be const but won't have an initial value. |
| break; |
| } |
| if (expr->isCompileTimeConstant()) { |
| return expr; |
| } |
| } |
| // We didn't find a compile-time constant at the end. Return the expression as-is. |
| return &inExpr; |
| } |
| |
| std::unique_ptr<Expression> ConstantFolder::MakeConstantValueForVariable( |
| std::unique_ptr<Expression> expr) { |
| const Expression* constantExpr = GetConstantValueForVariable(*expr); |
| if (constantExpr != expr.get()) { |
| expr = constantExpr->clone(); |
| } |
| return expr; |
| } |
| |
| static std::unique_ptr<Expression> simplify_no_op_arithmetic(const Context& context, |
| const Expression& left, |
| Operator op, |
| const Expression& right, |
| const Type& resultType) { |
| switch (op.kind()) { |
| case Token::Kind::TK_PLUS: |
| if (is_constant_value(right, 0.0)) { // x + 0 |
| return cast_expression(context, left, resultType); |
| } |
| if (is_constant_value(left, 0.0)) { // 0 + x |
| return cast_expression(context, right, resultType); |
| } |
| break; |
| |
| case Token::Kind::TK_STAR: |
| if (is_constant_value(right, 1.0)) { // x * 1 |
| return cast_expression(context, left, resultType); |
| } |
| if (is_constant_value(left, 1.0)) { // 1 * x |
| return cast_expression(context, right, resultType); |
| } |
| if (is_constant_value(right, 0.0) && !left.hasSideEffects()) { // x * 0 |
| return cast_expression(context, right, resultType); |
| } |
| if (is_constant_value(left, 0.0) && !right.hasSideEffects()) { // 0 * x |
| return cast_expression(context, left, resultType); |
| } |
| break; |
| |
| case Token::Kind::TK_MINUS: |
| if (is_constant_value(right, 0.0)) { // x - 0 |
| return cast_expression(context, left, resultType); |
| } |
| if (is_constant_value(left, 0.0)) { // 0 - x (to `-x`) |
| return PrefixExpression::Make(context, Token::Kind::TK_MINUS, |
| cast_expression(context, right, resultType)); |
| } |
| break; |
| |
| case Token::Kind::TK_SLASH: |
| if (is_constant_value(right, 1.0)) { // x / 1 |
| return cast_expression(context, left, resultType); |
| } |
| break; |
| |
| case Token::Kind::TK_PLUSEQ: |
| case Token::Kind::TK_MINUSEQ: |
| if (is_constant_value(right, 0.0)) { // x += 0, x -= 0 |
| std::unique_ptr<Expression> result = cast_expression(context, left, resultType); |
| Analysis::UpdateRefKind(result.get(), VariableRefKind::kRead); |
| return result; |
| } |
| break; |
| |
| case Token::Kind::TK_STAREQ: |
| case Token::Kind::TK_SLASHEQ: |
| if (is_constant_value(right, 1.0)) { // x *= 1, x /= 1 |
| std::unique_ptr<Expression> result = cast_expression(context, left, resultType); |
| Analysis::UpdateRefKind(result.get(), VariableRefKind::kRead); |
| return result; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| return nullptr; |
| } |
| |
| template <typename T> |
| static std::unique_ptr<Expression> fold_float_expression(int offset, |
| T result, |
| const Type* resultType) { |
| // If constant-folding this expression would generate a NaN/infinite result, leave it as-is. |
| if constexpr (!std::is_same<T, bool>::value) { |
| if (!std::isfinite(result)) { |
| return nullptr; |
| } |
| } |
| |
| return Literal<T>::Make(offset, result, resultType); |
| } |
| |
| template <typename T> |
| static std::unique_ptr<Expression> fold_int_expression(int offset, |
| T result, |
| const Type* resultType) { |
| // If constant-folding this expression would overflow the result type, leave it as-is. |
| if constexpr (!std::is_same<T, bool>::value) { |
| if (result < resultType->minimumValue() || result > resultType->maximumValue()) { |
| return nullptr; |
| } |
| } |
| |
| return Literal<T>::Make(offset, result, resultType); |
| } |
| |
| std::unique_ptr<Expression> ConstantFolder::Simplify(const Context& context, |
| int offset, |
| const Expression& leftExpr, |
| Operator op, |
| const Expression& rightExpr, |
| const Type& resultType) { |
| // When optimization is enabled, replace constant variables with trivial initial-values. |
| const Expression* left; |
| const Expression* right; |
| if (context.fConfig->fSettings.fOptimize) { |
| left = GetConstantValueForVariable(leftExpr); |
| right = GetConstantValueForVariable(rightExpr); |
| } else { |
| left = &leftExpr; |
| right = &rightExpr; |
| } |
| |
| // If this is the comma operator, the left side is evaluated but not otherwise used in any way. |
| // So if the left side has no side effects, it can just be eliminated entirely. |
| if (op.kind() == Token::Kind::TK_COMMA && !left->hasSideEffects()) { |
| return right->clone(); |
| } |
| |
| // If this is the assignment operator, and both sides are the same trivial expression, this is |
| // self-assignment (i.e., `var = var`) and can be reduced to just a variable reference (`var`). |
| // This can happen when other parts of the assignment are optimized away. |
| if (op.kind() == Token::Kind::TK_EQ && Analysis::IsSameExpressionTree(*left, *right)) { |
| return right->clone(); |
| } |
| |
| // Simplify the expression when both sides are constant Boolean literals. |
| if (left->is<BoolLiteral>() && right->is<BoolLiteral>()) { |
| bool leftVal = left->as<BoolLiteral>().value(); |
| bool rightVal = right->as<BoolLiteral>().value(); |
| bool result; |
| switch (op.kind()) { |
| case Token::Kind::TK_LOGICALAND: result = leftVal && rightVal; break; |
| case Token::Kind::TK_LOGICALOR: result = leftVal || rightVal; break; |
| case Token::Kind::TK_LOGICALXOR: result = leftVal ^ rightVal; break; |
| case Token::Kind::TK_EQEQ: result = leftVal == rightVal; break; |
| case Token::Kind::TK_NEQ: result = leftVal != rightVal; break; |
| default: return nullptr; |
| } |
| return BoolLiteral::Make(context, offset, result); |
| } |
| |
| // If the left side is a Boolean literal, apply short-circuit optimizations. |
| if (left->is<BoolLiteral>()) { |
| return short_circuit_boolean(*left, op, *right); |
| } |
| |
| // If the right side is a Boolean literal... |
| if (right->is<BoolLiteral>()) { |
| // ... and the left side has no side effects... |
| if (!left->hasSideEffects()) { |
| // We can reverse the expressions and short-circuit optimizations are still valid. |
| return short_circuit_boolean(*right, op, *left); |
| } |
| |
| // We can't use short-circuiting, but we can still optimize away no-op Boolean expressions. |
| return eliminate_no_op_boolean(*left, op, *right); |
| } |
| |
| if (op.kind() == Token::Kind::TK_EQEQ && Analysis::IsSameExpressionTree(*left, *right)) { |
| // With == comparison, if both sides are the same trivial expression, this is self- |
| // comparison and is always true. (We are not concerned with NaN.) |
| return BoolLiteral::Make(context, leftExpr.fOffset, /*value=*/true); |
| } |
| |
| if (op.kind() == Token::Kind::TK_NEQ && Analysis::IsSameExpressionTree(*left, *right)) { |
| // With != comparison, if both sides are the same trivial expression, this is self- |
| // comparison and is always false. (We are not concerned with NaN.) |
| return BoolLiteral::Make(context, leftExpr.fOffset, /*value=*/false); |
| } |
| |
| if (ErrorOnDivideByZero(context, offset, op, *right)) { |
| return nullptr; |
| } |
| |
| // Optimize away no-op arithmetic like `x * 1`, `x *= 1`, `x + 0`, `x * 0`, `0 / x`, etc. |
| const Type& leftType = left->type(); |
| const Type& rightType = right->type(); |
| if ((leftType.isScalar() || leftType.isVector()) && |
| (rightType.isScalar() || rightType.isVector())) { |
| std::unique_ptr<Expression> expr = simplify_no_op_arithmetic(context, *left, op, *right, |
| resultType); |
| if (expr) { |
| return expr; |
| } |
| } |
| |
| // Other than the cases above, constant folding requires both sides to be constant. |
| if (!left->isCompileTimeConstant() || !right->isCompileTimeConstant()) { |
| return nullptr; |
| } |
| |
| // Note that we expressly do not worry about precision and overflow here -- we use the maximum |
| // precision to calculate the results and hope the result makes sense. |
| // TODO(skia:10932): detect and handle integer overflow properly. |
| using SKSL_UINT = uint64_t; |
| if (left->is<IntLiteral>() && right->is<IntLiteral>()) { |
| SKSL_INT leftVal = left->as<IntLiteral>().value(); |
| SKSL_INT rightVal = right->as<IntLiteral>().value(); |
| |
| #define RESULT(Op) fold_int_expression(offset, \ |
| (SKSL_INT)(leftVal) Op (SKSL_INT)(rightVal), &resultType) |
| #define URESULT(Op) fold_int_expression(offset, \ |
| (SKSL_INT)((SKSL_UINT)(leftVal) Op (SKSL_UINT)(rightVal)), &resultType) |
| switch (op.kind()) { |
| case Token::Kind::TK_PLUS: return URESULT(+); |
| case Token::Kind::TK_MINUS: return URESULT(-); |
| case Token::Kind::TK_STAR: return URESULT(*); |
| case Token::Kind::TK_SLASH: |
| if (leftVal == std::numeric_limits<SKSL_INT>::min() && rightVal == -1) { |
| context.fErrors->error(offset, "arithmetic overflow"); |
| return nullptr; |
| } |
| return RESULT(/); |
| case Token::Kind::TK_PERCENT: |
| if (leftVal == std::numeric_limits<SKSL_INT>::min() && rightVal == -1) { |
| context.fErrors->error(offset, "arithmetic overflow"); |
| return nullptr; |
| } |
| return RESULT(%); |
| case Token::Kind::TK_BITWISEAND: return RESULT(&); |
| case Token::Kind::TK_BITWISEOR: return RESULT(|); |
| case Token::Kind::TK_BITWISEXOR: return RESULT(^); |
| case Token::Kind::TK_EQEQ: return RESULT(==); |
| case Token::Kind::TK_NEQ: return RESULT(!=); |
| case Token::Kind::TK_GT: return RESULT(>); |
| case Token::Kind::TK_GTEQ: return RESULT(>=); |
| case Token::Kind::TK_LT: return RESULT(<); |
| case Token::Kind::TK_LTEQ: return RESULT(<=); |
| case Token::Kind::TK_SHL: |
| if (rightVal >= 0 && rightVal <= 31) { |
| // Left-shifting a negative (or really, any signed) value is undefined behavior |
| // in C++, but not GLSL. Do the shift on unsigned values, to avoid UBSAN. |
| return URESULT(<<); |
| } |
| context.fErrors->error(offset, "shift value out of range"); |
| return nullptr; |
| case Token::Kind::TK_SHR: |
| if (rightVal >= 0 && rightVal <= 31) { |
| return RESULT(>>); |
| } |
| context.fErrors->error(offset, "shift value out of range"); |
| return nullptr; |
| |
| default: |
| return nullptr; |
| } |
| #undef RESULT |
| #undef URESULT |
| } |
| |
| // Perform constant folding on pairs of floating-point literals. |
| if (left->is<FloatLiteral>() && right->is<FloatLiteral>()) { |
| SKSL_FLOAT leftVal = left->as<FloatLiteral>().value(); |
| SKSL_FLOAT rightVal = right->as<FloatLiteral>().value(); |
| |
| #define RESULT(Op) fold_float_expression(offset, leftVal Op rightVal, &resultType) |
| switch (op.kind()) { |
| case Token::Kind::TK_PLUS: return RESULT(+); |
| case Token::Kind::TK_MINUS: return RESULT(-); |
| case Token::Kind::TK_STAR: return RESULT(*); |
| case Token::Kind::TK_SLASH: return RESULT(/); |
| case Token::Kind::TK_EQEQ: return RESULT(==); |
| case Token::Kind::TK_NEQ: return RESULT(!=); |
| case Token::Kind::TK_GT: return RESULT(>); |
| case Token::Kind::TK_GTEQ: return RESULT(>=); |
| case Token::Kind::TK_LT: return RESULT(<); |
| case Token::Kind::TK_LTEQ: return RESULT(<=); |
| default: return nullptr; |
| } |
| #undef RESULT |
| } |
| |
| // Perform constant folding on pairs of vectors. |
| if (leftType.isVector() && leftType == rightType) { |
| if (leftType.componentType().isFloat()) { |
| return simplify_vector<SKSL_FLOAT>(context, *left, op, *right); |
| } |
| if (leftType.componentType().isInteger()) { |
| return simplify_vector<SKSL_INT, SKSL_UINT>(context, *left, op, *right); |
| } |
| if (leftType.componentType().isBoolean()) { |
| return simplify_vector_equality(context, *left, op, *right); |
| } |
| return nullptr; |
| } |
| |
| // Perform constant folding on vectors against scalars, e.g.: half4(2) + 2 |
| if (leftType.isVector() && leftType.componentType() == rightType) { |
| if (rightType.isFloat()) { |
| return simplify_vector<SKSL_FLOAT>(context, *left, op, |
| splat_scalar(*right, left->type())); |
| } |
| if (rightType.isInteger()) { |
| return simplify_vector<SKSL_INT, SKSL_UINT>(context, *left, op, |
| splat_scalar(*right, left->type())); |
| } |
| if (rightType.isBoolean()) { |
| return simplify_vector_equality(context, *left, op, |
| splat_scalar(*right, left->type())); |
| } |
| return nullptr; |
| } |
| |
| // Perform constant folding on scalars against vectors, e.g.: 2 + half4(2) |
| if (rightType.isVector() && rightType.componentType() == leftType) { |
| if (leftType.isFloat()) { |
| return simplify_vector<SKSL_FLOAT>(context, splat_scalar(*left, right->type()), op, |
| *right); |
| } |
| if (leftType.isInteger()) { |
| return simplify_vector<SKSL_INT, SKSL_UINT>(context, splat_scalar(*left, right->type()), |
| op, *right); |
| } |
| if (leftType.isBoolean()) { |
| return simplify_vector_equality(context, splat_scalar(*left, right->type()), |
| op, *right); |
| } |
| return nullptr; |
| } |
| |
| // Perform constant folding on pairs of matrices or arrays. |
| if ((leftType.isMatrix() && rightType.isMatrix()) || |
| (leftType.isArray() && rightType.isArray())) { |
| bool equality; |
| switch (op.kind()) { |
| case Token::Kind::TK_EQEQ: |
| equality = true; |
| break; |
| case Token::Kind::TK_NEQ: |
| equality = false; |
| break; |
| default: |
| return nullptr; |
| } |
| |
| switch (left->compareConstant(*right)) { |
| case Expression::ComparisonResult::kNotEqual: |
| equality = !equality; |
| [[fallthrough]]; |
| |
| case Expression::ComparisonResult::kEqual: |
| return BoolLiteral::Make(context, offset, equality); |
| |
| case Expression::ComparisonResult::kUnknown: |
| return nullptr; |
| } |
| } |
| |
| // We aren't able to constant-fold. |
| return nullptr; |
| } |
| |
| } // namespace SkSL |