blob: 41503af17cf27232b26469fb81144773b52bcf32 [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkPDFDevice.h"
#include "SkAdvancedTypefaceMetrics.h"
#include "SkAnnotationKeys.h"
#include "SkBitmapDevice.h"
#include "SkBitmapKey.h"
#include "SkCanvas.h"
#include "SkClipOpPriv.h"
#include "SkClusterator.h"
#include "SkColor.h"
#include "SkColorFilter.h"
#include "SkDraw.h"
#include "SkGlyphCache.h"
#include "SkGlyphRun.h"
#include "SkImageFilterCache.h"
#include "SkJpegEncoder.h"
#include "SkMakeUnique.h"
#include "SkMaskFilterBase.h"
#include "SkPDFBitmap.h"
#include "SkPDFCanon.h"
#include "SkPDFDocumentPriv.h"
#include "SkPDFFont.h"
#include "SkPDFFormXObject.h"
#include "SkPDFGraphicState.h"
#include "SkPDFResourceDict.h"
#include "SkPDFShader.h"
#include "SkPDFTypes.h"
#include "SkPDFUtils.h"
#include "SkPath.h"
#include "SkPathEffect.h"
#include "SkPathOps.h"
#include "SkRRect.h"
#include "SkRasterClip.h"
#include "SkScopeExit.h"
#include "SkString.h"
#include "SkSurface.h"
#include "SkTemplates.h"
#include "SkTextBlob.h"
#include "SkTextFormatParams.h"
#include "SkTo.h"
#include "SkUTF.h"
#include "SkXfermodeInterpretation.h"
#include <vector>
#ifndef SK_PDF_MASK_QUALITY
// If MASK_QUALITY is in [0,100], will be used for JpegEncoder.
// Otherwise, just encode masks losslessly.
#define SK_PDF_MASK_QUALITY 50
// Since these masks are used for blurry shadows, we shouldn't need
// high quality. Raise this value if your shadows have visible JPEG
// artifacts.
// If SkJpegEncoder::Encode fails, we will fall back to the lossless
// encoding.
#endif
// Utility functions
static SkPath to_path(const SkRect& r) {
SkPath p;
p.addRect(r);
return p;
}
// This function destroys the mask and either frees or takes the pixels.
sk_sp<SkImage> mask_to_greyscale_image(SkMask* mask) {
sk_sp<SkImage> img;
SkPixmap pm(SkImageInfo::Make(mask->fBounds.width(), mask->fBounds.height(),
kGray_8_SkColorType, kOpaque_SkAlphaType),
mask->fImage, mask->fRowBytes);
const int imgQuality = SK_PDF_MASK_QUALITY;
if (imgQuality <= 100 && imgQuality >= 0) {
SkDynamicMemoryWStream buffer;
SkJpegEncoder::Options jpegOptions;
jpegOptions.fQuality = imgQuality;
if (SkJpegEncoder::Encode(&buffer, pm, jpegOptions)) {
img = SkImage::MakeFromEncoded(buffer.detachAsData());
SkASSERT(img);
if (img) {
SkMask::FreeImage(mask->fImage);
}
}
}
if (!img) {
img = SkImage::MakeFromRaster(pm, [](const void* p, void*) { SkMask::FreeImage((void*)p); },
nullptr);
}
*mask = SkMask(); // destructive;
return img;
}
sk_sp<SkImage> alpha_image_to_greyscale_image(const SkImage* mask) {
int w = mask->width(), h = mask->height();
SkBitmap greyBitmap;
greyBitmap.allocPixels(SkImageInfo::Make(w, h, kGray_8_SkColorType, kOpaque_SkAlphaType));
if (!mask->readPixels(SkImageInfo::MakeA8(w, h),
greyBitmap.getPixels(), greyBitmap.rowBytes(), 0, 0)) {
return nullptr;
}
return SkImage::MakeFromBitmap(greyBitmap);
}
static void draw_points(SkCanvas::PointMode mode,
size_t count,
const SkPoint* points,
const SkPaint& paint,
const SkIRect& bounds,
const SkMatrix& ctm,
SkBaseDevice* device) {
SkRasterClip rc(bounds);
SkDraw draw;
draw.fDst = SkPixmap(SkImageInfo::MakeUnknown(bounds.right(), bounds.bottom()), nullptr, 0);
draw.fMatrix = &ctm;
draw.fRC = &rc;
draw.drawPoints(mode, count, points, paint, device);
}
// If the paint will definitely draw opaquely, replace kSrc with
// kSrcOver. http://crbug.com/473572
static void replace_srcmode_on_opaque_paint(SkPaint* paint) {
if (kSrcOver_SkXfermodeInterpretation == SkInterpretXfermode(*paint, false)) {
paint->setBlendMode(SkBlendMode::kSrcOver);
}
}
// A shader's matrix is: CTMM x LocalMatrix x WrappingLocalMatrix. We want to
// switch to device space, where CTM = I, while keeping the original behavior.
//
// I * LocalMatrix * NewWrappingMatrix = CTM * LocalMatrix
// LocalMatrix * NewWrappingMatrix = CTM * LocalMatrix
// InvLocalMatrix * LocalMatrix * NewWrappingMatrix = InvLocalMatrix * CTM * LocalMatrix
// NewWrappingMatrix = InvLocalMatrix * CTM * LocalMatrix
//
static void transform_shader(SkPaint* paint, const SkMatrix& ctm) {
SkMatrix lm = SkPDFUtils::GetShaderLocalMatrix(paint->getShader());
SkMatrix lmInv;
if (lm.invert(&lmInv)) {
SkMatrix m = SkMatrix::Concat(SkMatrix::Concat(lmInv, ctm), lm);
paint->setShader(paint->getShader()->makeWithLocalMatrix(m));
}
}
static void emit_pdf_color(SkColor4f color, SkWStream* result) {
SkASSERT(color.fA == 1); // We handle alpha elsewhere.
SkPDFUtils::AppendColorComponentF(color.fR, result);
result->writeText(" ");
SkPDFUtils::AppendColorComponentF(color.fG, result);
result->writeText(" ");
SkPDFUtils::AppendColorComponentF(color.fB, result);
result->writeText(" ");
}
// If the paint has a color filter, apply the color filter to the shader or the
// paint color. Remove the color filter.
void remove_color_filter(SkPaint* paint) {
if (SkColorFilter* cf = paint->getColorFilter()) {
if (SkShader* shader = paint->getShader()) {
paint->setShader(shader->makeWithColorFilter(paint->refColorFilter()));
} else {
paint->setColor4f(cf->filterColor4f(paint->getColor4f(), nullptr), nullptr);
}
paint->setColorFilter(nullptr);
}
}
SkPDFDevice::GraphicStackState::GraphicStackState(SkDynamicMemoryWStream* s) : fContentStream(s) {
}
void SkPDFDevice::GraphicStackState::drainStack() {
if (fContentStream) {
while (fStackDepth) {
this->pop();
}
}
SkASSERT(fStackDepth == 0);
}
void SkPDFDevice::GraphicStackState::push() {
SkASSERT(fStackDepth < kMaxStackDepth);
fContentStream->writeText("q\n");
fStackDepth++;
fEntries[fStackDepth] = fEntries[fStackDepth - 1];
}
void SkPDFDevice::GraphicStackState::pop() {
SkASSERT(fStackDepth > 0);
fContentStream->writeText("Q\n");
fEntries[fStackDepth] = SkPDFDevice::GraphicStateEntry();
fStackDepth--;
}
/* Calculate an inverted path's equivalent non-inverted path, given the
* canvas bounds.
* outPath may alias with invPath (since this is supported by PathOps).
*/
static bool calculate_inverse_path(const SkRect& bounds, const SkPath& invPath,
SkPath* outPath) {
SkASSERT(invPath.isInverseFillType());
return Op(to_path(bounds), invPath, kIntersect_SkPathOp, outPath);
}
static SkRect rect_intersect(SkRect u, SkRect v) {
if (u.isEmpty() || v.isEmpty()) { return {0, 0, 0, 0}; }
return u.intersect(v) ? u : SkRect{0, 0, 0, 0};
}
// Test to see if the clipstack is a simple rect, If so, we can avoid all PathOps code
// and speed thing up.
static bool is_rect(const SkClipStack& clipStack, const SkRect& bounds, SkRect* dst) {
SkRect currentClip = bounds;
SkClipStack::Iter iter(clipStack, SkClipStack::Iter::kBottom_IterStart);
while (const SkClipStack::Element* element = iter.next()) {
SkRect elementRect{0, 0, 0, 0};
switch (element->getDeviceSpaceType()) {
case SkClipStack::Element::DeviceSpaceType::kEmpty:
break;
case SkClipStack::Element::DeviceSpaceType::kRect:
elementRect = element->getDeviceSpaceRect();
break;
default:
return false;
}
switch (element->getOp()) {
case kReplace_SkClipOp:
currentClip = rect_intersect(bounds, elementRect);
break;
case SkClipOp::kIntersect:
currentClip = rect_intersect(currentClip, elementRect);
break;
default:
return false;
}
}
*dst = currentClip;
return true;
}
static void append_clip(const SkClipStack& clipStack,
const SkIRect& bounds,
SkWStream* wStream) {
// The bounds are slightly outset to ensure this is correct in the
// face of floating-point accuracy and possible SkRegion bitmap
// approximations.
SkRect outsetBounds = SkRect::Make(bounds.makeOutset(1, 1));
SkRect clipStackRect;
if (is_rect(clipStack, outsetBounds, &clipStackRect)) {
SkPDFUtils::AppendRectangle(clipStackRect, wStream);
wStream->writeText("W* n\n");
return;
}
SkPath clipPath;
(void)clipStack.asPath(&clipPath);
if (Op(clipPath, to_path(outsetBounds), kIntersect_SkPathOp, &clipPath)) {
SkPDFUtils::EmitPath(clipPath, SkPaint::kFill_Style, wStream);
SkPath::FillType clipFill = clipPath.getFillType();
NOT_IMPLEMENTED(clipFill == SkPath::kInverseEvenOdd_FillType, false);
NOT_IMPLEMENTED(clipFill == SkPath::kInverseWinding_FillType, false);
if (clipFill == SkPath::kEvenOdd_FillType) {
wStream->writeText("W* n\n");
} else {
wStream->writeText("W n\n");
}
}
// If Op() fails (pathological case; e.g. input values are
// extremely large or NaN), emit no clip at all.
}
// TODO(vandebo): Take advantage of SkClipStack::getSaveCount(), the PDF
// graphic state stack, and the fact that we can know all the clips used
// on the page to optimize this.
void SkPDFDevice::GraphicStackState::updateClip(const SkClipStack* clipStack,
const SkIRect& bounds) {
uint32_t clipStackGenID = clipStack ? clipStack->getTopmostGenID()
: SkClipStack::kWideOpenGenID;
if (clipStackGenID == currentEntry()->fClipStackGenID) {
return;
}
while (fStackDepth > 0) {
this->pop();
if (clipStackGenID == currentEntry()->fClipStackGenID) {
return;
}
}
SkASSERT(currentEntry()->fClipStackGenID == SkClipStack::kWideOpenGenID);
if (clipStackGenID != SkClipStack::kWideOpenGenID) {
SkASSERT(clipStack);
this->push();
currentEntry()->fClipStackGenID = clipStackGenID;
append_clip(*clipStack, bounds, fContentStream);
}
}
static void append_transform(const SkMatrix& matrix, SkWStream* content) {
SkScalar values[6];
if (!matrix.asAffine(values)) {
SkMatrix::SetAffineIdentity(values);
}
for (SkScalar v : values) {
SkPDFUtils::AppendScalar(v, content);
content->writeText(" ");
}
content->writeText("cm\n");
}
void SkPDFDevice::GraphicStackState::updateMatrix(const SkMatrix& matrix) {
if (matrix == currentEntry()->fMatrix) {
return;
}
if (currentEntry()->fMatrix.getType() != SkMatrix::kIdentity_Mask) {
SkASSERT(fStackDepth > 0);
SkASSERT(fEntries[fStackDepth].fClipStackGenID ==
fEntries[fStackDepth -1].fClipStackGenID);
this->pop();
SkASSERT(currentEntry()->fMatrix.getType() == SkMatrix::kIdentity_Mask);
}
if (matrix.getType() == SkMatrix::kIdentity_Mask) {
return;
}
this->push();
append_transform(matrix, fContentStream);
currentEntry()->fMatrix = matrix;
}
void SkPDFDevice::GraphicStackState::updateDrawingState(const SkPDFDevice::GraphicStateEntry& state) {
// PDF treats a shader as a color, so we only set one or the other.
if (state.fShaderIndex >= 0) {
if (state.fShaderIndex != currentEntry()->fShaderIndex) {
SkPDFUtils::ApplyPattern(state.fShaderIndex, fContentStream);
currentEntry()->fShaderIndex = state.fShaderIndex;
}
} else {
if (state.fColor != currentEntry()->fColor ||
currentEntry()->fShaderIndex >= 0) {
emit_pdf_color(state.fColor, fContentStream);
fContentStream->writeText("RG ");
emit_pdf_color(state.fColor, fContentStream);
fContentStream->writeText("rg\n");
currentEntry()->fColor = state.fColor;
currentEntry()->fShaderIndex = -1;
}
}
if (state.fGraphicStateIndex != currentEntry()->fGraphicStateIndex) {
SkPDFUtils::ApplyGraphicState(state.fGraphicStateIndex, fContentStream);
currentEntry()->fGraphicStateIndex = state.fGraphicStateIndex;
}
if (state.fTextScaleX) {
if (state.fTextScaleX != currentEntry()->fTextScaleX) {
SkScalar pdfScale = state.fTextScaleX * 100;
SkPDFUtils::AppendScalar(pdfScale, fContentStream);
fContentStream->writeText(" Tz\n");
currentEntry()->fTextScaleX = state.fTextScaleX;
}
if (state.fTextFill != currentEntry()->fTextFill) {
static_assert(SkPaint::kFill_Style == 0, "enum_must_match_value");
static_assert(SkPaint::kStroke_Style == 1, "enum_must_match_value");
static_assert(SkPaint::kStrokeAndFill_Style == 2, "enum_must_match_value");
fContentStream->writeDecAsText(state.fTextFill);
fContentStream->writeText(" Tr\n");
currentEntry()->fTextFill = state.fTextFill;
}
}
}
static bool not_supported_for_layers(const SkPaint& layerPaint) {
// PDF does not support image filters, so render them on CPU.
// Note that this rendering is done at "screen" resolution (100dpi), not
// printer resolution.
// TODO: It may be possible to express some filters natively using PDF
// to improve quality and file size (https://bug.skia.org/3043)
// TODO: should we return true if there is a colorfilter?
return layerPaint.getImageFilter() != nullptr;
}
SkBaseDevice* SkPDFDevice::onCreateDevice(const CreateInfo& cinfo, const SkPaint* layerPaint) {
if (layerPaint && not_supported_for_layers(*layerPaint)) {
// need to return a raster device, which we will detect in drawDevice()
return SkBitmapDevice::Create(cinfo.fInfo, SkSurfaceProps(0, kUnknown_SkPixelGeometry));
}
return new SkPDFDevice(cinfo.fInfo.dimensions(), fDocument);
}
SkPDFCanon* SkPDFDevice::getCanon() const { return fDocument->canon(); }
// A helper class to automatically finish a ContentEntry at the end of a
// drawing method and maintain the state needed between set up and finish.
class ScopedContentEntry {
public:
ScopedContentEntry(SkPDFDevice* device,
const SkClipStack* clipStack,
const SkMatrix& matrix,
const SkPaint& paint,
bool hasText = false)
: fDevice(device)
, fBlendMode(SkBlendMode::kSrcOver)
, fClipStack(clipStack)
{
if (matrix.hasPerspective()) {
NOT_IMPLEMENTED(!matrix.hasPerspective(), false);
return;
}
fBlendMode = paint.getBlendMode();
fContentStream =
fDevice->setUpContentEntry(clipStack, matrix, paint, hasText, &fDstFormXObject);
}
ScopedContentEntry(SkPDFDevice* dev, const SkPaint& paint, bool hasText = false)
: ScopedContentEntry(dev, &dev->cs(), dev->ctm(), paint, hasText) {}
~ScopedContentEntry() {
if (fContentStream) {
SkPath* shape = &fShape;
if (shape->isEmpty()) {
shape = nullptr;
}
fDevice->finishContentEntry(fClipStack, fBlendMode, std::move(fDstFormXObject), shape);
}
}
explicit operator bool() const { return fContentStream != nullptr; }
SkDynamicMemoryWStream* stream() { return fContentStream; }
/* Returns true when we explicitly need the shape of the drawing. */
bool needShape() {
switch (fBlendMode) {
case SkBlendMode::kClear:
case SkBlendMode::kSrc:
case SkBlendMode::kSrcIn:
case SkBlendMode::kSrcOut:
case SkBlendMode::kDstIn:
case SkBlendMode::kDstOut:
case SkBlendMode::kSrcATop:
case SkBlendMode::kDstATop:
case SkBlendMode::kModulate:
return true;
default:
return false;
}
}
/* Returns true unless we only need the shape of the drawing. */
bool needSource() {
if (fBlendMode == SkBlendMode::kClear) {
return false;
}
return true;
}
/* If the shape is different than the alpha component of the content, then
* setShape should be called with the shape. In particular, images and
* devices have rectangular shape.
*/
void setShape(const SkPath& shape) {
fShape = shape;
}
private:
SkPDFDevice* fDevice = nullptr;
SkDynamicMemoryWStream* fContentStream = nullptr;
SkBlendMode fBlendMode;
sk_sp<SkPDFObject> fDstFormXObject;
SkPath fShape;
const SkClipStack* fClipStack;
};
////////////////////////////////////////////////////////////////////////////////
SkPDFDevice::SkPDFDevice(SkISize pageSize, SkPDFDocument* doc, const SkMatrix& transform)
: INHERITED(SkImageInfo::MakeUnknown(pageSize.width(), pageSize.height()),
SkSurfaceProps(0, kUnknown_SkPixelGeometry))
, fInitialTransform(transform)
, fNodeId(0)
, fDocument(doc)
{
SkASSERT(!pageSize.isEmpty());
}
SkPDFDevice::~SkPDFDevice() = default;
void SkPDFDevice::reset() {
fLinkToURLs = std::vector<RectWithData>();
fLinkToDestinations = std::vector<RectWithData>();
fNamedDestinations = std::vector<NamedDestination>();
fGraphicStateResources = std::vector<sk_sp<SkPDFObject>>();
fXObjectResources = std::vector<sk_sp<SkPDFObject>>();
fShaderResources = std::vector<sk_sp<SkPDFObject>>();
fFontResources.reset();
fContent.reset();
fActiveStackState = GraphicStackState();
}
void SkPDFDevice::drawAnnotation(const SkRect& rect, const char key[], SkData* value) {
if (!value) {
return;
}
if (rect.isEmpty()) {
if (!strcmp(key, SkPDFGetNodeIdKey())) {
int nodeID;
if (value->size() != sizeof(nodeID)) { return; }
memcpy(&nodeID, value->data(), sizeof(nodeID));
fNodeId = nodeID;
return;
}
if (!strcmp(SkAnnotationKeys::Define_Named_Dest_Key(), key)) {
SkPoint transformedPoint;
this->ctm().mapXY(rect.x(), rect.y(), &transformedPoint);
fNamedDestinations.emplace_back(NamedDestination{sk_ref_sp(value), transformedPoint});
}
return;
}
// Convert to path to handle non-90-degree rotations.
SkPath path = to_path(rect);
path.transform(this->ctm(), &path);
SkPath clip;
(void)this->cs().asPath(&clip);
Op(clip, path, kIntersect_SkPathOp, &path);
// PDF wants a rectangle only.
SkRect transformedRect = path.getBounds();
if (transformedRect.isEmpty()) {
return;
}
if (!strcmp(SkAnnotationKeys::URL_Key(), key)) {
fLinkToURLs.emplace_back(RectWithData{transformedRect, sk_ref_sp(value)});
} else if (!strcmp(SkAnnotationKeys::Link_Named_Dest_Key(), key)) {
fLinkToDestinations.emplace_back(RectWithData{transformedRect, sk_ref_sp(value)});
}
}
void SkPDFDevice::drawPaint(const SkPaint& srcPaint) {
SkMatrix inverse;
if (!this->ctm().invert(&inverse)) {
return;
}
SkRect bbox = this->cs().bounds(this->bounds());
inverse.mapRect(&bbox);
bbox.roundOut(&bbox);
if (this->hasEmptyClip()) {
return;
}
SkPaint newPaint = srcPaint;
newPaint.setStyle(SkPaint::kFill_Style);
this->drawRect(bbox, newPaint);
}
void SkPDFDevice::drawPoints(SkCanvas::PointMode mode,
size_t count,
const SkPoint* points,
const SkPaint& srcPaint) {
if (this->hasEmptyClip()) {
return;
}
SkPaint passedPaint = srcPaint;
remove_color_filter(&passedPaint);
replace_srcmode_on_opaque_paint(&passedPaint);
if (SkCanvas::kPoints_PointMode != mode) {
passedPaint.setStyle(SkPaint::kStroke_Style);
}
if (count == 0) {
return;
}
// SkDraw::drawPoints converts to multiple calls to fDevice->drawPath.
// We only use this when there's a path effect because of the overhead
// of multiple calls to setUpContentEntry it causes.
if (passedPaint.getPathEffect()) {
draw_points(mode, count, points, passedPaint,
this->devClipBounds(), this->ctm(), this);
return;
}
const SkPaint* paint = &passedPaint;
SkPaint modifiedPaint;
if (mode == SkCanvas::kPoints_PointMode &&
paint->getStrokeCap() != SkPaint::kRound_Cap) {
modifiedPaint = *paint;
paint = &modifiedPaint;
if (paint->getStrokeWidth()) {
// PDF won't draw a single point with square/butt caps because the
// orientation is ambiguous. Draw a rectangle instead.
modifiedPaint.setStyle(SkPaint::kFill_Style);
SkScalar strokeWidth = paint->getStrokeWidth();
SkScalar halfStroke = SkScalarHalf(strokeWidth);
for (size_t i = 0; i < count; i++) {
SkRect r = SkRect::MakeXYWH(points[i].fX, points[i].fY, 0, 0);
r.inset(-halfStroke, -halfStroke);
this->drawRect(r, modifiedPaint);
}
return;
} else {
modifiedPaint.setStrokeCap(SkPaint::kRound_Cap);
}
}
ScopedContentEntry content(this, *paint);
if (!content) {
return;
}
SkDynamicMemoryWStream* contentStream = content.stream();
switch (mode) {
case SkCanvas::kPolygon_PointMode:
SkPDFUtils::MoveTo(points[0].fX, points[0].fY, contentStream);
for (size_t i = 1; i < count; i++) {
SkPDFUtils::AppendLine(points[i].fX, points[i].fY, contentStream);
}
SkPDFUtils::StrokePath(contentStream);
break;
case SkCanvas::kLines_PointMode:
for (size_t i = 0; i < count/2; i++) {
SkPDFUtils::MoveTo(points[i * 2].fX, points[i * 2].fY, contentStream);
SkPDFUtils::AppendLine(points[i * 2 + 1].fX, points[i * 2 + 1].fY, contentStream);
SkPDFUtils::StrokePath(contentStream);
}
break;
case SkCanvas::kPoints_PointMode:
SkASSERT(paint->getStrokeCap() == SkPaint::kRound_Cap);
for (size_t i = 0; i < count; i++) {
SkPDFUtils::MoveTo(points[i].fX, points[i].fY, contentStream);
SkPDFUtils::ClosePath(contentStream);
SkPDFUtils::StrokePath(contentStream);
}
break;
default:
SkASSERT(false);
}
}
static sk_sp<SkPDFDict> create_link_annotation(const SkRect& translatedRect) {
auto annotation = sk_make_sp<SkPDFDict>("Annot");
annotation->insertName("Subtype", "Link");
annotation->insertInt("F", 4); // required by ISO 19005
// Border: 0 = Horizontal corner radius.
// 0 = Vertical corner radius.
// 0 = Width, 0 = no border.
annotation->insertObject("Border", SkPDFMakeArray(0, 0, 0));
annotation->insertObject("Rect", SkPDFMakeArray(translatedRect.fLeft,
translatedRect.fTop,
translatedRect.fRight,
translatedRect.fBottom));
return annotation;
}
static sk_sp<SkPDFDict> create_link_to_url(const SkData* urlData, const SkRect& r) {
sk_sp<SkPDFDict> annotation = create_link_annotation(r);
SkString url(static_cast<const char *>(urlData->data()),
urlData->size() - 1);
auto action = sk_make_sp<SkPDFDict>("Action");
action->insertName("S", "URI");
action->insertString("URI", url);
annotation->insertObject("A", std::move(action));
return annotation;
}
static sk_sp<SkPDFDict> create_link_named_dest(const SkData* nameData,
const SkRect& r) {
sk_sp<SkPDFDict> annotation = create_link_annotation(r);
SkString name(static_cast<const char *>(nameData->data()),
nameData->size() - 1);
annotation->insertName("Dest", name);
return annotation;
}
void SkPDFDevice::drawRect(const SkRect& rect,
const SkPaint& srcPaint) {
if (this->hasEmptyClip()) {
return;
}
SkPaint paint = srcPaint;
remove_color_filter(&paint);
replace_srcmode_on_opaque_paint(&paint);
SkRect r = rect;
r.sort();
if (paint.getPathEffect() || paint.getMaskFilter() || this->ctm().hasPerspective()) {
this->drawPath(to_path(r), paint, true);
return;
}
ScopedContentEntry content(this, paint);
if (!content) {
return;
}
SkPDFUtils::AppendRectangle(r, content.stream());
SkPDFUtils::PaintPath(paint.getStyle(), SkPath::kWinding_FillType, content.stream());
}
void SkPDFDevice::drawRRect(const SkRRect& rrect,
const SkPaint& srcPaint) {
if (this->hasEmptyClip()) {
return;
}
SkPaint paint = srcPaint;
remove_color_filter(&paint);
replace_srcmode_on_opaque_paint(&paint);
SkPath path;
path.addRRect(rrect);
this->drawPath(path, paint, true);
}
void SkPDFDevice::drawOval(const SkRect& oval,
const SkPaint& srcPaint) {
if (this->hasEmptyClip()) {
return;
}
SkPaint paint = srcPaint;
remove_color_filter(&paint);
replace_srcmode_on_opaque_paint(&paint);
SkPath path;
path.addOval(oval);
this->drawPath(path, paint, true);
}
void SkPDFDevice::drawPath(const SkPath& origPath,
const SkPaint& srcPaint,
bool pathIsMutable) {
this->internalDrawPath(this->cs(), this->ctm(), origPath, srcPaint, pathIsMutable);
}
void SkPDFDevice::internalDrawPathWithFilter(const SkClipStack& clipStack,
const SkMatrix& ctm,
const SkPath& origPath,
const SkPaint& origPaint) {
SkASSERT(origPaint.getMaskFilter());
SkPath path(origPath);
SkTCopyOnFirstWrite<SkPaint> paint(origPaint);
SkStrokeRec::InitStyle initStyle = paint->getFillPath(path, &path)
? SkStrokeRec::kFill_InitStyle
: SkStrokeRec::kHairline_InitStyle;
path.transform(ctm, &path);
SkIRect bounds = clipStack.bounds(this->bounds()).roundOut();
SkMask sourceMask;
if (!SkDraw::DrawToMask(path, &bounds, paint->getMaskFilter(), &SkMatrix::I(),
&sourceMask, SkMask::kComputeBoundsAndRenderImage_CreateMode,
initStyle)) {
return;
}
SkAutoMaskFreeImage srcAutoMaskFreeImage(sourceMask.fImage);
SkMask dstMask;
SkIPoint margin;
if (!as_MFB(paint->getMaskFilter())->filterMask(&dstMask, sourceMask, ctm, &margin)) {
return;
}
SkIRect dstMaskBounds = dstMask.fBounds;
sk_sp<SkImage> mask = mask_to_greyscale_image(&dstMask);
// PDF doesn't seem to allow masking vector graphics with an Image XObject.
// Must mask with a Form XObject.
sk_sp<SkPDFDevice> maskDevice = this->makeCongruentDevice();
{
SkCanvas canvas(maskDevice);
canvas.drawImage(mask, dstMaskBounds.x(), dstMaskBounds.y());
}
if (!ctm.isIdentity() && paint->getShader()) {
transform_shader(paint.writable(), ctm); // Since we are using identity matrix.
}
ScopedContentEntry content(this, &clipStack, SkMatrix::I(), *paint);
if (!content) {
return;
}
this->addSMaskGraphicState(std::move(maskDevice), content.stream());
SkPDFUtils::AppendRectangle(SkRect::Make(dstMaskBounds), content.stream());
SkPDFUtils::PaintPath(SkPaint::kFill_Style, path.getFillType(), content.stream());
this->clearMaskOnGraphicState(content.stream());
}
template <typename T,
typename U,
typename = typename std::enable_if<std::is_convertible<U*, T*>::value>::type>
static int find_or_add(std::vector<sk_sp<T>>* vec, sk_sp<U> object) {
SkASSERT(vec);
SkASSERT(object);
for (size_t i = 0; i < vec->size(); ++i) {
if ((*vec)[i].get() == object.get()) {
return SkToInt(i);
}
}
int index = SkToInt(vec->size());
vec->push_back(sk_sp<T>(std::move(object)));
return index;
}
void SkPDFDevice::setGraphicState(sk_sp<SkPDFObject> gs, SkDynamicMemoryWStream* content) {
SkPDFUtils::ApplyGraphicState(find_or_add(&fGraphicStateResources, std::move(gs)), content);
}
void SkPDFDevice::addSMaskGraphicState(sk_sp<SkPDFDevice> maskDevice,
SkDynamicMemoryWStream* contentStream) {
this->setGraphicState(SkPDFGraphicState::GetSMaskGraphicState(
maskDevice->makeFormXObjectFromDevice(true), false,
SkPDFGraphicState::kLuminosity_SMaskMode, this->getCanon()), contentStream);
}
void SkPDFDevice::clearMaskOnGraphicState(SkDynamicMemoryWStream* contentStream) {
// The no-softmask graphic state is used to "turn off" the mask for later draw calls.
sk_sp<SkPDFDict>& noSMaskGS = this->getCanon()->fNoSmaskGraphicState;
if (!noSMaskGS) {
noSMaskGS = sk_make_sp<SkPDFDict>("ExtGState");
noSMaskGS->insertName("SMask", "None");
}
this->setGraphicState(noSMaskGS, contentStream);
}
void SkPDFDevice::internalDrawPath(const SkClipStack& clipStack,
const SkMatrix& ctm,
const SkPath& origPath,
const SkPaint& srcPaint,
bool pathIsMutable) {
if (clipStack.isEmpty(this->bounds())) {
return;
}
SkPaint paint = srcPaint;
remove_color_filter(&paint);
replace_srcmode_on_opaque_paint(&paint);
SkPath modifiedPath;
SkPath* pathPtr = const_cast<SkPath*>(&origPath);
if (paint.getMaskFilter()) {
this->internalDrawPathWithFilter(clipStack, ctm, origPath, paint);
return;
}
SkMatrix matrix = ctm;
if (paint.getPathEffect()) {
if (clipStack.isEmpty(this->bounds())) {
return;
}
if (!pathIsMutable) {
modifiedPath = origPath;
pathPtr = &modifiedPath;
pathIsMutable = true;
}
if (paint.getFillPath(*pathPtr, pathPtr)) {
paint.setStyle(SkPaint::kFill_Style);
} else {
paint.setStyle(SkPaint::kStroke_Style);
paint.setStrokeWidth(0);
}
paint.setPathEffect(nullptr);
}
if (this->handleInversePath(*pathPtr, paint, pathIsMutable)) {
return;
}
if (matrix.getType() & SkMatrix::kPerspective_Mask) {
if (!pathIsMutable) {
modifiedPath = origPath;
pathPtr = &modifiedPath;
pathIsMutable = true;
}
pathPtr->transform(matrix);
if (paint.getShader()) {
transform_shader(&paint, matrix);
}
matrix = SkMatrix::I();
}
ScopedContentEntry content(this, &clipStack, matrix, paint);
if (!content) {
return;
}
constexpr SkScalar kToleranceScale = 0.0625f; // smaller = better conics (circles).
SkScalar matrixScale = matrix.mapRadius(1.0f);
SkScalar tolerance = matrixScale > 0.0f ? kToleranceScale / matrixScale : kToleranceScale;
bool consumeDegeratePathSegments =
paint.getStyle() == SkPaint::kFill_Style ||
(paint.getStrokeCap() != SkPaint::kRound_Cap &&
paint.getStrokeCap() != SkPaint::kSquare_Cap);
SkPDFUtils::EmitPath(*pathPtr, paint.getStyle(), consumeDegeratePathSegments, content.stream(),
tolerance);
SkPDFUtils::PaintPath(paint.getStyle(), pathPtr->getFillType(), content.stream());
}
////////////////////////////////////////////////////////////////////////////////
void SkPDFDevice::drawImageRect(const SkImage* image,
const SkRect* src,
const SkRect& dst,
const SkPaint& paint,
SkCanvas::SrcRectConstraint) {
SkASSERT(image);
this->internalDrawImageRect(SkKeyedImage(sk_ref_sp(const_cast<SkImage*>(image))),
src, dst, paint, this->ctm());
}
void SkPDFDevice::drawBitmapRect(const SkBitmap& bm,
const SkRect* src,
const SkRect& dst,
const SkPaint& paint,
SkCanvas::SrcRectConstraint) {
SkASSERT(!bm.drawsNothing());
this->internalDrawImageRect(SkKeyedImage(bm), src, dst, paint, this->ctm());
}
void SkPDFDevice::drawBitmap(const SkBitmap& bm, SkScalar x, SkScalar y, const SkPaint& paint) {
SkASSERT(!bm.drawsNothing());
auto r = SkRect::MakeXYWH(x, y, bm.width(), bm.height());
this->internalDrawImageRect(SkKeyedImage(bm), nullptr, r, paint, this->ctm());
}
void SkPDFDevice::drawSprite(const SkBitmap& bm, int x, int y, const SkPaint& paint) {
SkASSERT(!bm.drawsNothing());
auto r = SkRect::MakeXYWH(x, y, bm.width(), bm.height());
this->internalDrawImageRect(SkKeyedImage(bm), nullptr, r, paint, SkMatrix::I());
}
void SkPDFDevice::drawImage(const SkImage* image, SkScalar x, SkScalar y, const SkPaint& paint) {
SkASSERT(image);
auto r = SkRect::MakeXYWH(x, y, image->width(), image->height());
this->internalDrawImageRect(SkKeyedImage(sk_ref_sp(const_cast<SkImage*>(image))),
nullptr, r, paint, this->ctm());
}
////////////////////////////////////////////////////////////////////////////////
namespace {
class GlyphPositioner {
public:
GlyphPositioner(SkDynamicMemoryWStream* content,
SkScalar textSkewX,
SkPoint origin)
: fContent(content)
, fCurrentMatrixOrigin(origin)
, fTextSkewX(textSkewX) {
}
~GlyphPositioner() { this->flush(); }
void flush() {
if (fInText) {
fContent->writeText("> Tj\n");
fInText = false;
}
}
void setWideChars(bool wide) {
this->flush();
fWideChars = wide;
}
void writeGlyph(SkPoint xy,
SkScalar advanceWidth,
uint16_t glyph) {
if (!fInitialized) {
// Flip the text about the x-axis to account for origin swap and include
// the passed parameters.
fContent->writeText("1 0 ");
SkPDFUtils::AppendScalar(-fTextSkewX, fContent);
fContent->writeText(" -1 ");
SkPDFUtils::AppendScalar(fCurrentMatrixOrigin.x(), fContent);
fContent->writeText(" ");
SkPDFUtils::AppendScalar(fCurrentMatrixOrigin.y(), fContent);
fContent->writeText(" Tm\n");
fCurrentMatrixOrigin.set(0.0f, 0.0f);
fInitialized = true;
}
SkPoint position = xy - fCurrentMatrixOrigin;
if (position != SkPoint{fXAdvance, 0}) {
this->flush();
SkPDFUtils::AppendScalar(position.x() - position.y() * fTextSkewX, fContent);
fContent->writeText(" ");
SkPDFUtils::AppendScalar(-position.y(), fContent);
fContent->writeText(" Td ");
fCurrentMatrixOrigin = xy;
fXAdvance = 0;
}
fXAdvance += advanceWidth;
if (!fInText) {
fContent->writeText("<");
fInText = true;
}
if (fWideChars) {
SkPDFUtils::WriteUInt16BE(fContent, glyph);
} else {
SkASSERT(0 == glyph >> 8);
SkPDFUtils::WriteUInt8(fContent, static_cast<uint8_t>(glyph));
}
}
private:
SkDynamicMemoryWStream* fContent;
SkPoint fCurrentMatrixOrigin;
SkScalar fXAdvance = 0.0f;
SkScalar fTextSkewX;
bool fWideChars = true;
bool fInText = false;
bool fInitialized = false;
};
} // namespace
static SkUnichar map_glyph(const std::vector<SkUnichar>& glyphToUnicode, SkGlyphID glyph) {
return glyph < glyphToUnicode.size() ? glyphToUnicode[SkToInt(glyph)] : -1;
}
namespace {
struct PositionedGlyph {
SkPoint fPos;
SkGlyphID fGlyph;
};
}
static SkRect get_glyph_bounds_device_space(SkGlyphID gid, SkGlyphCache* cache,
SkScalar xScale, SkScalar yScale,
SkPoint xy, const SkMatrix& ctm) {
const SkGlyph& glyph = cache->getGlyphIDMetrics(gid);
SkRect glyphBounds = {glyph.fLeft * xScale,
glyph.fTop * yScale,
(glyph.fLeft + glyph.fWidth) * xScale,
(glyph.fTop + glyph.fHeight) * yScale};
glyphBounds.offset(xy);
ctm.mapRect(&glyphBounds); // now in dev space.
return glyphBounds;
}
static bool contains(const SkRect& r, SkPoint p) {
return r.left() <= p.x() && p.x() <= r.right() &&
r.top() <= p.y() && p.y() <= r.bottom();
}
void SkPDFDevice::drawGlyphRunAsPath(const SkGlyphRun& glyphRun, SkPoint offset) {
SkPaint paint{glyphRun.paint()};
paint.setTextEncoding(SkPaint::kGlyphID_TextEncoding);
SkPath path;
SkASSERT(paint.getTextEncoding() == SkPaint::kGlyphID_TextEncoding);
paint.getPosTextPath(glyphRun.glyphsIDs().data(),
glyphRun.glyphsIDs().size() * sizeof(SkGlyphID),
glyphRun.positions().data(),
&path);
path.offset(offset.x(), offset.y());
this->drawPath(path, paint, true);
SkPaint transparent;
transparent.setTypeface(paint.getTypeface() ? paint.refTypeface()
: SkTypeface::MakeDefault());
transparent.setTextEncoding(SkPaint::kGlyphID_TextEncoding);
transparent.setColor(SK_ColorTRANSPARENT);
transparent.setTextSize(paint.getTextSize());
transparent.setTextScaleX(paint.getTextScaleX());
transparent.setTextSkewX(paint.getTextSkewX());
SkGlyphRun tmp(glyphRun, transparent);
if (this->ctm().hasPerspective()) {
SkMatrix prevCTM = this->ctm();
this->setCTM(SkMatrix::I());
this->internalDrawGlyphRun(tmp, offset);
this->setCTM(prevCTM);
} else {
this->internalDrawGlyphRun(tmp, offset);
}
}
static bool needs_new_font(SkPDFFont* font, SkGlyphID gid, SkGlyphCache* cache,
SkAdvancedTypefaceMetrics::FontType fontType) {
if (!font || !font->hasGlyph(gid)) {
return true;
}
if (fontType == SkAdvancedTypefaceMetrics::kOther_Font) {
return false;
}
const SkGlyph& glyph = cache->getGlyphIDMetrics(gid);
if (glyph.isEmpty()) {
return false;
}
bool bitmapOnly = nullptr == cache->findPath(glyph);
bool convertedToType3 = (font->getType() == SkAdvancedTypefaceMetrics::kOther_Font);
return convertedToType3 != bitmapOnly;
}
void SkPDFDevice::internalDrawGlyphRun(const SkGlyphRun& glyphRun, SkPoint offset) {
const SkGlyphID* glyphs = glyphRun.glyphsIDs().data();
uint32_t glyphCount = SkToU32(glyphRun.glyphsIDs().size());
SkPaint srcPaint{glyphRun.paint()};
srcPaint.setTextEncoding(SkPaint::kGlyphID_TextEncoding);
if (!glyphCount || !glyphs || srcPaint.getTextSize() <= 0 || this->hasEmptyClip()) {
return;
}
if (srcPaint.getPathEffect()
|| srcPaint.getMaskFilter()
|| srcPaint.isFakeBoldText()
|| this->ctm().hasPerspective()
|| SkPaint::kFill_Style != srcPaint.getStyle()) {
// Stroked Text doesn't work well with Type3 fonts.
this->drawGlyphRunAsPath(glyphRun, offset);
}
SkPaint paint(srcPaint);
remove_color_filter(&paint);
replace_srcmode_on_opaque_paint(&paint);
paint.setHinting(kNo_SkFontHinting);
if (!paint.getTypeface()) {
paint.setTypeface(SkTypeface::MakeDefault());
}
SkTypeface* typeface = paint.getTypeface();
if (!typeface) {
SkDebugf("SkPDF: SkTypeface::MakeDefault() returned nullptr.\n");
return;
}
const SkAdvancedTypefaceMetrics* metrics = SkPDFFont::GetMetrics(typeface, fDocument->canon());
if (!metrics) {
return;
}
SkAdvancedTypefaceMetrics::FontType fontType = SkPDFFont::FontType(*metrics);
const std::vector<SkUnichar>& glyphToUnicode = SkPDFFont::GetUnicodeMap(
typeface, fDocument->canon());
SkClusterator clusterator(glyphRun);
int emSize;
auto glyphCache = SkPDFFont::MakeVectorCache(typeface, &emSize);
SkScalar textSize = paint.getTextSize();
SkScalar advanceScale = textSize * paint.getTextScaleX() / emSize;
// textScaleX and textScaleY are used to get a conservative bounding box for glyphs.
SkScalar textScaleY = textSize / emSize;
SkScalar textScaleX = advanceScale + paint.getTextSkewX() * textScaleY;
SkRect clipStackBounds = this->cs().bounds(this->bounds());
{
ScopedContentEntry content(this, paint, true);
if (!content) {
return;
}
SkDynamicMemoryWStream* out = content.stream();
out->writeText("BT\n");
int markId = -1;
if (fNodeId) {
markId = fDocument->getMarkIdForNodeId(fNodeId);
}
if (markId != -1) {
out->writeText("/P <</MCID ");
out->writeDecAsText(markId);
out->writeText(" >>BDC\n");
}
SK_AT_SCOPE_EXIT(if (markId != -1) out->writeText("EMC\n"));
SK_AT_SCOPE_EXIT(out->writeText("ET\n"));
const SkGlyphID maxGlyphID = SkToU16(typeface->countGlyphs() - 1);
if (clusterator.reversedChars()) {
out->writeText("/ReversedChars BMC\n");
}
SK_AT_SCOPE_EXIT(if (clusterator.reversedChars()) { out->writeText("EMC\n"); } );
GlyphPositioner glyphPositioner(out, paint.getTextSkewX(), offset);
SkPDFFont* font = nullptr;
while (SkClusterator::Cluster c = clusterator.next()) {
int index = c.fGlyphIndex;
int glyphLimit = index + c.fGlyphCount;
bool actualText = false;
SK_AT_SCOPE_EXIT(if (actualText) {
glyphPositioner.flush();
out->writeText("EMC\n");
});
if (c.fUtf8Text) { // real cluster
// Check if `/ActualText` needed.
const char* textPtr = c.fUtf8Text;
const char* textEnd = c.fUtf8Text + c.fTextByteLength;
SkUnichar unichar = SkUTF::NextUTF8(&textPtr, textEnd);
if (unichar < 0) {
return;
}
if (textPtr < textEnd || // more characters left
glyphLimit > index + 1 || // toUnicode wouldn't work
unichar != map_glyph(glyphToUnicode, glyphs[index])) // test single Unichar map
{
glyphPositioner.flush();
out->writeText("/Span<</ActualText <");
SkPDFUtils::WriteUTF16beHex(out, 0xFEFF); // U+FEFF = BYTE ORDER MARK
// the BOM marks this text as UTF-16BE, not PDFDocEncoding.
SkPDFUtils::WriteUTF16beHex(out, unichar); // first char
while (textPtr < textEnd) {
unichar = SkUTF::NextUTF8(&textPtr, textEnd);
if (unichar < 0) {
break;
}
SkPDFUtils::WriteUTF16beHex(out, unichar);
}
out->writeText("> >> BDC\n"); // begin marked-content sequence
// with an associated property list.
actualText = true;
}
}
for (; index < glyphLimit; ++index) {
SkGlyphID gid = glyphs[index];
if (gid > maxGlyphID) {
continue;
}
SkPoint xy = glyphRun.positions()[index];
// Do a glyph-by-glyph bounds-reject if positions are absolute.
SkRect glyphBounds = get_glyph_bounds_device_space(
gid, glyphCache.get(), textScaleX, textScaleY,
xy + offset, this->ctm());
if (glyphBounds.isEmpty()) {
if (!contains(clipStackBounds, {glyphBounds.x(), glyphBounds.y()})) {
continue;
}
} else {
if (!clipStackBounds.intersects(glyphBounds)) {
continue; // reject glyphs as out of bounds
}
}
if (needs_new_font(font, gid, glyphCache.get(), fontType)) {
// Not yet specified font or need to switch font.
font = SkPDFFont::GetFontResource(fDocument, glyphCache.get(), typeface, gid);
SkASSERT(font); // All preconditions for SkPDFFont::GetFontResource are met.
SkPDFIndirectReference ref = font->indirectReference();
fFontResources.add(ref);
glyphPositioner.flush();
glyphPositioner.setWideChars(font->multiByteGlyphs());
SkPDFWriteResourceName(out, SkPDFResourceType::kFont, ref.fValue);
out->writeText(" ");
SkPDFUtils::AppendScalar(textSize, out);
out->writeText(" Tf\n");
}
font->noteGlyphUsage(gid);
SkGlyphID encodedGlyph = font->multiByteGlyphs()
? gid : font->glyphToPDFFontEncoding(gid);
SkScalar advance = advanceScale * glyphCache->getGlyphIDAdvance(gid).fAdvanceX;
glyphPositioner.writeGlyph(xy, advance, encodedGlyph);
}
}
}
}
void SkPDFDevice::drawGlyphRunList(const SkGlyphRunList& glyphRunList) {
for (const SkGlyphRun& glyphRun : glyphRunList) {
this->internalDrawGlyphRun(glyphRun, glyphRunList.origin());
}
}
void SkPDFDevice::drawVertices(const SkVertices*, const SkVertices::Bone[], int, SkBlendMode,
const SkPaint&) {
if (this->hasEmptyClip()) {
return;
}
// TODO: implement drawVertices
}
void SkPDFDevice::drawFormXObject(sk_sp<SkPDFObject> xObject, SkDynamicMemoryWStream* content) {
SkPDFWriteResourceName(content, SkPDFResourceType::kXObject,
find_or_add(&fXObjectResources, std::move(xObject)));
content->writeText(" Do\n");
}
void SkPDFDevice::drawDevice(SkBaseDevice* device, int x, int y, const SkPaint& paint) {
SkASSERT(!paint.getImageFilter());
// Check if the source device is really a bitmapdevice (because that's what we returned
// from createDevice (likely due to an imagefilter)
SkPixmap pmap;
if (device->peekPixels(&pmap)) {
SkBitmap bitmap;
bitmap.installPixels(pmap);
this->drawSprite(bitmap, x, y, paint);
return;
}
// our onCreateCompatibleDevice() always creates SkPDFDevice subclasses.
SkPDFDevice* pdfDevice = static_cast<SkPDFDevice*>(device);
SkScalar scalarX = SkIntToScalar(x);
SkScalar scalarY = SkIntToScalar(y);
for (const RectWithData& l : pdfDevice->fLinkToURLs) {
SkRect r = l.rect.makeOffset(scalarX, scalarY);
fLinkToURLs.emplace_back(RectWithData{r, l.data});
}
for (const RectWithData& l : pdfDevice->fLinkToDestinations) {
SkRect r = l.rect.makeOffset(scalarX, scalarY);
fLinkToDestinations.emplace_back(RectWithData{r, l.data});
}
for (const NamedDestination& d : pdfDevice->fNamedDestinations) {
SkPoint p = d.point + SkPoint::Make(scalarX, scalarY);
fNamedDestinations.emplace_back(NamedDestination{d.nameData, p});
}
if (pdfDevice->isContentEmpty()) {
return;
}
SkMatrix matrix = SkMatrix::MakeTrans(SkIntToScalar(x), SkIntToScalar(y));
ScopedContentEntry content(this, &this->cs(), matrix, paint);
if (!content) {
return;
}
if (content.needShape()) {
SkISize dim = device->imageInfo().dimensions();
content.setShape(to_path(SkRect::Make(SkIRect::MakeXYWH(x, y, dim.width(), dim.height()))));
}
if (!content.needSource()) {
return;
}
this->drawFormXObject(pdfDevice->makeFormXObjectFromDevice(), content.stream());
}
sk_sp<SkSurface> SkPDFDevice::makeSurface(const SkImageInfo& info, const SkSurfaceProps& props) {
return SkSurface::MakeRaster(info, &props);
}
sk_sp<SkPDFDict> SkPDFDevice::makeResourceDict() {
std::vector<SkPDFIndirectReference> fonts;
fonts.reserve(fFontResources.count());
fFontResources.foreach([&fonts](SkPDFIndirectReference ref) { fonts.push_back(ref); } );
fFontResources.reset();
std::sort(fonts.begin(), fonts.end(),
[](SkPDFIndirectReference a, SkPDFIndirectReference b) { return a.fValue < b.fValue; });
return SkPDFMakeResourceDict(std::move(fGraphicStateResources),
std::move(fShaderResources),
std::move(fXObjectResources),
std::move(fonts));
}
std::unique_ptr<SkStreamAsset> SkPDFDevice::content() {
if (fActiveStackState.fContentStream) {
fActiveStackState.drainStack();
fActiveStackState = GraphicStackState();
}
if (fContent.bytesWritten() == 0) {
return skstd::make_unique<SkMemoryStream>();
}
SkDynamicMemoryWStream buffer;
if (fInitialTransform.getType() != SkMatrix::kIdentity_Mask) {
append_transform(fInitialTransform, &buffer);
}
if (fNeedsExtraSave) {
buffer.writeText("q\n");
}
fContent.writeToAndReset(&buffer);
if (fNeedsExtraSave) {
buffer.writeText("Q\n");
}
fNeedsExtraSave = false;
return std::unique_ptr<SkStreamAsset>(buffer.detachAsStream());
}
/* Draws an inverse filled path by using Path Ops to compute the positive
* inverse using the current clip as the inverse bounds.
* Return true if this was an inverse path and was properly handled,
* otherwise returns false and the normal drawing routine should continue,
* either as a (incorrect) fallback or because the path was not inverse
* in the first place.
*/
bool SkPDFDevice::handleInversePath(const SkPath& origPath,
const SkPaint& paint,
bool pathIsMutable) {
if (!origPath.isInverseFillType()) {
return false;
}
if (this->hasEmptyClip()) {
return false;
}
SkPath modifiedPath;
SkPath* pathPtr = const_cast<SkPath*>(&origPath);
SkPaint noInversePaint(paint);
// Merge stroking operations into final path.
if (SkPaint::kStroke_Style == paint.getStyle() ||
SkPaint::kStrokeAndFill_Style == paint.getStyle()) {
bool doFillPath = paint.getFillPath(origPath, &modifiedPath);
if (doFillPath) {
noInversePaint.setStyle(SkPaint::kFill_Style);
noInversePaint.setStrokeWidth(0);
pathPtr = &modifiedPath;
} else {
// To be consistent with the raster output, hairline strokes
// are rendered as non-inverted.
modifiedPath.toggleInverseFillType();
this->drawPath(modifiedPath, paint, true);
return true;
}
}
// Get bounds of clip in current transform space
// (clip bounds are given in device space).
SkMatrix transformInverse;
SkMatrix totalMatrix = this->ctm();
if (!totalMatrix.invert(&transformInverse)) {
return false;
}
SkRect bounds = this->cs().bounds(this->bounds());
transformInverse.mapRect(&bounds);
// Extend the bounds by the line width (plus some padding)
// so the edge doesn't cause a visible stroke.
bounds.outset(paint.getStrokeWidth() + SK_Scalar1,
paint.getStrokeWidth() + SK_Scalar1);
if (!calculate_inverse_path(bounds, *pathPtr, &modifiedPath)) {
return false;
}
this->drawPath(modifiedPath, noInversePaint, true);
return true;
}
sk_sp<SkPDFArray> SkPDFDevice::getAnnotations() {
sk_sp<SkPDFArray> array;
size_t count = fLinkToURLs.size() + fLinkToDestinations.size();
if (0 == count) {
return array;
}
array = sk_make_sp<SkPDFArray>();
array->reserve(count);
for (const RectWithData& rectWithURL : fLinkToURLs) {
SkRect r;
fInitialTransform.mapRect(&r, rectWithURL.rect);
array->appendObjRef(create_link_to_url(rectWithURL.data.get(), r));
}
for (const RectWithData& linkToDestination : fLinkToDestinations) {
SkRect r;
fInitialTransform.mapRect(&r, linkToDestination.rect);
array->appendObjRef(
create_link_named_dest(linkToDestination.data.get(), r));
}
return array;
}
void SkPDFDevice::appendDestinations(SkPDFDict* dict, SkPDFObject* page) const {
for (const NamedDestination& dest : fNamedDestinations) {
auto pdfDest = sk_make_sp<SkPDFArray>();
pdfDest->reserve(5);
pdfDest->appendObjRef(sk_ref_sp(page));
pdfDest->appendName("XYZ");
SkPoint p = fInitialTransform.mapXY(dest.point.x(), dest.point.y());
pdfDest->appendScalar(p.x());
pdfDest->appendScalar(p.y());
pdfDest->appendInt(0); // Leave zoom unchanged
SkString name(static_cast<const char*>(dest.nameData->data()));
dict->insertObject(name, std::move(pdfDest));
}
}
sk_sp<SkPDFObject> SkPDFDevice::makeFormXObjectFromDevice(bool alpha) {
SkMatrix inverseTransform = SkMatrix::I();
if (!fInitialTransform.isIdentity()) {
if (!fInitialTransform.invert(&inverseTransform)) {
SkDEBUGFAIL("Layer initial transform should be invertible.");
inverseTransform.reset();
}
}
const char* colorSpace = alpha ? "DeviceGray" : nullptr;
sk_sp<SkPDFObject> xobject =
SkPDFMakeFormXObject(this->content(),
SkPDFMakeArray(0, 0, this->width(), this->height()),
this->makeResourceDict(), inverseTransform, colorSpace);
// We always draw the form xobjects that we create back into the device, so
// we simply preserve the font usage instead of pulling it out and merging
// it back in later.
this->reset();
return xobject;
}
void SkPDFDevice::drawFormXObjectWithMask(sk_sp<SkPDFObject> xObject,
sk_sp<SkPDFObject> mask,
SkBlendMode mode,
bool invertClip) {
SkPaint paint;
paint.setBlendMode(mode);
ScopedContentEntry content(this, nullptr, SkMatrix::I(), paint);
if (!content) {
return;
}
this->setGraphicState(SkPDFGraphicState::GetSMaskGraphicState(
std::move(mask), invertClip, SkPDFGraphicState::kAlpha_SMaskMode,
fDocument->canon()), content.stream());
this->drawFormXObject(std::move(xObject), content.stream());
this->clearMaskOnGraphicState(content.stream());
}
static bool treat_as_regular_pdf_blend_mode(SkBlendMode blendMode) {
return nullptr != SkPDFUtils::BlendModeName(blendMode);
}
SkDynamicMemoryWStream* SkPDFDevice::setUpContentEntry(const SkClipStack* clipStack,
const SkMatrix& matrix,
const SkPaint& paint,
bool hasText,
sk_sp<SkPDFObject>* dst) {
*dst = nullptr;
SkBlendMode blendMode = paint.getBlendMode();
// Dst xfer mode doesn't draw source at all.
if (blendMode == SkBlendMode::kDst) {
return nullptr;
}
// For the following modes, we want to handle source and destination
// separately, so make an object of what's already there.
if (!treat_as_regular_pdf_blend_mode(blendMode) && blendMode != SkBlendMode::kDstOver) {
if (!isContentEmpty()) {
*dst = this->makeFormXObjectFromDevice();
SkASSERT(isContentEmpty());
} else if (blendMode != SkBlendMode::kSrc &&
blendMode != SkBlendMode::kSrcOut) {
// Except for Src and SrcOut, if there isn't anything already there,
// then we're done.
return nullptr;
}
}
// TODO(vandebo): Figure out how/if we can handle the following modes:
// Xor, Plus. For now, we treat them as SrcOver/Normal.
if (treat_as_regular_pdf_blend_mode(blendMode)) {
if (!fActiveStackState.fContentStream) {
if (fContent.bytesWritten() != 0) {
fContent.writeText("Q\nq\n");
fNeedsExtraSave = true;
}
fActiveStackState = GraphicStackState(&fContent);
} else {
SkASSERT(fActiveStackState.fContentStream = &fContent);
}
} else {
fActiveStackState.drainStack();
fActiveStackState = GraphicStackState(&fContentBuffer);
}
SkASSERT(fActiveStackState.fContentStream);
GraphicStateEntry entry;
this->populateGraphicStateEntryFromPaint(matrix, clipStack, paint, hasText, &entry);
fActiveStackState.updateClip(clipStack, this->bounds());
fActiveStackState.updateMatrix(entry.fMatrix);
fActiveStackState.updateDrawingState(entry);
return fActiveStackState.fContentStream;
}
void SkPDFDevice::finishContentEntry(const SkClipStack* clipStack,
SkBlendMode blendMode,
sk_sp<SkPDFObject> dst,
SkPath* shape) {
SkASSERT(blendMode != SkBlendMode::kDst);
if (treat_as_regular_pdf_blend_mode(blendMode)) {
SkASSERT(!dst);
return;
}
SkASSERT(fActiveStackState.fContentStream);
fActiveStackState.drainStack();
fActiveStackState = GraphicStackState();
if (blendMode == SkBlendMode::kDstOver) {
SkASSERT(!dst);
if (fContentBuffer.bytesWritten() != 0) {
if (fContent.bytesWritten() != 0) {
fContentBuffer.writeText("Q\nq\n");
fNeedsExtraSave = true;
}
fContentBuffer.prependToAndReset(&fContent);
SkASSERT(fContentBuffer.bytesWritten() == 0);
}
return;
}
if (fContentBuffer.bytesWritten() != 0) {
if (fContent.bytesWritten() != 0) {
fContent.writeText("Q\nq\n");
fNeedsExtraSave = true;
}
fContentBuffer.writeToAndReset(&fContent);
SkASSERT(fContentBuffer.bytesWritten() == 0);
}
if (!dst) {
SkASSERT(blendMode == SkBlendMode::kSrc ||
blendMode == SkBlendMode::kSrcOut);
return;
}
SkASSERT(dst);
// Changing the current content into a form-xobject will destroy the clip
// objects which is fine since the xobject will already be clipped. However
// if source has shape, we need to clip it too, so a copy of the clip is
// saved.
SkPaint stockPaint;
sk_sp<SkPDFObject> srcFormXObject;
if (this->isContentEmpty()) {
// If nothing was drawn and there's no shape, then the draw was a
// no-op, but dst needs to be restored for that to be true.
// If there is shape, then an empty source with Src, SrcIn, SrcOut,
// DstIn, DstAtop or Modulate reduces to Clear and DstOut or SrcAtop
// reduces to Dst.
if (shape == nullptr || blendMode == SkBlendMode::kDstOut ||
blendMode == SkBlendMode::kSrcATop) {
ScopedContentEntry content(this, nullptr, SkMatrix::I(), stockPaint);
this->drawFormXObject(std::move(dst), content.stream());
return;
} else {
blendMode = SkBlendMode::kClear;
}
} else {
srcFormXObject = this->makeFormXObjectFromDevice();
}
// TODO(vandebo) srcFormXObject may contain alpha, but here we want it
// without alpha.
if (blendMode == SkBlendMode::kSrcATop) {
// TODO(vandebo): In order to properly support SrcATop we have to track
// the shape of what's been drawn at all times. It's the intersection of
// the non-transparent parts of the device and the outlines (shape) of
// all images and devices drawn.
this->drawFormXObjectWithMask(srcFormXObject, dst, SkBlendMode::kSrcOver, true);
} else {
if (shape != nullptr) {
// Draw shape into a form-xobject.
SkPaint filledPaint;
filledPaint.setColor(SK_ColorBLACK);
filledPaint.setStyle(SkPaint::kFill_Style);
SkClipStack empty;
SkPDFDevice shapeDev(this->size(), fDocument, fInitialTransform);
shapeDev.internalDrawPath(clipStack ? *clipStack : empty,
SkMatrix::I(), *shape, filledPaint, true);
this->drawFormXObjectWithMask(dst, shapeDev.makeFormXObjectFromDevice(),
SkBlendMode::kSrcOver, true);
} else {
this->drawFormXObjectWithMask(dst, srcFormXObject, SkBlendMode::kSrcOver, true);
}
}
if (blendMode == SkBlendMode::kClear) {
return;
} else if (blendMode == SkBlendMode::kSrc ||
blendMode == SkBlendMode::kDstATop) {
ScopedContentEntry content(this, nullptr, SkMatrix::I(), stockPaint);
if (content) {
this->drawFormXObject(srcFormXObject, content.stream());
}
if (blendMode == SkBlendMode::kSrc) {
return;
}
} else if (blendMode == SkBlendMode::kSrcATop) {
ScopedContentEntry content(this, nullptr, SkMatrix::I(), stockPaint);
if (content) {
this->drawFormXObject(dst, content.stream());
}
}
SkASSERT(blendMode == SkBlendMode::kSrcIn ||
blendMode == SkBlendMode::kDstIn ||
blendMode == SkBlendMode::kSrcOut ||
blendMode == SkBlendMode::kDstOut ||
blendMode == SkBlendMode::kSrcATop ||
blendMode == SkBlendMode::kDstATop ||
blendMode == SkBlendMode::kModulate);
if (blendMode == SkBlendMode::kSrcIn ||
blendMode == SkBlendMode::kSrcOut ||
blendMode == SkBlendMode::kSrcATop) {
this->drawFormXObjectWithMask(std::move(srcFormXObject), std::move(dst),
SkBlendMode::kSrcOver, blendMode == SkBlendMode::kSrcOut);
return;
} else {
SkBlendMode mode = SkBlendMode::kSrcOver;
if (blendMode == SkBlendMode::kModulate) {
this->drawFormXObjectWithMask(srcFormXObject, dst, SkBlendMode::kSrcOver, false);
mode = SkBlendMode::kMultiply;
}
this->drawFormXObjectWithMask(std::move(dst), std::move(srcFormXObject), mode,
blendMode == SkBlendMode::kDstOut);
return;
}
}
bool SkPDFDevice::isContentEmpty() {
return fContent.bytesWritten() == 0 && fContentBuffer.bytesWritten() == 0;
}
void SkPDFDevice::populateGraphicStateEntryFromPaint(
const SkMatrix& matrix,
const SkClipStack* clipStack,
const SkPaint& paint,
bool hasText,
SkPDFDevice::GraphicStateEntry* entry) {
NOT_IMPLEMENTED(paint.getPathEffect() != nullptr, false);
NOT_IMPLEMENTED(paint.getMaskFilter() != nullptr, false);
NOT_IMPLEMENTED(paint.getColorFilter() != nullptr, false);
entry->fMatrix = matrix;
entry->fClipStackGenID = clipStack ? clipStack->getTopmostGenID()
: SkClipStack::kWideOpenGenID;
SkColor4f color = paint.getColor4f();
entry->fColor = {color.fR, color.fG, color.fB, 1};
entry->fShaderIndex = -1;
// PDF treats a shader as a color, so we only set one or the other.
sk_sp<SkPDFObject> pdfShader;
SkShader* shader = paint.getShader();
if (shader) {
if (SkShader::kColor_GradientType == shader->asAGradient(nullptr)) {
// We don't have to set a shader just for a color.
SkShader::GradientInfo gradientInfo;
SkColor gradientColor = SK_ColorBLACK;
gradientInfo.fColors = &gradientColor;
gradientInfo.fColorOffsets = nullptr;
gradientInfo.fColorCount = 1;
SkAssertResult(shader->asAGradient(&gradientInfo) == SkShader::kColor_GradientType);
color = SkColor4f::FromColor(gradientColor);
entry->fColor ={color.fR, color.fG, color.fB, 1};
} else {
// PDF positions patterns relative to the initial transform, so
// we need to apply the current transform to the shader parameters.
SkMatrix transform = matrix;
transform.postConcat(fInitialTransform);
// PDF doesn't support kClamp_TileMode, so we simulate it by making
// a pattern the size of the current clip.
SkRect clipStackBounds = clipStack ? clipStack->bounds(this->bounds())
: SkRect::Make(this->bounds());
// We need to apply the initial transform to bounds in order to get
// bounds in a consistent coordinate system.
fInitialTransform.mapRect(&clipStackBounds);
SkIRect bounds;
clipStackBounds.roundOut(&bounds);
pdfShader = SkPDFMakeShader(fDocument, shader, transform, bounds, paint.getColor());
if (pdfShader) {
// pdfShader has been canonicalized so we can directly compare pointers.
entry->fShaderIndex = find_or_add(&fShaderResources, std::move(pdfShader));
}
}
}
sk_sp<SkPDFDict> newGraphicState;
if (color == paint.getColor4f()) {
newGraphicState = SkPDFGraphicState::GetGraphicStateForPaint(fDocument->canon(), paint);
} else {
SkPaint newPaint = paint;
newPaint.setColor4f(color, nullptr);
newGraphicState = SkPDFGraphicState::GetGraphicStateForPaint(fDocument->canon(), newPaint);
}
entry->fGraphicStateIndex = find_or_add(&fGraphicStateResources, std::move(newGraphicState));
if (hasText) {
entry->fTextScaleX = paint.getTextScaleX();
entry->fTextFill = paint.getStyle();
} else {
entry->fTextScaleX = 0;
}
}
static SkSize rect_to_size(const SkRect& r) { return {r.width(), r.height()}; }
static sk_sp<SkImage> color_filter(const SkImage* image,
SkColorFilter* colorFilter) {
auto surface =
SkSurface::MakeRaster(SkImageInfo::MakeN32Premul(image->dimensions()));
SkASSERT(surface);
SkCanvas* canvas = surface->getCanvas();
canvas->clear(SK_ColorTRANSPARENT);
SkPaint paint;
paint.setColorFilter(sk_ref_sp(colorFilter));
canvas->drawImage(image, 0, 0, &paint);
return surface->makeImageSnapshot();
}
////////////////////////////////////////////////////////////////////////////////
static bool is_integer(SkScalar x) {
return x == SkScalarTruncToScalar(x);
}
static bool is_integral(const SkRect& r) {
return is_integer(r.left()) &&
is_integer(r.top()) &&
is_integer(r.right()) &&
is_integer(r.bottom());
}
namespace {
// This struct will go away when fIndirectReference goes away.
struct PDFObj final : public SkPDFObject {
PDFObj(SkPDFIndirectReference ref) { fIndirectReference = ref; }
// emitObject() is never called since the Object already has a indirect ref.
void emitObject(SkWStream*) const override { SK_ABORT("DO NOT REACH HERE"); }
};
} // namespace
void SkPDFDevice::internalDrawImageRect(SkKeyedImage imageSubset,
const SkRect* src,
const SkRect& dst,
const SkPaint& srcPaint,
const SkMatrix& ctm) {
if (this->hasEmptyClip()) {
return;
}
if (!imageSubset) {
return;
}
// First, figure out the src->dst transform and subset the image if needed.
SkIRect bounds = imageSubset.image()->bounds();
SkRect srcRect = src ? *src : SkRect::Make(bounds);
SkMatrix transform;
transform.setRectToRect(srcRect, dst, SkMatrix::kFill_ScaleToFit);
if (src && *src != SkRect::Make(bounds)) {
if (!srcRect.intersect(SkRect::Make(bounds))) {
return;
}
srcRect.roundOut(&bounds);
transform.preTranslate(SkIntToScalar(bounds.x()),
SkIntToScalar(bounds.y()));
if (bounds != imageSubset.image()->bounds()) {
imageSubset = imageSubset.subset(bounds);
}
if (!imageSubset) {
return;
}
}
// If the image is opaque and the paint's alpha is too, replace
// kSrc blendmode with kSrcOver.
SkPaint paint = srcPaint;
if (imageSubset.image()->isOpaque()) {
replace_srcmode_on_opaque_paint(&paint);
}
// Alpha-only images need to get their color from the shader, before
// applying the colorfilter.
if (imageSubset.image()->isAlphaOnly() && paint.getColorFilter()) {
// must blend alpha image and shader before applying colorfilter.
auto surface =
SkSurface::MakeRaster(SkImageInfo::MakeN32Premul(imageSubset.image()->dimensions()));
SkCanvas* canvas = surface->getCanvas();
SkPaint tmpPaint;
// In the case of alpha images with shaders, the shader's coordinate
// system is the image's coordiantes.
tmpPaint.setShader(sk_ref_sp(paint.getShader()));
tmpPaint.setColor4f(paint.getColor4f(), nullptr);
canvas->clear(0x00000000);
canvas->drawImage(imageSubset.image().get(), 0, 0, &tmpPaint);
paint.setShader(nullptr);
imageSubset = SkKeyedImage(surface->makeImageSnapshot());
SkASSERT(!imageSubset.image()->isAlphaOnly());
}
if (imageSubset.image()->isAlphaOnly()) {
// The ColorFilter applies to the paint color/shader, not the alpha layer.
SkASSERT(nullptr == paint.getColorFilter());
sk_sp<SkImage> mask = alpha_image_to_greyscale_image(imageSubset.image().get());
if (!mask) {
return;
}
// PDF doesn't seem to allow masking vector graphics with an Image XObject.
// Must mask with a Form XObject.
sk_sp<SkPDFDevice> maskDevice = this->makeCongruentDevice();
{
SkCanvas canvas(maskDevice);
if (paint.getMaskFilter()) {
// This clip prevents the mask image shader from covering
// entire device if unnecessary.
canvas.clipRect(this->cs().bounds(this->bounds()));
canvas.concat(ctm);
SkPaint tmpPaint;
tmpPaint.setShader(mask->makeShader(&transform));
tmpPaint.setMaskFilter(sk_ref_sp(paint.getMaskFilter()));
canvas.drawRect(dst, tmpPaint);
} else {
canvas.concat(ctm);
if (src && !is_integral(*src)) {
canvas.clipRect(dst);
}
canvas.concat(transform);
canvas.drawImage(mask, 0, 0);
}
}
if (!ctm.isIdentity() && paint.getShader()) {
transform_shader(&paint, ctm); // Since we are using identity matrix.
}
ScopedContentEntry content(this, &this->cs(), SkMatrix::I(), paint);
if (!content) {
return;
}
this->addSMaskGraphicState(std::move(maskDevice), content.stream());
SkPDFUtils::AppendRectangle(SkRect::Make(this->size()), content.stream());
SkPDFUtils::PaintPath(SkPaint::kFill_Style, SkPath::kWinding_FillType, content.stream());
this->clearMaskOnGraphicState(content.stream());
return;
}
if (paint.getMaskFilter()) {
paint.setShader(imageSubset.image()->makeShader(&transform));
SkPath path = to_path(dst); // handles non-integral clipping.
this->internalDrawPath(this->cs(), this->ctm(), path, paint, true);
return;
}
transform.postConcat(ctm);
bool needToRestore = false;
if (src && !is_integral(*src)) {
// Need sub-pixel clipping to fix https://bug.skia.org/4374
this->cs().save();
this->cs().clipRect(dst, ctm, SkClipOp::kIntersect, true);
needToRestore = true;
}
SK_AT_SCOPE_EXIT(if (needToRestore) { this->cs().restore(); });
#ifdef SK_PDF_IMAGE_STATS
gDrawImageCalls.fetch_add(1);
#endif
SkMatrix matrix = transform;
// Rasterize the bitmap using perspective in a new bitmap.
if (transform.hasPerspective()) {
// Transform the bitmap in the new space, without taking into
// account the initial transform.
SkRect imageBounds = SkRect::Make(imageSubset.image()->bounds());
SkPath perspectiveOutline = to_path(imageBounds);
perspectiveOutline.transform(transform);
// TODO(edisonn): perf - use current clip too.
// Retrieve the bounds of the new shape.
SkRect bounds = perspectiveOutline.getBounds();
// Transform the bitmap in the new space, taking into
// account the initial transform.
SkMatrix total = transform;
total.postConcat(fInitialTransform);
SkPath physicalPerspectiveOutline = to_path(imageBounds);
physicalPerspectiveOutline.transform(total);
SkRect physicalPerspectiveBounds =
physicalPerspectiveOutline.getBounds();
SkScalar scaleX = physicalPerspectiveBounds.width() / bounds.width();
SkScalar scaleY = physicalPerspectiveBounds.height() / bounds.height();
// TODO(edisonn): A better approach would be to use a bitmap shader
// (in clamp mode) and draw a rect over the entire bounding box. Then
// intersect perspectiveOutline to the clip. That will avoid introducing
// alpha to the image while still giving good behavior at the edge of
// the image. Avoiding alpha will reduce the pdf size and generation
// CPU time some.
SkISize wh = rect_to_size(physicalPerspectiveBounds).toCeil();
auto surface = SkSurface::MakeRaster(SkImageInfo::MakeN32Premul(wh));
if (!surface) {
return;
}
SkCanvas* canvas = surface->getCanvas();
canvas->clear(SK_ColorTRANSPARENT);
SkScalar deltaX = bounds.left();
SkScalar deltaY = bounds.top();
SkMatrix offsetMatrix = transform;
offsetMatrix.postTranslate(-deltaX, -deltaY);
offsetMatrix.postScale(scaleX, scaleY);
// Translate the draw in the new canvas, so we perfectly fit the
// shape in the bitmap.
canvas->setMatrix(offsetMatrix);
canvas->drawImage(imageSubset.image(), 0, 0);
// Make sure the final bits are in the bitmap.
canvas->flush();
// In the new space, we use the identity matrix translated
// and scaled to reflect DPI.
matrix.setScale(1 / scaleX, 1 / scaleY);
matrix.postTranslate(deltaX, deltaY);
imageSubset = SkKeyedImage(surface->makeImageSnapshot());
if (!imageSubset) {
return;
}
}
SkMatrix scaled;
// Adjust for origin flip.
scaled.setScale(SK_Scalar1, -SK_Scalar1);
scaled.postTranslate(0, SK_Scalar1);
// Scale the image up from 1x1 to WxH.
SkIRect subset = imageSubset.image()->bounds();
scaled.postScale(SkIntToScalar(subset.width()),
SkIntToScalar(subset.height()));
scaled.postConcat(matrix);
ScopedContentEntry content(this, &this->cs(), scaled, paint);
if (!content) {
return;
}
if (content.needShape()) {
SkPath shape = to_path(SkRect::Make(subset));
shape.transform(matrix);
content.setShape(shape);
}
if (!content.needSource()) {
return;
}
if (SkColorFilter* colorFilter = paint.getColorFilter()) {
sk_sp<SkImage> img = color_filter(imageSubset.image().get(), colorFilter);
imageSubset = SkKeyedImage(std::move(img));
if (!imageSubset) {
return;
}
// TODO(halcanary): de-dupe this by caching filtered images.
// (maybe in the resource cache?)
}
SkBitmapKey key = imageSubset.key();
sk_sp<SkPDFObject>* pdfimagePtr = fDocument->canon()->fPDFBitmapMap.find(key);
sk_sp<SkPDFObject> pdfimage = pdfimagePtr ? *pdfimagePtr : nullptr;
if (!pdfimage) {
SkASSERT(imageSubset);
auto ref = SkPDFSerializeImage(imageSubset.image().get(), fDocument,
fDocument->metadata().fEncodingQuality);
SkASSERT(ref.fValue > 0);
pdfimage = sk_make_sp<PDFObj>(ref);
SkASSERT((key != SkBitmapKey{{0, 0, 0, 0}, 0}));
fDocument->canon()->fPDFBitmapMap.set(key, pdfimage);
}
this->drawFormXObject(std::move(pdfimage), content.stream());
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#include "SkSpecialImage.h"
#include "SkImageFilter.h"
void SkPDFDevice::drawSpecial(SkSpecialImage* srcImg, int x, int y, const SkPaint& paint,
SkImage* clipImage, const SkMatrix& clipMatrix) {
if (this->hasEmptyClip()) {
return;
}
SkASSERT(!srcImg->isTextureBacked());
//TODO: clipImage support
SkBitmap resultBM;
SkImageFilter* filter = paint.getImageFilter();
if (filter) {
SkIPoint offset = SkIPoint::Make(0, 0);
SkMatrix matrix = this->ctm();
matrix.postTranslate(SkIntToScalar(-x), SkIntToScalar(-y));
const SkIRect clipBounds =
this->cs().bounds(this->bounds()).roundOut().makeOffset(-x, -y);
sk_sp<SkImageFilterCache> cache(this->getImageFilterCache());
// TODO: Should PDF be operating in a specified color type/space? For now, run the filter
// in the same color space as the source (this is different from all other backends).
SkImageFilter::OutputProperties outputProperties(kN32_SkColorType, srcImg->getColorSpace());
SkImageFilter::Context ctx(matrix, clipBounds, cache.get(), outputProperties);
sk_sp<SkSpecialImage> resultImg(filter->filterImage(srcImg, ctx, &offset));
if (resultImg) {
SkPaint tmpUnfiltered(paint);
tmpUnfiltered.setImageFilter(nullptr);
if (resultImg->getROPixels(&resultBM)) {
this->drawSprite(resultBM, x + offset.x(), y + offset.y(), tmpUnfiltered);
}
}
} else {
if (srcImg->getROPixels(&resultBM)) {
this->drawSprite(resultBM, x, y, paint);
}
}
}
sk_sp<SkSpecialImage> SkPDFDevice::makeSpecial(const SkBitmap& bitmap) {
return SkSpecialImage::MakeFromRaster(bitmap.bounds(), bitmap);
}
sk_sp<SkSpecialImage> SkPDFDevice::makeSpecial(const SkImage* image) {
return SkSpecialImage::MakeFromImage(image->bounds(), image->makeNonTextureImage());
}
sk_sp<SkSpecialImage> SkPDFDevice::snapSpecial() {
return nullptr;
}
SkImageFilterCache* SkPDFDevice::getImageFilterCache() {
// We always return a transient cache, so it is freed after each
// filter traversal.
return SkImageFilterCache::Create(SkImageFilterCache::kDefaultTransientSize);
}