blob: 5ef9aefddd4afc46d46c6d76cc7c92e86a409861 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrAAConvexTessellator.h"
#include "SkCanvas.h"
#include "SkPath.h"
#include "SkPoint.h"
#include "SkString.h"
#include "GrPathUtils.h"
// Next steps:
// add an interactive sample app slide
// add debug check that all points are suitably far apart
// test more degenerate cases
// The tolerance for fusing vertices and eliminating colinear lines (It is in device space).
static const SkScalar kClose = (SK_Scalar1 / 16);
static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose);
// tesselation tolerance values, in device space pixels
static const SkScalar kQuadTolerance = 0.2f;
static const SkScalar kCubicTolerance = 0.2f;
static const SkScalar kConicTolerance = 0.5f;
// dot product below which we use a round cap between curve segments
static const SkScalar kRoundCapThreshold = 0.8f;
static SkScalar intersect(const SkPoint& p0, const SkPoint& n0,
const SkPoint& p1, const SkPoint& n1) {
const SkPoint v = p1 - p0;
SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX;
return (v.fX * n1.fY - v.fY * n1.fX) / perpDot;
}
// This is a special case version of intersect where we have the vector
// perpendicular to the second line rather than the vector parallel to it.
static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0,
const SkPoint& p1, const SkPoint& perp) {
const SkPoint v = p1 - p0;
SkScalar perpDot = n0.dot(perp);
return v.dot(perp) / perpDot;
}
static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) {
SkScalar distSq = p0.distanceToSqd(p1);
return distSq < kCloseSqd;
}
static SkScalar abs_dist_from_line(const SkPoint& p0, const SkVector& v, const SkPoint& test) {
SkPoint testV = test - p0;
SkScalar dist = testV.fX * v.fY - testV.fY * v.fX;
return SkScalarAbs(dist);
}
int GrAAConvexTessellator::addPt(const SkPoint& pt,
SkScalar depth,
SkScalar coverage,
bool movable,
bool isCurve) {
this->validate();
int index = fPts.count();
*fPts.push() = pt;
*fCoverages.push() = coverage;
*fMovable.push() = movable;
*fIsCurve.push() = isCurve;
this->validate();
return index;
}
void GrAAConvexTessellator::popLastPt() {
this->validate();
fPts.pop();
fCoverages.pop();
fMovable.pop();
this->validate();
}
void GrAAConvexTessellator::popFirstPtShuffle() {
this->validate();
fPts.removeShuffle(0);
fCoverages.removeShuffle(0);
fMovable.removeShuffle(0);
this->validate();
}
void GrAAConvexTessellator::updatePt(int index,
const SkPoint& pt,
SkScalar depth,
SkScalar coverage) {
this->validate();
SkASSERT(fMovable[index]);
fPts[index] = pt;
fCoverages[index] = coverage;
}
void GrAAConvexTessellator::addTri(int i0, int i1, int i2) {
if (i0 == i1 || i1 == i2 || i2 == i0) {
return;
}
*fIndices.push() = i0;
*fIndices.push() = i1;
*fIndices.push() = i2;
}
void GrAAConvexTessellator::rewind() {
fPts.rewind();
fCoverages.rewind();
fMovable.rewind();
fIndices.rewind();
fNorms.rewind();
fInitialRing.rewind();
fCandidateVerts.rewind();
#if GR_AA_CONVEX_TESSELLATOR_VIZ
fRings.rewind(); // TODO: leak in this case!
#else
fRings[0].rewind();
fRings[1].rewind();
#endif
}
void GrAAConvexTessellator::computeBisectors() {
fBisectors.setCount(fNorms.count());
int prev = fBisectors.count() - 1;
for (int cur = 0; cur < fBisectors.count(); prev = cur, ++cur) {
fBisectors[cur] = fNorms[cur] + fNorms[prev];
if (!fBisectors[cur].normalize()) {
SkASSERT(SkPoint::kLeft_Side == fSide || SkPoint::kRight_Side == fSide);
fBisectors[cur].setOrthog(fNorms[cur], (SkPoint::Side)-fSide);
SkVector other;
other.setOrthog(fNorms[prev], fSide);
fBisectors[cur] += other;
SkAssertResult(fBisectors[cur].normalize());
} else {
fBisectors[cur].negate(); // make the bisector face in
}
SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length()));
}
}
// Create as many rings as we need to (up to a predefined limit) to reach the specified target
// depth. If we are in fill mode, the final ring will automatically be fanned.
bool GrAAConvexTessellator::createInsetRings(Ring& previousRing, SkScalar initialDepth,
SkScalar initialCoverage, SkScalar targetDepth,
SkScalar targetCoverage, Ring** finalRing) {
static const int kMaxNumRings = 8;
if (previousRing.numPts() < 3) {
return false;
}
Ring* currentRing = &previousRing;
int i;
for (i = 0; i < kMaxNumRings; ++i) {
Ring* nextRing = this->getNextRing(currentRing);
SkASSERT(nextRing != currentRing);
bool done = this->createInsetRing(*currentRing, nextRing, initialDepth, initialCoverage,
targetDepth, targetCoverage, i == 0);
currentRing = nextRing;
if (done) {
break;
}
currentRing->init(*this);
}
if (kMaxNumRings == i) {
// Bail if we've exceeded the amount of time we want to throw at this.
this->terminate(*currentRing);
return false;
}
bool done = currentRing->numPts() >= 3;
if (done) {
currentRing->init(*this);
}
*finalRing = currentRing;
return done;
}
// The general idea here is to, conceptually, start with the original polygon and slide
// the vertices along the bisectors until the first intersection. At that
// point two of the edges collapse and the process repeats on the new polygon.
// The polygon state is captured in the Ring class while the GrAAConvexTessellator
// controls the iteration. The CandidateVerts holds the formative points for the
// next ring.
bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) {
if (!this->extractFromPath(m, path)) {
return false;
}
SkScalar coverage = 1.0f;
SkScalar scaleFactor = 0.0f;
if (fStrokeWidth >= 0.0f) {
SkASSERT(m.isSimilarity());
scaleFactor = m.getMaxScale(); // x and y scale are the same
SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
Ring outerStrokeRing;
this->createOuterRing(fInitialRing, effectiveStrokeWidth / 2 - kAntialiasingRadius,
coverage, &outerStrokeRing);
outerStrokeRing.init(*this);
Ring outerAARing;
this->createOuterRing(outerStrokeRing, kAntialiasingRadius * 2, 0.0f, &outerAARing);
} else {
Ring outerAARing;
this->createOuterRing(fInitialRing, kAntialiasingRadius, 0.0f, &outerAARing);
}
// the bisectors are only needed for the computation of the outer ring
fBisectors.rewind();
if (fStrokeWidth >= 0.0f && fInitialRing.numPts() > 2) {
SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
Ring* insetStrokeRing;
SkScalar strokeDepth = effectiveStrokeWidth / 2 - kAntialiasingRadius;
if (this->createInsetRings(fInitialRing, 0.0f, coverage, strokeDepth, coverage,
&insetStrokeRing)) {
Ring* insetAARing;
this->createInsetRings(*insetStrokeRing, strokeDepth, coverage, strokeDepth +
kAntialiasingRadius * 2, 0.0f, &insetAARing);
}
} else {
Ring* insetAARing;
this->createInsetRings(fInitialRing, 0.0f, 0.5f, kAntialiasingRadius, 1.0f, &insetAARing);
}
SkDEBUGCODE(this->validate();)
return true;
}
SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint& p) const {
SkASSERT(edgeIdx < fNorms.count());
SkPoint v = p - fPts[edgeIdx];
SkScalar depth = -fNorms[edgeIdx].dot(v);
return depth;
}
// Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies
// along the 'bisector' from the 'startIdx'-th point.
bool GrAAConvexTessellator::computePtAlongBisector(int startIdx,
const SkVector& bisector,
int edgeIdx,
SkScalar desiredDepth,
SkPoint* result) const {
const SkPoint& norm = fNorms[edgeIdx];
// First find the point where the edge and the bisector intersect
SkPoint newP;
SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm);
if (SkScalarNearlyEqual(t, 0.0f)) {
// the start point was one of the original ring points
SkASSERT(startIdx < fPts.count());
newP = fPts[startIdx];
} else if (t < 0.0f) {
newP = bisector;
newP.scale(t);
newP += fPts[startIdx];
} else {
return false;
}
// Then offset along the bisector from that point the correct distance
SkScalar dot = bisector.dot(norm);
t = -desiredDepth / dot;
*result = bisector;
result->scale(t);
*result += newP;
return true;
}
bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& path) {
SkASSERT(SkPath::kConvex_Convexity == path.getConvexity());
// Outer ring: 3*numPts
// Middle ring: numPts
// Presumptive inner ring: numPts
this->reservePts(5*path.countPoints());
// Outer ring: 12*numPts
// Middle ring: 0
// Presumptive inner ring: 6*numPts + 6
fIndices.setReserve(18*path.countPoints() + 6);
fNorms.setReserve(path.countPoints());
// TODO: is there a faster way to extract the points from the path? Perhaps
// get all the points via a new entry point, transform them all in bulk
// and then walk them to find duplicates?
SkPath::Iter iter(path, true);
SkPoint pts[4];
SkPath::Verb verb;
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kLine_Verb:
this->lineTo(m, pts[1], false);
break;
case SkPath::kQuad_Verb:
this->quadTo(m, pts);
break;
case SkPath::kCubic_Verb:
this->cubicTo(m, pts);
break;
case SkPath::kConic_Verb:
this->conicTo(m, pts, iter.conicWeight());
break;
case SkPath::kMove_Verb:
case SkPath::kClose_Verb:
case SkPath::kDone_Verb:
break;
}
}
if (this->numPts() < 2) {
return false;
}
// check if last point is a duplicate of the first point. If so, remove it.
if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) {
this->popLastPt();
fNorms.pop();
}
SkASSERT(fPts.count() == fNorms.count()+1);
if (this->numPts() >= 3) {
if (abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) {
// The last point is on the line from the second to last to the first point.
this->popLastPt();
fNorms.pop();
}
*fNorms.push() = fPts[0] - fPts.top();
SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
SkASSERT(len > 0.0f);
SkASSERT(fPts.count() == fNorms.count());
}
if (this->numPts() >= 3 && abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]) < kClose) {
// The first point is on the line from the last to the second.
this->popFirstPtShuffle();
fNorms.removeShuffle(0);
fNorms[0] = fPts[1] - fPts[0];
SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms[0]);
SkASSERT(len > 0.0f);
SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length()));
}
if (this->numPts() >= 3) {
// Check the cross product of the final trio
SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top());
if (cross > 0.0f) {
fSide = SkPoint::kRight_Side;
} else {
fSide = SkPoint::kLeft_Side;
}
// Make all the normals face outwards rather than along the edge
for (int cur = 0; cur < fNorms.count(); ++cur) {
fNorms[cur].setOrthog(fNorms[cur], fSide);
SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length()));
}
this->computeBisectors();
} else if (this->numPts() == 2) {
// We've got two points, so we're degenerate.
if (fStrokeWidth < 0.0f) {
// it's a fill, so we don't need to worry about degenerate paths
return false;
}
// For stroking, we still need to process the degenerate path, so fix it up
fSide = SkPoint::kLeft_Side;
// Make all the normals face outwards rather than along the edge
for (int cur = 0; cur < fNorms.count(); ++cur) {
fNorms[cur].setOrthog(fNorms[cur], fSide);
SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length()));
}
fNorms.push(SkPoint::Make(-fNorms[0].fX, -fNorms[0].fY));
// we won't actually use the bisectors, so just push zeroes
fBisectors.push(SkPoint::Make(0.0, 0.0));
fBisectors.push(SkPoint::Make(0.0, 0.0));
} else {
return false;
}
fCandidateVerts.setReserve(this->numPts());
fInitialRing.setReserve(this->numPts());
for (int i = 0; i < this->numPts(); ++i) {
fInitialRing.addIdx(i, i);
}
fInitialRing.init(fNorms, fBisectors);
this->validate();
return true;
}
GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing) {
#if GR_AA_CONVEX_TESSELLATOR_VIZ
Ring* ring = *fRings.push() = new Ring;
ring->setReserve(fInitialRing.numPts());
ring->rewind();
return ring;
#else
// Flip flop back and forth between fRings[0] & fRings[1]
int nextRing = (lastRing == &fRings[0]) ? 1 : 0;
fRings[nextRing].setReserve(fInitialRing.numPts());
fRings[nextRing].rewind();
return &fRings[nextRing];
#endif
}
void GrAAConvexTessellator::fanRing(const Ring& ring) {
// fan out from point 0
int startIdx = ring.index(0);
for (int cur = ring.numPts() - 2; cur >= 0; --cur) {
this->addTri(startIdx, ring.index(cur), ring.index(cur + 1));
}
}
void GrAAConvexTessellator::createOuterRing(const Ring& previousRing, SkScalar outset,
SkScalar coverage, Ring* nextRing) {
const int numPts = previousRing.numPts();
if (numPts == 0) {
return;
}
int prev = numPts - 1;
int lastPerpIdx = -1, firstPerpIdx = -1;
const SkScalar outsetSq = SkScalarMul(outset, outset);
SkScalar miterLimitSq = SkScalarMul(outset, fMiterLimit);
miterLimitSq = SkScalarMul(miterLimitSq, miterLimitSq);
for (int cur = 0; cur < numPts; ++cur) {
int originalIdx = previousRing.index(cur);
// For each vertex of the original polygon we add at least two points to the
// outset polygon - one extending perpendicular to each impinging edge. Connecting these
// two points yields a bevel join. We need one additional point for a mitered join, and
// a round join requires one or more points depending upon curvature.
// The perpendicular point for the last edge
SkPoint normal1 = previousRing.norm(prev);
SkPoint perp1 = normal1;
perp1.scale(outset);
perp1 += this->point(originalIdx);
// The perpendicular point for the next edge.
SkPoint normal2 = previousRing.norm(cur);
SkPoint perp2 = normal2;
perp2.scale(outset);
perp2 += fPts[originalIdx];
bool isCurve = fIsCurve[originalIdx];
// We know it isn't a duplicate of the prior point (since it and this
// one are just perpendicular offsets from the non-merged polygon points)
int perp1Idx = this->addPt(perp1, -outset, coverage, false, isCurve);
nextRing->addIdx(perp1Idx, originalIdx);
int perp2Idx;
// For very shallow angles all the corner points could fuse.
if (duplicate_pt(perp2, this->point(perp1Idx))) {
perp2Idx = perp1Idx;
} else {
perp2Idx = this->addPt(perp2, -outset, coverage, false, isCurve);
}
if (perp2Idx != perp1Idx) {
if (isCurve) {
// bevel or round depending upon curvature
SkScalar dotProd = normal1.dot(normal2);
if (dotProd < kRoundCapThreshold) {
// Currently we "round" by creating a single extra point, which produces
// good results for common cases. For thick strokes with high curvature, we will
// need to add more points; for the time being we simply fall back to software
// rendering for thick strokes.
SkPoint miter = previousRing.bisector(cur);
miter.setLength(-outset);
miter += fPts[originalIdx];
// For very shallow angles all the corner points could fuse
if (!duplicate_pt(miter, this->point(perp1Idx))) {
int miterIdx;
miterIdx = this->addPt(miter, -outset, coverage, false, false);
nextRing->addIdx(miterIdx, originalIdx);
// The two triangles for the corner
this->addTri(originalIdx, perp1Idx, miterIdx);
this->addTri(originalIdx, miterIdx, perp2Idx);
}
} else {
this->addTri(originalIdx, perp1Idx, perp2Idx);
}
} else {
switch (fJoin) {
case SkPaint::Join::kMiter_Join: {
// The bisector outset point
SkPoint miter = previousRing.bisector(cur);
SkScalar dotProd = normal1.dot(normal2);
SkScalar sinHalfAngleSq = SkScalarHalf(SK_Scalar1 + dotProd);
SkScalar lengthSq = outsetSq / sinHalfAngleSq;
if (lengthSq > miterLimitSq) {
// just bevel it
this->addTri(originalIdx, perp1Idx, perp2Idx);
break;
}
miter.setLength(-SkScalarSqrt(lengthSq));
miter += fPts[originalIdx];
// For very shallow angles all the corner points could fuse
if (!duplicate_pt(miter, this->point(perp1Idx))) {
int miterIdx;
miterIdx = this->addPt(miter, -outset, coverage, false, false);
nextRing->addIdx(miterIdx, originalIdx);
// The two triangles for the corner
this->addTri(originalIdx, perp1Idx, miterIdx);
this->addTri(originalIdx, miterIdx, perp2Idx);
}
break;
}
case SkPaint::Join::kBevel_Join:
this->addTri(originalIdx, perp1Idx, perp2Idx);
break;
default:
// kRound_Join is unsupported for now. GrAALinearizingConvexPathRenderer is
// only willing to draw mitered or beveled, so we should never get here.
SkASSERT(false);
}
}
nextRing->addIdx(perp2Idx, originalIdx);
}
if (0 == cur) {
// Store the index of the first perpendicular point to finish up
firstPerpIdx = perp1Idx;
SkASSERT(-1 == lastPerpIdx);
} else {
// The triangles for the previous edge
int prevIdx = previousRing.index(prev);
this->addTri(prevIdx, perp1Idx, originalIdx);
this->addTri(prevIdx, lastPerpIdx, perp1Idx);
}
// Track the last perpendicular outset point so we can construct the
// trailing edge triangles.
lastPerpIdx = perp2Idx;
prev = cur;
}
// pick up the final edge rect
int lastIdx = previousRing.index(numPts - 1);
this->addTri(lastIdx, firstPerpIdx, previousRing.index(0));
this->addTri(lastIdx, lastPerpIdx, firstPerpIdx);
this->validate();
}
// Something went wrong in the creation of the next ring. If we're filling the shape, just go ahead
// and fan it.
void GrAAConvexTessellator::terminate(const Ring& ring) {
if (fStrokeWidth < 0.0f) {
this->fanRing(ring);
}
}
static SkScalar compute_coverage(SkScalar depth, SkScalar initialDepth, SkScalar initialCoverage,
SkScalar targetDepth, SkScalar targetCoverage) {
if (SkScalarNearlyEqual(initialDepth, targetDepth)) {
return targetCoverage;
}
SkScalar result = (depth - initialDepth) / (targetDepth - initialDepth) *
(targetCoverage - initialCoverage) + initialCoverage;
return SkScalarClampMax(result, 1.0f);
}
// return true when processing is complete
bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing,
SkScalar initialDepth, SkScalar initialCoverage,
SkScalar targetDepth, SkScalar targetCoverage,
bool forceNew) {
bool done = false;
fCandidateVerts.rewind();
// Loop through all the points in the ring and find the intersection with the smallest depth
SkScalar minDist = SK_ScalarMax, minT = 0.0f;
int minEdgeIdx = -1;
for (int cur = 0; cur < lastRing.numPts(); ++cur) {
int next = (cur + 1) % lastRing.numPts();
SkScalar t = intersect(this->point(lastRing.index(cur)), lastRing.bisector(cur),
this->point(lastRing.index(next)), lastRing.bisector(next));
SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur));
if (minDist > dist) {
minDist = dist;
minT = t;
minEdgeIdx = cur;
}
}
if (minEdgeIdx == -1) {
return false;
}
SkPoint newPt = lastRing.bisector(minEdgeIdx);
newPt.scale(minT);
newPt += this->point(lastRing.index(minEdgeIdx));
SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt);
if (depth >= targetDepth) {
// None of the bisectors intersect before reaching the desired depth.
// Just step them all to the desired depth
depth = targetDepth;
done = true;
}
// 'dst' stores where each point in the last ring maps to/transforms into
// in the next ring.
SkTDArray<int> dst;
dst.setCount(lastRing.numPts());
// Create the first point (who compares with no one)
if (!this->computePtAlongBisector(lastRing.index(0),
lastRing.bisector(0),
lastRing.origEdgeID(0),
depth, &newPt)) {
this->terminate(lastRing);
return true;
}
dst[0] = fCandidateVerts.addNewPt(newPt,
lastRing.index(0), lastRing.origEdgeID(0),
!this->movable(lastRing.index(0)));
// Handle the middle points (who only compare with the prior point)
for (int cur = 1; cur < lastRing.numPts()-1; ++cur) {
if (!this->computePtAlongBisector(lastRing.index(cur),
lastRing.bisector(cur),
lastRing.origEdgeID(cur),
depth, &newPt)) {
this->terminate(lastRing);
return true;
}
if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) {
dst[cur] = fCandidateVerts.addNewPt(newPt,
lastRing.index(cur), lastRing.origEdgeID(cur),
!this->movable(lastRing.index(cur)));
} else {
dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
}
}
// Check on the last point (handling the wrap around)
int cur = lastRing.numPts()-1;
if (!this->computePtAlongBisector(lastRing.index(cur),
lastRing.bisector(cur),
lastRing.origEdgeID(cur),
depth, &newPt)) {
this->terminate(lastRing);
return true;
}
bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint());
bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint());
if (!dupPrev && !dupNext) {
dst[cur] = fCandidateVerts.addNewPt(newPt,
lastRing.index(cur), lastRing.origEdgeID(cur),
!this->movable(lastRing.index(cur)));
} else if (dupPrev && !dupNext) {
dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
} else if (!dupPrev && dupNext) {
dst[cur] = fCandidateVerts.fuseWithNext();
} else {
bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandidateVerts.lastPoint());
if (!dupPrevVsNext) {
dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
} else {
const int fused = fCandidateVerts.fuseWithBoth();
dst[cur] = fused;
const int targetIdx = dst[cur - 1];
for (int i = cur - 1; i >= 0 && dst[i] == targetIdx; i--) {
dst[i] = fused;
}
}
}
// Fold the new ring's points into the global pool
for (int i = 0; i < fCandidateVerts.numPts(); ++i) {
int newIdx;
if (fCandidateVerts.needsToBeNew(i) || forceNew) {
// if the originating index is still valid then this point wasn't
// fused (and is thus movable)
SkScalar coverage = compute_coverage(depth, initialDepth, initialCoverage,
targetDepth, targetCoverage);
newIdx = this->addPt(fCandidateVerts.point(i), depth, coverage,
fCandidateVerts.originatingIdx(i) != -1, false);
} else {
SkASSERT(fCandidateVerts.originatingIdx(i) != -1);
this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth,
targetCoverage);
newIdx = fCandidateVerts.originatingIdx(i);
}
nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i));
}
// 'dst' currently has indices into the ring. Remap these to be indices
// into the global pool since the triangulation operates in that space.
for (int i = 0; i < dst.count(); ++i) {
dst[i] = nextRing->index(dst[i]);
}
for (int i = 0; i < lastRing.numPts(); ++i) {
int next = (i + 1) % lastRing.numPts();
this->addTri(lastRing.index(i), lastRing.index(next), dst[next]);
this->addTri(lastRing.index(i), dst[next], dst[i]);
}
if (done && fStrokeWidth < 0.0f) {
// fill
this->fanRing(*nextRing);
}
if (nextRing->numPts() < 3) {
done = true;
}
return done;
}
void GrAAConvexTessellator::validate() const {
SkASSERT(fPts.count() == fMovable.count());
SkASSERT(0 == (fIndices.count() % 3));
}
//////////////////////////////////////////////////////////////////////////////
void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) {
this->computeNormals(tess);
this->computeBisectors(tess);
}
void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms,
const SkTDArray<SkVector>& bisectors) {
for (int i = 0; i < fPts.count(); ++i) {
fPts[i].fNorm = norms[i];
fPts[i].fBisector = bisectors[i];
}
}
// Compute the outward facing normal at each vertex.
void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& tess) {
for (int cur = 0; cur < fPts.count(); ++cur) {
int next = (cur + 1) % fPts.count();
fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].fIndex);
SkPoint::Normalize(&fPts[cur].fNorm);
fPts[cur].fNorm.setOrthog(fPts[cur].fNorm, tess.side());
}
}
void GrAAConvexTessellator::Ring::computeBisectors(const GrAAConvexTessellator& tess) {
int prev = fPts.count() - 1;
for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) {
fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm;
if (!fPts[cur].fBisector.normalize()) {
SkASSERT(SkPoint::kLeft_Side == tess.side() || SkPoint::kRight_Side == tess.side());
fPts[cur].fBisector.setOrthog(fPts[cur].fNorm, (SkPoint::Side)-tess.side());
SkVector other;
other.setOrthog(fPts[prev].fNorm, tess.side());
fPts[cur].fBisector += other;
SkAssertResult(fPts[cur].fBisector.normalize());
} else {
fPts[cur].fBisector.negate(); // make the bisector face in
}
}
}
//////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG
// Is this ring convex?
bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) const {
if (fPts.count() < 3) {
return true;
}
SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex);
SkPoint cur = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex);
SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX;
SkScalar maxDot = minDot;
prev = cur;
for (int i = 1; i < fPts.count(); ++i) {
int next = (i + 1) % fPts.count();
cur = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex);
SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX;
minDot = SkMinScalar(minDot, dot);
maxDot = SkMaxScalar(maxDot, dot);
prev = cur;
}
if (SkScalarNearlyEqual(maxDot, 0.0f, 0.005f)) {
maxDot = 0;
}
if (SkScalarNearlyEqual(minDot, 0.0f, 0.005f)) {
minDot = 0;
}
return (maxDot >= 0.0f) == (minDot >= 0.0f);
}
#endif
void GrAAConvexTessellator::lineTo(SkPoint p, bool isCurve) {
if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) {
return;
}
SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1);
if (this->numPts() >= 2 &&
abs_dist_from_line(fPts.top(), fNorms.top(), p) < kClose) {
// The old last point is on the line from the second to last to the new point
this->popLastPt();
fNorms.pop();
fIsCurve.pop();
}
SkScalar initialRingCoverage = fStrokeWidth < 0.0f ? 0.5f : 1.0f;
this->addPt(p, 0.0f, initialRingCoverage, false, isCurve);
if (this->numPts() > 1) {
*fNorms.push() = fPts.top() - fPts[fPts.count()-2];
SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
SkASSERT(len > 0.0f);
SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length()));
}
}
void GrAAConvexTessellator::lineTo(const SkMatrix& m, SkPoint p, bool isCurve) {
m.mapPoints(&p, 1);
this->lineTo(p, isCurve);
}
void GrAAConvexTessellator::quadTo(SkPoint pts[3]) {
int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance);
fPointBuffer.setReserve(maxCount);
SkPoint* target = fPointBuffer.begin();
int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2],
kQuadTolerance, &target, maxCount);
fPointBuffer.setCount(count);
for (int i = 0; i < count; i++) {
lineTo(fPointBuffer[i], true);
}
}
void GrAAConvexTessellator::quadTo(const SkMatrix& m, SkPoint pts[3]) {
SkPoint transformed[3];
transformed[0] = pts[0];
transformed[1] = pts[1];
transformed[2] = pts[2];
m.mapPoints(transformed, 3);
quadTo(transformed);
}
void GrAAConvexTessellator::cubicTo(const SkMatrix& m, SkPoint pts[4]) {
m.mapPoints(pts, 4);
int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance);
fPointBuffer.setReserve(maxCount);
SkPoint* target = fPointBuffer.begin();
int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3],
kCubicTolerance, &target, maxCount);
fPointBuffer.setCount(count);
for (int i = 0; i < count; i++) {
lineTo(fPointBuffer[i], true);
}
}
// include down here to avoid compilation errors caused by "-" overload in SkGeometry.h
#include "SkGeometry.h"
void GrAAConvexTessellator::conicTo(const SkMatrix& m, SkPoint pts[3], SkScalar w) {
m.mapPoints(pts, 3);
SkAutoConicToQuads quadder;
const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance);
SkPoint lastPoint = *(quads++);
int count = quadder.countQuads();
for (int i = 0; i < count; ++i) {
SkPoint quadPts[3];
quadPts[0] = lastPoint;
quadPts[1] = quads[0];
quadPts[2] = i == count - 1 ? pts[2] : quads[1];
quadTo(quadPts);
lastPoint = quadPts[2];
quads += 2;
}
}
//////////////////////////////////////////////////////////////////////////////
#if GR_AA_CONVEX_TESSELLATOR_VIZ
static const SkScalar kPointRadius = 0.02f;
static const SkScalar kArrowStrokeWidth = 0.0f;
static const SkScalar kArrowLength = 0.2f;
static const SkScalar kEdgeTextSize = 0.1f;
static const SkScalar kPointTextSize = 0.02f;
static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue, bool stroke) {
SkPaint paint;
SkASSERT(paramValue <= 1.0f);
int gs = int(255*paramValue);
paint.setARGB(255, gs, gs, gs);
canvas->drawCircle(p.fX, p.fY, kPointRadius, paint);
if (stroke) {
SkPaint stroke;
stroke.setColor(SK_ColorYELLOW);
stroke.setStyle(SkPaint::kStroke_Style);
stroke.setStrokeWidth(kPointRadius/3.0f);
canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke);
}
}
static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, SkColor color) {
SkPaint p;
p.setColor(color);
canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p);
}
static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n,
SkScalar len, SkColor color) {
SkPaint paint;
paint.setColor(color);
paint.setStrokeWidth(kArrowStrokeWidth);
paint.setStyle(SkPaint::kStroke_Style);
canvas->drawLine(p.fX, p.fY,
p.fX + len * n.fX, p.fY + len * n.fY,
paint);
}
void GrAAConvexTessellator::Ring::draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const {
SkPaint paint;
paint.setTextSize(kEdgeTextSize);
for (int cur = 0; cur < fPts.count(); ++cur) {
int next = (cur + 1) % fPts.count();
draw_line(canvas,
tess.point(fPts[cur].fIndex),
tess.point(fPts[next].fIndex),
SK_ColorGREEN);
SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fIndex);
mid.scale(0.5f);
if (fPts.count()) {
draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED);
mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX;
mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY;
}
SkString num;
num.printf("%d", this->origEdgeID(cur));
canvas->drawText(num.c_str(), num.size(), mid.fX, mid.fY, paint);
if (fPts.count()) {
draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector,
kArrowLength, SK_ColorBLUE);
}
}
}
void GrAAConvexTessellator::draw(SkCanvas* canvas) const {
for (int i = 0; i < fIndices.count(); i += 3) {
SkASSERT(fIndices[i] < this->numPts()) ;
SkASSERT(fIndices[i+1] < this->numPts()) ;
SkASSERT(fIndices[i+2] < this->numPts()) ;
draw_line(canvas,
this->point(this->fIndices[i]), this->point(this->fIndices[i+1]),
SK_ColorBLACK);
draw_line(canvas,
this->point(this->fIndices[i+1]), this->point(this->fIndices[i+2]),
SK_ColorBLACK);
draw_line(canvas,
this->point(this->fIndices[i+2]), this->point(this->fIndices[i]),
SK_ColorBLACK);
}
fInitialRing.draw(canvas, *this);
for (int i = 0; i < fRings.count(); ++i) {
fRings[i]->draw(canvas, *this);
}
for (int i = 0; i < this->numPts(); ++i) {
draw_point(canvas,
this->point(i), 0.5f + (this->depth(i)/(2 * kAntialiasingRadius)),
!this->movable(i));
SkPaint paint;
paint.setTextSize(kPointTextSize);
paint.setTextAlign(SkPaint::kCenter_Align);
if (this->depth(i) <= -kAntialiasingRadius) {
paint.setColor(SK_ColorWHITE);
}
SkString num;
num.printf("%d", i);
canvas->drawText(num.c_str(), num.size(),
this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f),
paint);
}
}
#endif