blob: e29c41428bfd38aa7f35d1a407db02baf5bcdf56 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/private/SkColorData.h"
#include "include/private/SkHalf.h"
#include "include/private/SkTemplates.h"
#include "src/codec/SkCodecPriv.h"
#include "src/codec/SkSwizzler.h"
#include "src/core/SkOpts.h"
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
#include "include/android/SkAndroidFrameworkUtils.h"
#endif
static void copy(void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset,
const SkPMColor ctable[]) {
// This function must not be called if we are sampling. If we are not
// sampling, deltaSrc should equal bpp.
SkASSERT(deltaSrc == bpp);
memcpy(dst, src + offset, width * bpp);
}
static void sample1(void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset,
const SkPMColor ctable[]) {
src += offset;
uint8_t* dst8 = (uint8_t*) dst;
for (int x = 0; x < width; x++) {
dst8[x] = *src;
src += deltaSrc;
}
}
static void sample2(void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset,
const SkPMColor ctable[]) {
src += offset;
uint16_t* dst16 = (uint16_t*) dst;
for (int x = 0; x < width; x++) {
dst16[x] = *((const uint16_t*) src);
src += deltaSrc;
}
}
static void sample4(void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset,
const SkPMColor ctable[]) {
src += offset;
uint32_t* dst32 = (uint32_t*) dst;
for (int x = 0; x < width; x++) {
dst32[x] = *((const uint32_t*) src);
src += deltaSrc;
}
}
static void sample6(void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset,
const SkPMColor ctable[]) {
src += offset;
uint8_t* dst8 = (uint8_t*) dst;
for (int x = 0; x < width; x++) {
memcpy(dst8, src, 6);
dst8 += 6;
src += deltaSrc;
}
}
static void sample8(void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset,
const SkPMColor ctable[]) {
src += offset;
uint64_t* dst64 = (uint64_t*) dst;
for (int x = 0; x < width; x++) {
dst64[x] = *((const uint64_t*) src);
src += deltaSrc;
}
}
// kBit
// These routines exclusively choose between white and black
#define GRAYSCALE_BLACK 0
#define GRAYSCALE_WHITE 0xFF
// same as swizzle_bit_to_index and swizzle_bit_to_n32 except for value assigned to dst[x]
static void swizzle_bit_to_grayscale(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth,
int bpp, int deltaSrc, int offset, const SkPMColor* /*ctable*/) {
uint8_t* SK_RESTRICT dst = (uint8_t*) dstRow;
// increment src by byte offset and bitIndex by bit offset
src += offset / 8;
int bitIndex = offset % 8;
uint8_t currByte = *src;
dst[0] = ((currByte >> (7-bitIndex)) & 1) ? GRAYSCALE_WHITE : GRAYSCALE_BLACK;
for (int x = 1; x < dstWidth; x++) {
int bitOffset = bitIndex + deltaSrc;
bitIndex = bitOffset % 8;
currByte = *(src += bitOffset / 8);
dst[x] = ((currByte >> (7-bitIndex)) & 1) ? GRAYSCALE_WHITE : GRAYSCALE_BLACK;
}
}
#undef GRAYSCALE_BLACK
#undef GRAYSCALE_WHITE
// same as swizzle_bit_to_grayscale and swizzle_bit_to_index except for value assigned to dst[x]
static void swizzle_bit_to_n32(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth,
int bpp, int deltaSrc, int offset, const SkPMColor* /*ctable*/) {
SkPMColor* SK_RESTRICT dst = (SkPMColor*) dstRow;
// increment src by byte offset and bitIndex by bit offset
src += offset / 8;
int bitIndex = offset % 8;
uint8_t currByte = *src;
dst[0] = ((currByte >> (7 - bitIndex)) & 1) ? SK_ColorWHITE : SK_ColorBLACK;
for (int x = 1; x < dstWidth; x++) {
int bitOffset = bitIndex + deltaSrc;
bitIndex = bitOffset % 8;
currByte = *(src += bitOffset / 8);
dst[x] = ((currByte >> (7 - bitIndex)) & 1) ? SK_ColorWHITE : SK_ColorBLACK;
}
}
#define RGB565_BLACK 0
#define RGB565_WHITE 0xFFFF
static void swizzle_bit_to_565(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth,
int bpp, int deltaSrc, int offset, const SkPMColor* /*ctable*/) {
uint16_t* SK_RESTRICT dst = (uint16_t*) dstRow;
// increment src by byte offset and bitIndex by bit offset
src += offset / 8;
int bitIndex = offset % 8;
uint8_t currByte = *src;
dst[0] = ((currByte >> (7 - bitIndex)) & 1) ? RGB565_WHITE : RGB565_BLACK;
for (int x = 1; x < dstWidth; x++) {
int bitOffset = bitIndex + deltaSrc;
bitIndex = bitOffset % 8;
currByte = *(src += bitOffset / 8);
dst[x] = ((currByte >> (7 - bitIndex)) & 1) ? RGB565_WHITE : RGB565_BLACK;
}
}
#undef RGB565_BLACK
#undef RGB565_WHITE
static void swizzle_bit_to_f16(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth,
int bpp, int deltaSrc, int offset, const SkPMColor* /*ctable*/) {
constexpr uint64_t kWhite = (((uint64_t) SK_Half1) << 0) |
(((uint64_t) SK_Half1) << 16) |
(((uint64_t) SK_Half1) << 32) |
(((uint64_t) SK_Half1) << 48);
constexpr uint64_t kBlack = (((uint64_t) 0) << 0) |
(((uint64_t) 0) << 16) |
(((uint64_t) 0) << 32) |
(((uint64_t) SK_Half1) << 48);
uint64_t* SK_RESTRICT dst = (uint64_t*) dstRow;
// increment src by byte offset and bitIndex by bit offset
src += offset / 8;
int bitIndex = offset % 8;
uint8_t currByte = *src;
dst[0] = ((currByte >> (7 - bitIndex)) & 1) ? kWhite : kBlack;
for (int x = 1; x < dstWidth; x++) {
int bitOffset = bitIndex + deltaSrc;
bitIndex = bitOffset % 8;
currByte = *(src += bitOffset / 8);
dst[x] = ((currByte >> (7 - bitIndex)) & 1) ? kWhite : kBlack;
}
}
// kIndex1, kIndex2, kIndex4
static void swizzle_small_index_to_565(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth,
int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) {
uint16_t* dst = (uint16_t*) dstRow;
src += offset / 8;
int bitIndex = offset % 8;
uint8_t currByte = *src;
const uint8_t mask = (1 << bpp) - 1;
uint8_t index = (currByte >> (8 - bpp - bitIndex)) & mask;
dst[0] = SkPixel32ToPixel16(ctable[index]);
for (int x = 1; x < dstWidth; x++) {
int bitOffset = bitIndex + deltaSrc;
bitIndex = bitOffset % 8;
currByte = *(src += bitOffset / 8);
index = (currByte >> (8 - bpp - bitIndex)) & mask;
dst[x] = SkPixel32ToPixel16(ctable[index]);
}
}
static void swizzle_small_index_to_n32(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth,
int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) {
SkPMColor* dst = (SkPMColor*) dstRow;
src += offset / 8;
int bitIndex = offset % 8;
uint8_t currByte = *src;
const uint8_t mask = (1 << bpp) - 1;
uint8_t index = (currByte >> (8 - bpp - bitIndex)) & mask;
dst[0] = ctable[index];
for (int x = 1; x < dstWidth; x++) {
int bitOffset = bitIndex + deltaSrc;
bitIndex = bitOffset % 8;
currByte = *(src += bitOffset / 8);
index = (currByte >> (8 - bpp - bitIndex)) & mask;
dst[x] = ctable[index];
}
}
// kIndex
static void swizzle_index_to_n32(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth,
int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) {
src += offset;
SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow;
for (int x = 0; x < dstWidth; x++) {
SkPMColor c = ctable[*src];
dst[x] = c;
src += deltaSrc;
}
}
static void swizzle_index_to_n32_skipZ(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth,
int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) {
src += offset;
SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow;
for (int x = 0; x < dstWidth; x++) {
SkPMColor c = ctable[*src];
if (c != 0) {
dst[x] = c;
}
src += deltaSrc;
}
}
static void swizzle_index_to_565(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth,
int bytesPerPixel, int deltaSrc, int offset, const SkPMColor ctable[]) {
src += offset;
uint16_t* SK_RESTRICT dst = (uint16_t*)dstRow;
for (int x = 0; x < dstWidth; x++) {
dst[x] = SkPixel32ToPixel16(ctable[*src]);
src += deltaSrc;
}
}
// kGray
static void swizzle_gray_to_n32(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth,
int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) {
src += offset;
SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow;
for (int x = 0; x < dstWidth; x++) {
dst[x] = SkPackARGB32NoCheck(0xFF, *src, *src, *src);
src += deltaSrc;
}
}
static void fast_swizzle_gray_to_n32(
void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset,
const SkPMColor ctable[]) {
// This function must not be called if we are sampling. If we are not
// sampling, deltaSrc should equal bpp.
SkASSERT(deltaSrc == bpp);
// Note that there is no need to distinguish between RGB and BGR.
// Each color channel will get the same value.
SkOpts::gray_to_RGB1((uint32_t*) dst, src + offset, width);
}
static void swizzle_gray_to_565(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth,
int bytesPerPixel, int deltaSrc, int offset, const SkPMColor ctable[]) {
src += offset;
uint16_t* SK_RESTRICT dst = (uint16_t*)dstRow;
for (int x = 0; x < dstWidth; x++) {
dst[x] = SkPack888ToRGB16(src[0], src[0], src[0]);
src += deltaSrc;
}
}
// kGrayAlpha
static void swizzle_grayalpha_to_n32_unpremul(
void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset,
const SkPMColor ctable[]) {
src += offset;
SkPMColor* dst32 = (SkPMColor*) dst;
for (int x = 0; x < width; x++) {
dst32[x] = SkPackARGB32NoCheck(src[1], src[0], src[0], src[0]);
src += deltaSrc;
}
}
static void fast_swizzle_grayalpha_to_n32_unpremul(
void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset,
const SkPMColor ctable[]) {
// This function must not be called if we are sampling. If we are not
// sampling, deltaSrc should equal bpp.
SkASSERT(deltaSrc == bpp);
// Note that there is no need to distinguish between RGB and BGR.
// Each color channel will get the same value.
SkOpts::grayA_to_RGBA((uint32_t*) dst, src + offset, width);
}
static void swizzle_grayalpha_to_n32_premul(
void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset,
const SkPMColor ctable[]) {
src += offset;
SkPMColor* dst32 = (SkPMColor*) dst;
for (int x = 0; x < width; x++) {
uint8_t pmgray = SkMulDiv255Round(src[1], src[0]);
dst32[x] = SkPackARGB32NoCheck(src[1], pmgray, pmgray, pmgray);
src += deltaSrc;
}
}
static void fast_swizzle_grayalpha_to_n32_premul(
void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset,
const SkPMColor ctable[]) {
// This function must not be called if we are sampling. If we are not
// sampling, deltaSrc should equal bpp.
SkASSERT(deltaSrc == bpp);
// Note that there is no need to distinguish between rgb and bgr.
// Each color channel will get the same value.
SkOpts::grayA_to_rgbA((uint32_t*) dst, src + offset, width);
}
static void swizzle_grayalpha_to_a8(void* dst, const uint8_t* src, int width, int bpp,
int deltaSrc, int offset, const SkPMColor[]) {
src += offset;
uint8_t* dst8 = (uint8_t*)dst;
for (int x = 0; x < width; ++x) {
dst8[x] = src[1]; // src[0] is gray, ignored
src += deltaSrc;
}
}
// kBGR
static void swizzle_bgr_to_565(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth,
int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) {
src += offset;
uint16_t* SK_RESTRICT dst = (uint16_t*)dstRow;
for (int x = 0; x < dstWidth; x++) {
dst[x] = SkPack888ToRGB16(src[2], src[1], src[0]);
src += deltaSrc;
}
}
// kRGB
static void swizzle_rgb_to_rgba(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth,
int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) {
src += offset;
SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow;
for (int x = 0; x < dstWidth; x++) {
dst[x] = SkPackARGB_as_RGBA(0xFF, src[0], src[1], src[2]);
src += deltaSrc;
}
}
static void swizzle_rgb_to_bgra(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth,
int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) {
src += offset;
SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow;
for (int x = 0; x < dstWidth; x++) {
dst[x] = SkPackARGB_as_BGRA(0xFF, src[0], src[1], src[2]);
src += deltaSrc;
}
}
static void fast_swizzle_rgb_to_rgba(
void* dst, const uint8_t* src, int width, int bpp, int deltaSrc,
int offset, const SkPMColor ctable[]) {
// This function must not be called if we are sampling. If we are not
// sampling, deltaSrc should equal bpp.
SkASSERT(deltaSrc == bpp);
SkOpts::RGB_to_RGB1((uint32_t*) dst, src + offset, width);
}
static void fast_swizzle_rgb_to_bgra(
void* dst, const uint8_t* src, int width, int bpp, int deltaSrc,
int offset, const SkPMColor ctable[]) {
// This function must not be called if we are sampling. If we are not
// sampling, deltaSrc should equal bpp.
SkASSERT(deltaSrc == bpp);
SkOpts::RGB_to_BGR1((uint32_t*) dst, src + offset, width);
}
static void swizzle_rgb_to_565(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth,
int bytesPerPixel, int deltaSrc, int offset, const SkPMColor ctable[]) {
src += offset;
uint16_t* SK_RESTRICT dst = (uint16_t*)dstRow;
for (int x = 0; x < dstWidth; x++) {
dst[x] = SkPack888ToRGB16(src[0], src[1], src[2]);
src += deltaSrc;
}
}
// kRGBA
static void swizzle_rgba_to_rgba_premul(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth,
int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) {
src += offset;
SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow;
for (int x = 0; x < dstWidth; x++) {
dst[x] = premultiply_argb_as_rgba(src[3], src[0], src[1], src[2]);
src += deltaSrc;
}
}
static void swizzle_rgba_to_bgra_premul(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth,
int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) {
src += offset;
SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow;
for (int x = 0; x < dstWidth; x++) {
dst[x] = premultiply_argb_as_bgra(src[3], src[0], src[1], src[2]);
src += deltaSrc;
}
}
static void fast_swizzle_rgba_to_rgba_premul(
void* dst, const uint8_t* src, int width, int bpp, int deltaSrc,
int offset, const SkPMColor ctable[]) {
// This function must not be called if we are sampling. If we are not
// sampling, deltaSrc should equal bpp.
SkASSERT(deltaSrc == bpp);
SkOpts::RGBA_to_rgbA((uint32_t*) dst, (const uint32_t*)(src + offset), width);
}
static void fast_swizzle_rgba_to_bgra_premul(
void* dst, const uint8_t* src, int width, int bpp, int deltaSrc,
int offset, const SkPMColor ctable[]) {
// This function must not be called if we are sampling. If we are not
// sampling, deltaSrc should equal bpp.
SkASSERT(deltaSrc == bpp);
SkOpts::RGBA_to_bgrA((uint32_t*) dst, (const uint32_t*)(src + offset), width);
}
static void swizzle_rgba_to_bgra_unpremul(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth,
int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) {
src += offset;
uint32_t* SK_RESTRICT dst = reinterpret_cast<uint32_t*>(dstRow);
for (int x = 0; x < dstWidth; x++) {
unsigned alpha = src[3];
dst[x] = SkPackARGB_as_BGRA(alpha, src[0], src[1], src[2]);
src += deltaSrc;
}
}
static void fast_swizzle_rgba_to_bgra_unpremul(
void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset,
const SkPMColor ctable[]) {
// This function must not be called if we are sampling. If we are not
// sampling, deltaSrc should equal bpp.
SkASSERT(deltaSrc == bpp);
SkOpts::RGBA_to_BGRA((uint32_t*) dst, (const uint32_t*)(src + offset), width);
}
// 16-bits per component kRGB and kRGBA
static void swizzle_rgb16_to_rgba(
void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset,
const SkPMColor ctable[]) {
auto strip16to8 = [](const uint8_t* ptr) {
return 0xFF000000 | (ptr[4] << 16) | (ptr[2] << 8) | ptr[0];
};
src += offset;
uint32_t* dst32 = (uint32_t*) dst;
for (int x = 0; x < width; x++) {
dst32[x] = strip16to8(src);
src += deltaSrc;
}
}
static void swizzle_rgb16_to_bgra(
void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset,
const SkPMColor ctable[]) {
auto strip16to8 = [](const uint8_t* ptr) {
return 0xFF000000 | (ptr[0] << 16) | (ptr[2] << 8) | ptr[4];
};
src += offset;
uint32_t* dst32 = (uint32_t*) dst;
for (int x = 0; x < width; x++) {
dst32[x] = strip16to8(src);
src += deltaSrc;
}
}
static void swizzle_rgb16_to_565(
void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset,
const SkPMColor ctable[]) {
auto strip16to565 = [](const uint8_t* ptr) {
return SkPack888ToRGB16(ptr[0], ptr[2], ptr[4]);
};
src += offset;
uint16_t* dst16 = (uint16_t*) dst;
for (int x = 0; x < width; x++) {
dst16[x] = strip16to565(src);
src += deltaSrc;
}
}
static void swizzle_rgba16_to_rgba_unpremul(
void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset,
const SkPMColor ctable[]) {
auto strip16to8 = [](const uint8_t* ptr) {
return (ptr[6] << 24) | (ptr[4] << 16) | (ptr[2] << 8) | ptr[0];
};
src += offset;
uint32_t* dst32 = (uint32_t*) dst;
for (int x = 0; x < width; x++) {
dst32[x] = strip16to8(src);
src += deltaSrc;
}
}
static void swizzle_rgba16_to_rgba_premul(
void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset,
const SkPMColor ctable[]) {
auto stripAndPremul16to8 = [](const uint8_t* ptr) {
return premultiply_argb_as_rgba(ptr[6], ptr[0], ptr[2], ptr[4]);
};
src += offset;
uint32_t* dst32 = (uint32_t*) dst;
for (int x = 0; x < width; x++) {
dst32[x] = stripAndPremul16to8(src);
src += deltaSrc;
}
}
static void swizzle_rgba16_to_bgra_unpremul(
void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset,
const SkPMColor ctable[]) {
auto strip16to8 = [](const uint8_t* ptr) {
return (ptr[6] << 24) | (ptr[0] << 16) | (ptr[2] << 8) | ptr[4];
};
src += offset;
uint32_t* dst32 = (uint32_t*) dst;
for (int x = 0; x < width; x++) {
dst32[x] = strip16to8(src);
src += deltaSrc;
}
}
static void swizzle_rgba16_to_bgra_premul(
void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset,
const SkPMColor ctable[]) {
auto stripAndPremul16to8 = [](const uint8_t* ptr) {
return premultiply_argb_as_bgra(ptr[6], ptr[0], ptr[2], ptr[4]);
};
src += offset;
uint32_t* dst32 = (uint32_t*) dst;
for (int x = 0; x < width; x++) {
dst32[x] = stripAndPremul16to8(src);
src += deltaSrc;
}
}
// kCMYK
//
// CMYK is stored as four bytes per pixel.
//
// We will implement a crude conversion from CMYK -> RGB using formulas
// from easyrgb.com.
//
// CMYK -> CMY
// C = C * (1 - K) + K
// M = M * (1 - K) + K
// Y = Y * (1 - K) + K
//
// libjpeg actually gives us inverted CMYK, so we must subtract the
// original terms from 1.
// CMYK -> CMY
// C = (1 - C) * (1 - (1 - K)) + (1 - K)
// M = (1 - M) * (1 - (1 - K)) + (1 - K)
// Y = (1 - Y) * (1 - (1 - K)) + (1 - K)
//
// Simplifying the above expression.
// CMYK -> CMY
// C = 1 - CK
// M = 1 - MK
// Y = 1 - YK
//
// CMY -> RGB
// R = (1 - C) * 255
// G = (1 - M) * 255
// B = (1 - Y) * 255
//
// Therefore the full conversion is below. This can be verified at
// www.rapidtables.com (assuming inverted CMYK).
// CMYK -> RGB
// R = C * K * 255
// G = M * K * 255
// B = Y * K * 255
//
// As a final note, we have treated the CMYK values as if they were on
// a scale from 0-1, when in fact they are 8-bit ints scaling from 0-255.
// We must divide each CMYK component by 255 to obtain the true conversion
// we should perform.
// CMYK -> RGB
// R = C * K / 255
// G = M * K / 255
// B = Y * K / 255
static void swizzle_cmyk_to_rgba(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth,
int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) {
src += offset;
SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow;
for (int x = 0; x < dstWidth; x++) {
const uint8_t r = SkMulDiv255Round(src[0], src[3]);
const uint8_t g = SkMulDiv255Round(src[1], src[3]);
const uint8_t b = SkMulDiv255Round(src[2], src[3]);
dst[x] = SkPackARGB_as_RGBA(0xFF, r, g, b);
src += deltaSrc;
}
}
static void swizzle_cmyk_to_bgra(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth,
int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) {
src += offset;
SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow;
for (int x = 0; x < dstWidth; x++) {
const uint8_t r = SkMulDiv255Round(src[0], src[3]);
const uint8_t g = SkMulDiv255Round(src[1], src[3]);
const uint8_t b = SkMulDiv255Round(src[2], src[3]);
dst[x] = SkPackARGB_as_BGRA(0xFF, r, g, b);
src += deltaSrc;
}
}
static void fast_swizzle_cmyk_to_rgba(
void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset,
const SkPMColor ctable[]) {
// This function must not be called if we are sampling. If we are not
// sampling, deltaSrc should equal bpp.
SkASSERT(deltaSrc == bpp);
SkOpts::inverted_CMYK_to_RGB1((uint32_t*) dst, (const uint32_t*)(src + offset), width);
}
static void fast_swizzle_cmyk_to_bgra(
void* dst, const uint8_t* src, int width, int bpp, int deltaSrc, int offset,
const SkPMColor ctable[]) {
// This function must not be called if we are sampling. If we are not
// sampling, deltaSrc should equal bpp.
SkASSERT(deltaSrc == bpp);
SkOpts::inverted_CMYK_to_BGR1((uint32_t*) dst, (const uint32_t*)(src + offset), width);
}
static void swizzle_cmyk_to_565(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth,
int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) {
src += offset;
uint16_t* SK_RESTRICT dst = (uint16_t*)dstRow;
for (int x = 0; x < dstWidth; x++) {
const uint8_t r = SkMulDiv255Round(src[0], src[3]);
const uint8_t g = SkMulDiv255Round(src[1], src[3]);
const uint8_t b = SkMulDiv255Round(src[2], src[3]);
dst[x] = SkPack888ToRGB16(r, g, b);
src += deltaSrc;
}
}
template <SkSwizzler::RowProc proc>
void SkSwizzler::SkipLeadingGrayAlphaZerosThen(
void* dst, const uint8_t* src, int width,
int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) {
SkASSERT(!ctable);
const uint16_t* src16 = (const uint16_t*) (src + offset);
uint32_t* dst32 = (uint32_t*) dst;
// This may miss opportunities to skip when the output is premultiplied,
// e.g. for a src pixel 0x00FF which is not zero but becomes zero after premultiplication.
while (width > 0 && *src16 == 0x0000) {
width--;
dst32++;
src16 += deltaSrc / 2;
}
proc(dst32, (const uint8_t*)src16, width, bpp, deltaSrc, 0, ctable);
}
template <SkSwizzler::RowProc proc>
void SkSwizzler::SkipLeading8888ZerosThen(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth,
int bpp, int deltaSrc, int offset, const SkPMColor ctable[]) {
SkASSERT(!ctable);
auto src32 = (const uint32_t*)(src+offset);
auto dst32 = (uint32_t*)dstRow;
// This may miss opportunities to skip when the output is premultiplied,
// e.g. for a src pixel 0x00FFFFFF which is not zero but becomes zero after premultiplication.
while (dstWidth > 0 && *src32 == 0x00000000) {
dstWidth--;
dst32++;
src32 += deltaSrc/4;
}
proc(dst32, (const uint8_t*)src32, dstWidth, bpp, deltaSrc, 0, ctable);
}
std::unique_ptr<SkSwizzler> SkSwizzler::MakeSimple(int srcBPP, const SkImageInfo& dstInfo,
const SkCodec::Options& options) {
RowProc proc = nullptr;
switch (srcBPP) {
case 1: // kGray_8_SkColorType
proc = &sample1;
break;
case 2: // kRGB_565_SkColorType
proc = &sample2;
break;
case 4: // kRGBA_8888_SkColorType
// kBGRA_8888_SkColorType
proc = &sample4;
break;
case 6: // 16 bit PNG no alpha
proc = &sample6;
break;
case 8: // 16 bit PNG with alpha
proc = &sample8;
break;
default:
return nullptr;
}
return Make(dstInfo, &copy, proc, nullptr /*ctable*/, srcBPP,
dstInfo.bytesPerPixel(), options, nullptr /*frame*/);
}
std::unique_ptr<SkSwizzler> SkSwizzler::Make(const SkEncodedInfo& encodedInfo,
const SkPMColor* ctable,
const SkImageInfo& dstInfo,
const SkCodec::Options& options,
const SkIRect* frame) {
if (SkEncodedInfo::kPalette_Color == encodedInfo.color() && nullptr == ctable) {
return nullptr;
}
RowProc fastProc = nullptr;
RowProc proc = nullptr;
SkCodec::ZeroInitialized zeroInit = options.fZeroInitialized;
const bool premultiply = (SkEncodedInfo::kOpaque_Alpha != encodedInfo.alpha()) &&
(kPremul_SkAlphaType == dstInfo.alphaType());
switch (encodedInfo.color()) {
case SkEncodedInfo::kGray_Color:
switch (encodedInfo.bitsPerComponent()) {
case 1:
switch (dstInfo.colorType()) {
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType:
proc = &swizzle_bit_to_n32;
break;
case kRGB_565_SkColorType:
proc = &swizzle_bit_to_565;
break;
case kGray_8_SkColorType:
proc = &swizzle_bit_to_grayscale;
break;
case kRGBA_F16_SkColorType:
proc = &swizzle_bit_to_f16;
break;
default:
return nullptr;
}
break;
case 8:
switch (dstInfo.colorType()) {
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType:
proc = &swizzle_gray_to_n32;
fastProc = &fast_swizzle_gray_to_n32;
break;
case kGray_8_SkColorType:
proc = &sample1;
fastProc = &copy;
break;
case kRGB_565_SkColorType:
proc = &swizzle_gray_to_565;
break;
default:
return nullptr;
}
break;
default:
return nullptr;
}
break;
case SkEncodedInfo::kXAlpha_Color:
case SkEncodedInfo::kGrayAlpha_Color:
switch (dstInfo.colorType()) {
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType:
if (premultiply) {
if (SkCodec::kYes_ZeroInitialized == zeroInit) {
proc = &SkipLeadingGrayAlphaZerosThen
<swizzle_grayalpha_to_n32_premul>;
fastProc = &SkipLeadingGrayAlphaZerosThen
<fast_swizzle_grayalpha_to_n32_premul>;
} else {
proc = &swizzle_grayalpha_to_n32_premul;
fastProc = &fast_swizzle_grayalpha_to_n32_premul;
}
} else {
if (SkCodec::kYes_ZeroInitialized == zeroInit) {
proc = &SkipLeadingGrayAlphaZerosThen
<swizzle_grayalpha_to_n32_unpremul>;
fastProc = &SkipLeadingGrayAlphaZerosThen
<fast_swizzle_grayalpha_to_n32_unpremul>;
} else {
proc = &swizzle_grayalpha_to_n32_unpremul;
fastProc = &fast_swizzle_grayalpha_to_n32_unpremul;
}
}
break;
case kAlpha_8_SkColorType:
proc = &swizzle_grayalpha_to_a8;
break;
default:
return nullptr;
}
break;
case SkEncodedInfo::kPalette_Color:
// We assume that the color table is premultiplied and swizzled
// as desired.
switch (encodedInfo.bitsPerComponent()) {
case 1:
case 2:
case 4:
switch (dstInfo.colorType()) {
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType:
proc = &swizzle_small_index_to_n32;
break;
case kRGB_565_SkColorType:
proc = &swizzle_small_index_to_565;
break;
default:
return nullptr;
}
break;
case 8:
switch (dstInfo.colorType()) {
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType:
if (SkCodec::kYes_ZeroInitialized == zeroInit) {
proc = &swizzle_index_to_n32_skipZ;
} else {
proc = &swizzle_index_to_n32;
}
break;
case kRGB_565_SkColorType:
proc = &swizzle_index_to_565;
break;
default:
return nullptr;
}
break;
default:
return nullptr;
}
break;
case SkEncodedInfo::k565_Color:
// Treat 565 exactly like RGB (since it's still encoded as 8 bits per component).
// We just mark as 565 when we have a hint that there are only 5/6/5 "significant"
// bits in each channel.
case SkEncodedInfo::kRGB_Color:
switch (dstInfo.colorType()) {
case kRGBA_8888_SkColorType:
if (16 == encodedInfo.bitsPerComponent()) {
proc = &swizzle_rgb16_to_rgba;
break;
}
SkASSERT(8 == encodedInfo.bitsPerComponent());
proc = &swizzle_rgb_to_rgba;
fastProc = &fast_swizzle_rgb_to_rgba;
break;
case kBGRA_8888_SkColorType:
if (16 == encodedInfo.bitsPerComponent()) {
proc = &swizzle_rgb16_to_bgra;
break;
}
SkASSERT(8 == encodedInfo.bitsPerComponent());
proc = &swizzle_rgb_to_bgra;
fastProc = &fast_swizzle_rgb_to_bgra;
break;
case kRGB_565_SkColorType:
if (16 == encodedInfo.bitsPerComponent()) {
proc = &swizzle_rgb16_to_565;
break;
}
proc = &swizzle_rgb_to_565;
break;
default:
return nullptr;
}
break;
case SkEncodedInfo::kRGBA_Color:
switch (dstInfo.colorType()) {
case kRGBA_8888_SkColorType:
if (16 == encodedInfo.bitsPerComponent()) {
proc = premultiply ? &swizzle_rgba16_to_rgba_premul :
&swizzle_rgba16_to_rgba_unpremul;
break;
}
SkASSERT(8 == encodedInfo.bitsPerComponent());
if (premultiply) {
if (SkCodec::kYes_ZeroInitialized == zeroInit) {
proc = &SkipLeading8888ZerosThen<swizzle_rgba_to_rgba_premul>;
fastProc = &SkipLeading8888ZerosThen
<fast_swizzle_rgba_to_rgba_premul>;
} else {
proc = &swizzle_rgba_to_rgba_premul;
fastProc = &fast_swizzle_rgba_to_rgba_premul;
}
} else {
if (SkCodec::kYes_ZeroInitialized == zeroInit) {
proc = &SkipLeading8888ZerosThen<sample4>;
fastProc = &SkipLeading8888ZerosThen<copy>;
} else {
proc = &sample4;
fastProc = &copy;
}
}
break;
case kBGRA_8888_SkColorType:
if (16 == encodedInfo.bitsPerComponent()) {
proc = premultiply ? &swizzle_rgba16_to_bgra_premul :
&swizzle_rgba16_to_bgra_unpremul;
break;
}
SkASSERT(8 == encodedInfo.bitsPerComponent());
if (premultiply) {
if (SkCodec::kYes_ZeroInitialized == zeroInit) {
proc = &SkipLeading8888ZerosThen<swizzle_rgba_to_bgra_premul>;
fastProc = &SkipLeading8888ZerosThen
<fast_swizzle_rgba_to_bgra_premul>;
} else {
proc = &swizzle_rgba_to_bgra_premul;
fastProc = &fast_swizzle_rgba_to_bgra_premul;
}
} else {
if (SkCodec::kYes_ZeroInitialized == zeroInit) {
proc = &SkipLeading8888ZerosThen<swizzle_rgba_to_bgra_unpremul>;
fastProc = &SkipLeading8888ZerosThen
<fast_swizzle_rgba_to_bgra_unpremul>;
} else {
proc = &swizzle_rgba_to_bgra_unpremul;
fastProc = &fast_swizzle_rgba_to_bgra_unpremul;
}
}
break;
default:
return nullptr;
}
break;
case SkEncodedInfo::kBGR_Color:
switch (dstInfo.colorType()) {
case kBGRA_8888_SkColorType:
proc = &swizzle_rgb_to_rgba;
fastProc = &fast_swizzle_rgb_to_rgba;
break;
case kRGBA_8888_SkColorType:
proc = &swizzle_rgb_to_bgra;
fastProc = &fast_swizzle_rgb_to_bgra;
break;
case kRGB_565_SkColorType:
proc = &swizzle_bgr_to_565;
break;
default:
return nullptr;
}
break;
case SkEncodedInfo::kBGRX_Color:
switch (dstInfo.colorType()) {
case kBGRA_8888_SkColorType:
proc = &swizzle_rgb_to_rgba;
break;
case kRGBA_8888_SkColorType:
proc = &swizzle_rgb_to_bgra;
break;
case kRGB_565_SkColorType:
proc = &swizzle_bgr_to_565;
break;
default:
return nullptr;
}
break;
case SkEncodedInfo::kBGRA_Color:
switch (dstInfo.colorType()) {
case kBGRA_8888_SkColorType:
if (premultiply) {
if (SkCodec::kYes_ZeroInitialized == zeroInit) {
proc = &SkipLeading8888ZerosThen<swizzle_rgba_to_rgba_premul>;
fastProc = &SkipLeading8888ZerosThen
<fast_swizzle_rgba_to_rgba_premul>;
} else {
proc = &swizzle_rgba_to_rgba_premul;
fastProc = &fast_swizzle_rgba_to_rgba_premul;
}
} else {
if (SkCodec::kYes_ZeroInitialized == zeroInit) {
proc = &SkipLeading8888ZerosThen<sample4>;
fastProc = &SkipLeading8888ZerosThen<copy>;
} else {
proc = &sample4;
fastProc = &copy;
}
}
break;
case kRGBA_8888_SkColorType:
if (premultiply) {
if (SkCodec::kYes_ZeroInitialized == zeroInit) {
proc = &SkipLeading8888ZerosThen<swizzle_rgba_to_bgra_premul>;
fastProc = &SkipLeading8888ZerosThen
<fast_swizzle_rgba_to_bgra_premul>;
} else {
proc = &swizzle_rgba_to_bgra_premul;
fastProc = &fast_swizzle_rgba_to_bgra_premul;
}
} else {
if (SkCodec::kYes_ZeroInitialized == zeroInit) {
proc = &SkipLeading8888ZerosThen<swizzle_rgba_to_bgra_unpremul>;
fastProc = &SkipLeading8888ZerosThen
<fast_swizzle_rgba_to_bgra_unpremul>;
} else {
proc = &swizzle_rgba_to_bgra_unpremul;
fastProc = &fast_swizzle_rgba_to_bgra_unpremul;
}
}
break;
default:
return nullptr;
}
break;
case SkEncodedInfo::kInvertedCMYK_Color:
switch (dstInfo.colorType()) {
case kRGBA_8888_SkColorType:
proc = &swizzle_cmyk_to_rgba;
fastProc = &fast_swizzle_cmyk_to_rgba;
break;
case kBGRA_8888_SkColorType:
proc = &swizzle_cmyk_to_bgra;
fastProc = &fast_swizzle_cmyk_to_bgra;
break;
case kRGB_565_SkColorType:
proc = &swizzle_cmyk_to_565;
break;
default:
return nullptr;
}
break;
default:
return nullptr;
}
// Store bpp in bytes if it is an even multiple, otherwise use bits
uint8_t bitsPerPixel = encodedInfo.bitsPerPixel();
int srcBPP = SkIsAlign8(bitsPerPixel) ? bitsPerPixel / 8 : bitsPerPixel;
int dstBPP = dstInfo.bytesPerPixel();
return Make(dstInfo, fastProc, proc, ctable, srcBPP, dstBPP, options, frame);
}
std::unique_ptr<SkSwizzler> SkSwizzler::Make(const SkImageInfo& dstInfo,
RowProc fastProc, RowProc proc, const SkPMColor* ctable, int srcBPP,
int dstBPP, const SkCodec::Options& options, const SkIRect* frame) {
int srcOffset = 0;
int srcWidth = dstInfo.width();
int dstOffset = 0;
int dstWidth = srcWidth;
if (options.fSubset) {
// We do not currently support subset decodes for image types that may have
// frames (gif).
SkASSERT(!frame);
srcOffset = options.fSubset->left();
srcWidth = options.fSubset->width();
dstWidth = srcWidth;
} else if (frame) {
dstOffset = frame->left();
srcWidth = frame->width();
}
return std::unique_ptr<SkSwizzler>(new SkSwizzler(fastProc, proc, ctable, srcOffset, srcWidth,
dstOffset, dstWidth, srcBPP, dstBPP));
}
SkSwizzler::SkSwizzler(RowProc fastProc, RowProc proc, const SkPMColor* ctable, int srcOffset,
int srcWidth, int dstOffset, int dstWidth, int srcBPP, int dstBPP)
: fFastProc(fastProc)
, fSlowProc(proc)
, fActualProc(fFastProc ? fFastProc : fSlowProc)
, fColorTable(ctable)
, fSrcOffset(srcOffset)
, fDstOffset(dstOffset)
, fSrcOffsetUnits(srcOffset * srcBPP)
, fDstOffsetBytes(dstOffset * dstBPP)
, fSrcWidth(srcWidth)
, fDstWidth(dstWidth)
, fSwizzleWidth(srcWidth)
, fAllocatedWidth(dstWidth)
, fSampleX(1)
, fSrcBPP(srcBPP)
, fDstBPP(dstBPP)
{}
int SkSwizzler::onSetSampleX(int sampleX) {
SkASSERT(sampleX > 0);
fSampleX = sampleX;
fDstOffsetBytes = (fDstOffset / sampleX) * fDstBPP;
fSwizzleWidth = get_scaled_dimension(fSrcWidth, sampleX);
fAllocatedWidth = get_scaled_dimension(fDstWidth, sampleX);
int frameSampleX = sampleX;
if (fSrcWidth < fDstWidth) {
// Although SkSampledCodec adjusted sampleX so that it will never be
// larger than the width of the image (or subset, if applicable), it
// doesn't account for the width of a subset frame (i.e. gif). As a
// result, get_start_coord(sampleX) could result in fSrcOffsetUnits
// being wider than fSrcWidth. Compute a sampling rate based on the
// frame width to ensure that fSrcOffsetUnits is sensible.
frameSampleX = fSrcWidth / fSwizzleWidth;
}
fSrcOffsetUnits = (get_start_coord(frameSampleX) + fSrcOffset) * fSrcBPP;
if (fDstOffsetBytes > 0) {
const size_t dstSwizzleBytes = fSwizzleWidth * fDstBPP;
const size_t dstAllocatedBytes = fAllocatedWidth * fDstBPP;
if (fDstOffsetBytes + dstSwizzleBytes > dstAllocatedBytes) {
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
SkAndroidFrameworkUtils::SafetyNetLog("118143775");
#endif
SkASSERT(dstSwizzleBytes <= dstAllocatedBytes);
fDstOffsetBytes = dstAllocatedBytes - dstSwizzleBytes;
}
}
// The optimized swizzler functions do not support sampling. Sampled swizzles
// are already fast because they skip pixels. We haven't seen a situation
// where speeding up sampling has a significant impact on total decode time.
if (1 == fSampleX && fFastProc) {
fActualProc = fFastProc;
} else {
fActualProc = fSlowProc;
}
return fAllocatedWidth;
}
void SkSwizzler::swizzle(void* dst, const uint8_t* SK_RESTRICT src) {
SkASSERT(nullptr != dst && nullptr != src);
fActualProc(SkTAddOffset<void>(dst, fDstOffsetBytes), src, fSwizzleWidth, fSrcBPP,
fSampleX * fSrcBPP, fSrcOffsetUnits, fColorTable);
}