blob: a628febb6962336b0165dd750a1577f76686e5d1 [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrGLProgramBuilder.h"
#include "gl/GrGLProgram.h"
#include "gl/GrGLSLPrettyPrint.h"
#include "gl/GrGLUniformHandle.h"
#include "../GrGpuGL.h"
#include "GrCoordTransform.h"
#include "GrGLLegacyNvprProgramBuilder.h"
#include "GrGLNvprProgramBuilder.h"
#include "GrGLProgramBuilder.h"
#include "GrTexture.h"
#include "SkRTConf.h"
#include "SkTraceEvent.h"
#define GL_CALL(X) GR_GL_CALL(this->gpu()->glInterface(), X)
#define GL_CALL_RET(R, X) GR_GL_CALL_RET(this->gpu()->glInterface(), R, X)
// ES2 FS only guarantees mediump and lowp support
static const GrGLShaderVar::Precision kDefaultFragmentPrecision = GrGLShaderVar::kMedium_Precision;
//////////////////////////////////////////////////////////////////////////////
const int GrGLProgramBuilder::kVarsPerBlock = 8;
GrGLProgram* GrGLProgramBuilder::CreateProgram(const GrOptDrawState& optState,
const GrGLProgramDesc& desc,
GrGpu::DrawType drawType,
GrGpuGL* gpu) {
// create a builder. This will be handed off to effects so they can use it to add
// uniforms, varyings, textures, etc
SkAutoTDelete<GrGLProgramBuilder> builder(CreateProgramBuilder(desc,
optState,
drawType,
optState.hasGeometryProcessor(),
gpu));
GrGLProgramBuilder* pb = builder.get();
const GrGLProgramDesc::KeyHeader& header = pb->header();
// emit code to read the dst copy texture, if necessary
if (GrGLFragmentShaderBuilder::kNoDstRead_DstReadKey != header.fDstReadKey
&& !gpu->glCaps().fbFetchSupport()) {
pb->fFS.emitCodeToReadDstTexture();
}
// get the initial color and coverage to feed into the first effect in each effect chain
GrGLSLExpr4 inputColor, inputCoverage;
pb->setupUniformColorAndCoverageIfNeeded(&inputColor, &inputCoverage);
// if we have a vertex shader(we don't only if we are using NVPR or NVPR ES), then we may have
// to setup a few more things like builtin vertex attributes
bool hasVertexShader = !header.fUseFragShaderOnly;
if (hasVertexShader) {
pb->fVS.setupLocalCoords();
pb->fVS.transformGLToSkiaCoords();
if (header.fEmitsPointSize) {
pb->fVS.codeAppend("gl_PointSize = 1.0;");
}
if (GrGLProgramDesc::kAttribute_ColorInput == header.fColorInput) {
pb->fVS.setupBuiltinVertexAttribute("Color", &inputColor);
}
if (GrGLProgramDesc::kAttribute_ColorInput == header.fCoverageInput) {
pb->fVS.setupBuiltinVertexAttribute("Coverage", &inputCoverage);
}
}
pb->emitAndInstallProcs(optState, &inputColor, &inputCoverage);
if (hasVertexShader) {
pb->fVS.transformSkiaToGLCoords();
}
// write the secondary color output if necessary
if (GrOptDrawState::kNone_SecondaryOutputType != header.fSecondaryOutputType) {
pb->fFS.enableSecondaryOutput(inputColor, inputCoverage);
}
pb->fFS.combineColorAndCoverage(inputColor, inputCoverage);
return pb->finalize();
}
GrGLProgramBuilder*
GrGLProgramBuilder::CreateProgramBuilder(const GrGLProgramDesc& desc,
const GrOptDrawState& optState,
GrGpu::DrawType drawType,
bool hasGeometryProcessor,
GrGpuGL* gpu) {
if (desc.getHeader().fUseFragShaderOnly) {
SkASSERT(gpu->glCaps().pathRenderingSupport());
SkASSERT(gpu->glPathRendering()->texturingMode() ==
GrGLPathRendering::FixedFunction_TexturingMode);
SkASSERT(!hasGeometryProcessor);
return SkNEW_ARGS(GrGLLegacyNvprProgramBuilder, (gpu, optState, desc));
} else if (GrGpu::IsPathRenderingDrawType(drawType)) {
SkASSERT(gpu->glCaps().pathRenderingSupport());
SkASSERT(gpu->glPathRendering()->texturingMode() ==
GrGLPathRendering::SeparableShaders_TexturingMode);
SkASSERT(!hasGeometryProcessor);
return SkNEW_ARGS(GrGLNvprProgramBuilder, (gpu, optState, desc));
} else {
return SkNEW_ARGS(GrGLProgramBuilder, (gpu, optState, desc));
}
}
/////////////////////////////////////////////////////////////////////////////
GrGLProgramBuilder::GrGLProgramBuilder(GrGpuGL* gpu,
const GrOptDrawState& optState,
const GrGLProgramDesc& desc)
: fVS(this)
, fGS(this)
, fFS(this, desc)
, fOutOfStage(true)
, fStageIndex(-1)
, fGeometryProcessor(NULL)
, fOptState(optState)
, fDesc(desc)
, fGpu(gpu)
, fUniforms(kVarsPerBlock) {
}
void GrGLProgramBuilder::addVarying(GrSLType type,
const char* name,
const char** vsOutName,
const char** fsInName,
GrGLShaderVar::Precision fsPrecision) {
SkString* fsInputName = fVS.addVarying(type, name, vsOutName);
fFS.addVarying(type, fsInputName->c_str(), fsInName, fsPrecision);
}
void GrGLProgramBuilder::nameVariable(SkString* out, char prefix, const char* name) {
if ('\0' == prefix) {
*out = name;
} else {
out->printf("%c%s", prefix, name);
}
if (!fOutOfStage) {
if (out->endsWith('_')) {
// Names containing "__" are reserved.
out->append("x");
}
out->appendf("_Stage%d", fStageIndex);
}
}
GrGLProgramDataManager::UniformHandle GrGLProgramBuilder::addUniformArray(uint32_t visibility,
GrSLType type,
const char* name,
int count,
const char** outName) {
SkASSERT(name && strlen(name));
SkDEBUGCODE(static const uint32_t kVisibilityMask = kVertex_Visibility | kFragment_Visibility);
SkASSERT(0 == (~kVisibilityMask & visibility));
SkASSERT(0 != visibility);
UniformInfo& uni = fUniforms.push_back();
uni.fVariable.setType(type);
uni.fVariable.setTypeModifier(GrGLShaderVar::kUniform_TypeModifier);
this->nameVariable(uni.fVariable.accessName(), 'u', name);
uni.fVariable.setArrayCount(count);
uni.fVisibility = visibility;
// If it is visible in both the VS and FS, the precision must match.
// We declare a default FS precision, but not a default VS. So set the var
// to use the default FS precision.
if ((kVertex_Visibility | kFragment_Visibility) == visibility) {
// the fragment and vertex precisions must match
uni.fVariable.setPrecision(kDefaultFragmentPrecision);
}
if (outName) {
*outName = uni.fVariable.c_str();
}
return GrGLProgramDataManager::UniformHandle::CreateFromUniformIndex(fUniforms.count() - 1);
}
void GrGLProgramBuilder::appendUniformDecls(ShaderVisibility visibility,
SkString* out) const {
for (int i = 0; i < fUniforms.count(); ++i) {
if (fUniforms[i].fVisibility & visibility) {
fUniforms[i].fVariable.appendDecl(this->ctxInfo(), out);
out->append(";\n");
}
}
}
const GrGLContextInfo& GrGLProgramBuilder::ctxInfo() const {
return fGpu->ctxInfo();
}
void GrGLProgramBuilder::setupUniformColorAndCoverageIfNeeded(GrGLSLExpr4* inputColor,
GrGLSLExpr4* inputCoverage) {
const GrGLProgramDesc::KeyHeader& header = this->header();
if (GrGLProgramDesc::kUniform_ColorInput == header.fColorInput) {
const char* name;
fUniformHandles.fColorUni =
this->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec4f_GrSLType,
"Color",
&name);
*inputColor = GrGLSLExpr4(name);
} else if (GrGLProgramDesc::kAllOnes_ColorInput == header.fColorInput) {
*inputColor = GrGLSLExpr4(1);
}
if (GrGLProgramDesc::kUniform_ColorInput == header.fCoverageInput) {
const char* name;
fUniformHandles.fCoverageUni =
this->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec4f_GrSLType,
"Coverage",
&name);
*inputCoverage = GrGLSLExpr4(name);
} else if (GrGLProgramDesc::kAllOnes_ColorInput == header.fCoverageInput) {
*inputCoverage = GrGLSLExpr4(1);
}
}
void GrGLProgramBuilder::emitAndInstallProcs(const GrOptDrawState& optState,
GrGLSLExpr4* inputColor,
GrGLSLExpr4* inputCoverage) {
fFragmentProcessors.reset(SkNEW(GrGLInstalledFragProcs));
int numProcs = optState.numFragmentStages();
this->emitAndInstallFragProcs(0, optState.numColorStages(), inputColor);
if (optState.hasGeometryProcessor()) {
const GrGeometryProcessor& gp = *optState.getGeometryProcessor();
fVS.emitAttributes(gp);
ProcKeyProvider keyProvider(&fDesc, ProcKeyProvider::kGeometry_ProcessorType);
GrGLSLExpr4 output;
this->emitAndInstallProc<GrGeometryProcessor>(gp, 0, keyProvider, *inputCoverage, &output);
*inputCoverage = output;
}
this->emitAndInstallFragProcs(optState.numColorStages(), numProcs, inputCoverage);
}
void GrGLProgramBuilder::emitAndInstallFragProcs(int procOffset, int numProcs, GrGLSLExpr4* inOut) {
ProcKeyProvider keyProvider(&fDesc, ProcKeyProvider::kFragment_ProcessorType);
for (int e = procOffset; e < numProcs; ++e) {
GrGLSLExpr4 output;
const GrFragmentStage& stage = fOptState.getFragmentStage(e);
this->emitAndInstallProc<GrFragmentStage>(stage, e, keyProvider, *inOut, &output);
*inOut = output;
}
}
// TODO Processors cannot output zeros because an empty string is all 1s
// the fix is to allow effects to take the GrGLSLExpr4 directly
template <class Proc>
void GrGLProgramBuilder::emitAndInstallProc(const Proc& proc,
int index,
const ProcKeyProvider keyProvider,
const GrGLSLExpr4& input,
GrGLSLExpr4* output) {
// Program builders have a bit of state we need to clear with each effect
AutoStageAdvance adv(this);
// create var to hold stage result
SkString outColorName;
this->nameVariable(&outColorName, '\0', "output");
fFS.codeAppendf("vec4 %s;", outColorName.c_str());
*output = outColorName;
// Enclose custom code in a block to avoid namespace conflicts
SkString openBrace;
openBrace.printf("{ // Stage %d\n", fStageIndex);
fFS.codeAppend(openBrace.c_str());
this->emitAndInstallProc(proc, keyProvider.get(index), output->c_str(),
input.isOnes() ? NULL : input.c_str());
fFS.codeAppend("}");
}
void GrGLProgramBuilder::emitAndInstallProc(const GrFragmentStage& fs,
const GrProcessorKey& key,
const char* outColor,
const char* inColor) {
GrGLInstalledFragProc* ifp = SkNEW_ARGS(GrGLInstalledFragProc, (fVS.hasLocalCoords()));
const GrFragmentProcessor& fp = *fs.getProcessor();
ifp->fGLProc.reset(fp.getFactory().createGLInstance(fp));
SkSTArray<4, GrGLProcessor::TextureSampler> samplers(fp.numTextures());
this->emitSamplers(fp, &samplers, ifp);
// Fragment processors can have coord transforms
SkSTArray<2, GrGLProcessor::TransformedCoords> coords(fp.numTransforms());
this->emitTransforms(fs, &coords, ifp);
ifp->fGLProc->emitCode(this, fp, key, outColor, inColor, coords, samplers);
// We have to check that effects and the code they emit are consistent, ie if an effect
// asks for dst color, then the emit code needs to follow suit
verify(fp);
fFragmentProcessors->fProcs.push_back(ifp);
}
void GrGLProgramBuilder::emitAndInstallProc(const GrGeometryProcessor& gp,
const GrProcessorKey& key,
const char* outColor,
const char* inColor) {
SkASSERT(!fGeometryProcessor);
fGeometryProcessor = SkNEW(GrGLInstalledGeoProc);
fGeometryProcessor->fGLProc.reset(gp.getFactory().createGLInstance(gp));
SkSTArray<4, GrGLProcessor::TextureSampler> samplers(gp.numTextures());
this->emitSamplers(gp, &samplers, fGeometryProcessor);
GrGLGeometryProcessor::EmitArgs args(this, gp, key, outColor, inColor, samplers);
fGeometryProcessor->fGLProc->emitCode(args);
// We have to check that effects and the code they emit are consistent, ie if an effect
// asks for dst color, then the emit code needs to follow suit
verify(gp);
}
void GrGLProgramBuilder::verify(const GrGeometryProcessor& gp) {
SkASSERT(fFS.hasReadFragmentPosition() == gp.willReadFragmentPosition());
}
void GrGLProgramBuilder::verify(const GrFragmentProcessor& fp) {
SkASSERT(fFS.hasReadFragmentPosition() == fp.willReadFragmentPosition());
SkASSERT(fFS.hasReadDstColor() == fp.willReadDstColor());
}
void GrGLProgramBuilder::emitTransforms(const GrFragmentStage& effectStage,
GrGLProcessor::TransformedCoordsArray* outCoords,
GrGLInstalledFragProc* ifp) {
const GrFragmentProcessor* effect = effectStage.getProcessor();
int numTransforms = effect->numTransforms();
ifp->fTransforms.push_back_n(numTransforms);
for (int t = 0; t < numTransforms; t++) {
const char* uniName = "StageMatrix";
GrSLType varyingType =
effectStage.isPerspectiveCoordTransform(t, fVS.hasLocalCoords()) ?
kVec3f_GrSLType :
kVec2f_GrSLType;
SkString suffixedUniName;
if (0 != t) {
suffixedUniName.append(uniName);
suffixedUniName.appendf("_%i", t);
uniName = suffixedUniName.c_str();
}
ifp->fTransforms[t].fHandle = this->addUniform(GrGLProgramBuilder::kVertex_Visibility,
kMat33f_GrSLType,
uniName,
&uniName).toShaderBuilderIndex();
const char* varyingName = "MatrixCoord";
SkString suffixedVaryingName;
if (0 != t) {
suffixedVaryingName.append(varyingName);
suffixedVaryingName.appendf("_%i", t);
varyingName = suffixedVaryingName.c_str();
}
const char* vsVaryingName;
const char* fsVaryingName;
this->addVarying(varyingType, varyingName, &vsVaryingName, &fsVaryingName);
const GrGLShaderVar& coords =
kPosition_GrCoordSet == effect->coordTransform(t).sourceCoords() ?
fVS.positionAttribute() :
fVS.localCoordsAttribute();
// varying = matrix * coords (logically)
SkASSERT(kVec2f_GrSLType == varyingType || kVec3f_GrSLType == varyingType);
if (kVec2f_GrSLType == varyingType) {
fVS.codeAppendf("%s = (%s * vec3(%s, 1)).xy;",
vsVaryingName, uniName, coords.c_str());
} else {
fVS.codeAppendf("%s = %s * vec3(%s, 1);",
vsVaryingName, uniName, coords.c_str());
}
SkNEW_APPEND_TO_TARRAY(outCoords, GrGLProcessor::TransformedCoords,
(SkString(fsVaryingName), varyingType));
}
}
void GrGLProgramBuilder::emitSamplers(const GrProcessor& processor,
GrGLProcessor::TextureSamplerArray* outSamplers,
GrGLInstalledProc* ip) {
int numTextures = processor.numTextures();
ip->fSamplers.push_back_n(numTextures);
SkString name;
for (int t = 0; t < numTextures; ++t) {
name.printf("Sampler%d", t);
ip->fSamplers[t].fUniform = this->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kSampler2D_GrSLType,
name.c_str());
SkNEW_APPEND_TO_TARRAY(outSamplers, GrGLProcessor::TextureSampler,
(ip->fSamplers[t].fUniform, processor.textureAccess(t)));
}
}
GrGLProgram* GrGLProgramBuilder::finalize() {
// verify we can get a program id
GrGLuint programID;
GL_CALL_RET(programID, CreateProgram());
if (0 == programID) {
return NULL;
}
// compile shaders and bind attributes / uniforms
SkTDArray<GrGLuint> shadersToDelete;
if (!fFS.compileAndAttachShaders(programID, &shadersToDelete)) {
this->cleanupProgram(programID, shadersToDelete);
return NULL;
}
if (!this->header().fUseFragShaderOnly) {
if (!fVS.compileAndAttachShaders(programID, &shadersToDelete)) {
this->cleanupProgram(programID, shadersToDelete);
return NULL;
}
fVS.bindVertexAttributes(programID);
}
bool usingBindUniform = fGpu->glInterface()->fFunctions.fBindUniformLocation != NULL;
if (usingBindUniform) {
this->bindUniformLocations(programID);
}
fFS.bindFragmentShaderLocations(programID);
GL_CALL(LinkProgram(programID));
// Calling GetProgramiv is expensive in Chromium. Assume success in release builds.
bool checkLinked = !fGpu->ctxInfo().isChromium();
#ifdef SK_DEBUG
checkLinked = true;
#endif
if (checkLinked) {
checkLinkStatus(programID);
}
if (!usingBindUniform) {
this->resolveUniformLocations(programID);
}
this->cleanupShaders(shadersToDelete);
return this->createProgram(programID);
}
void GrGLProgramBuilder::bindUniformLocations(GrGLuint programID) {
int count = fUniforms.count();
for (int i = 0; i < count; ++i) {
GL_CALL(BindUniformLocation(programID, i, fUniforms[i].fVariable.c_str()));
fUniforms[i].fLocation = i;
}
}
bool GrGLProgramBuilder::checkLinkStatus(GrGLuint programID) {
GrGLint linked = GR_GL_INIT_ZERO;
GL_CALL(GetProgramiv(programID, GR_GL_LINK_STATUS, &linked));
if (!linked) {
GrGLint infoLen = GR_GL_INIT_ZERO;
GL_CALL(GetProgramiv(programID, GR_GL_INFO_LOG_LENGTH, &infoLen));
SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger
if (infoLen > 0) {
// retrieve length even though we don't need it to workaround
// bug in chrome cmd buffer param validation.
GrGLsizei length = GR_GL_INIT_ZERO;
GL_CALL(GetProgramInfoLog(programID,
infoLen+1,
&length,
(char*)log.get()));
GrPrintf((char*)log.get());
}
SkDEBUGFAIL("Error linking program");
GL_CALL(DeleteProgram(programID));
programID = 0;
}
return SkToBool(linked);
}
void GrGLProgramBuilder::resolveUniformLocations(GrGLuint programID) {
int count = fUniforms.count();
for (int i = 0; i < count; ++i) {
GrGLint location;
GL_CALL_RET(location, GetUniformLocation(programID, fUniforms[i].fVariable.c_str()));
fUniforms[i].fLocation = location;
}
}
void GrGLProgramBuilder::cleanupProgram(GrGLuint programID, const SkTDArray<GrGLuint>& shaderIDs) {
GL_CALL(DeleteProgram(programID));
cleanupShaders(shaderIDs);
}
void GrGLProgramBuilder::cleanupShaders(const SkTDArray<GrGLuint>& shaderIDs) {
for (int i = 0; i < shaderIDs.count(); ++i) {
GL_CALL(DeleteShader(shaderIDs[i]));
}
}
GrGLProgram* GrGLProgramBuilder::createProgram(GrGLuint programID) {
return SkNEW_ARGS(GrGLProgram, (fGpu, fDesc, fUniformHandles, programID, fUniforms,
fGeometryProcessor, fFragmentProcessors.get()));
}
///////////////////////////////////////////////////////////////////////////////////////////////////
GrGLInstalledFragProcs::~GrGLInstalledFragProcs() {
int numProcs = fProcs.count();
for (int e = 0; e < numProcs; ++e) {
SkDELETE(fProcs[e]);
}
}