blob: 2accbf67ae26bb8f5b20c6180a2f486713ce0142 [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrOvalRenderer.h"
#include "GrBatchFlushState.h"
#include "GrBatchTest.h"
#include "GrGeometryProcessor.h"
#include "GrInvariantOutput.h"
#include "GrProcessor.h"
#include "GrResourceProvider.h"
#include "SkRRect.h"
#include "SkStrokeRec.h"
#include "batches/GrVertexBatch.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLGeometryProcessor.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLVarying.h"
#include "glsl/GrGLSLVertexShaderBuilder.h"
#include "glsl/GrGLSLUniformHandler.h"
#include "glsl/GrGLSLUtil.h"
// TODO(joshualitt) - Break this file up during GrBatch post implementation cleanup
namespace {
struct CircleVertex {
SkPoint fPos;
GrColor fColor;
SkPoint fOffset;
SkScalar fOuterRadius;
SkScalar fInnerRadius;
};
struct EllipseVertex {
SkPoint fPos;
GrColor fColor;
SkPoint fOffset;
SkPoint fOuterRadii;
SkPoint fInnerRadii;
};
struct DIEllipseVertex {
SkPoint fPos;
GrColor fColor;
SkPoint fOuterOffset;
SkPoint fInnerOffset;
};
inline bool circle_stays_circle(const SkMatrix& m) {
return m.isSimilarity();
}
}
///////////////////////////////////////////////////////////////////////////////
/**
* The output of this effect is a modulation of the input color and coverage for a circle. It
* operates in a space normalized by the circle radius (outer radius in the case of a stroke)
* with origin at the circle center. Three vertex attributes are used:
* vec2f : position in device space of the bounding geometry vertices
* vec4ub: color
* vec4f : (p.xy, outerRad, innerRad)
* p is the position in the normalized space.
* outerRad is the outerRadius in device space.
* innerRad is the innerRadius in normalized space (ignored if not stroking).
*/
class CircleGeometryProcessor : public GrGeometryProcessor {
public:
CircleGeometryProcessor(bool stroke, const SkMatrix& localMatrix) : fLocalMatrix(localMatrix){
this->initClassID<CircleGeometryProcessor>();
fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType,
kHigh_GrSLPrecision));
fInColor = &this->addVertexAttrib(Attribute("inColor", kVec4ub_GrVertexAttribType));
fInCircleEdge = &this->addVertexAttrib(Attribute("inCircleEdge",
kVec4f_GrVertexAttribType));
fStroke = stroke;
}
const Attribute* inPosition() const { return fInPosition; }
const Attribute* inColor() const { return fInColor; }
const Attribute* inCircleEdge() const { return fInCircleEdge; }
const SkMatrix& localMatrix() const { return fLocalMatrix; }
virtual ~CircleGeometryProcessor() {}
const char* name() const override { return "CircleEdge"; }
class GLSLProcessor : public GrGLSLGeometryProcessor {
public:
GLSLProcessor() {}
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{
const CircleGeometryProcessor& cgp = args.fGP.cast<CircleGeometryProcessor>();
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
// emit attributes
varyingHandler->emitAttributes(cgp);
GrGLSLVertToFrag v(kVec4f_GrSLType);
varyingHandler->addVarying("CircleEdge", &v);
vertBuilder->codeAppendf("%s = %s;", v.vsOut(), cgp.inCircleEdge()->fName);
GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder;
// setup pass through color
varyingHandler->addPassThroughAttribute(cgp.inColor(), args.fOutputColor);
// Setup position
this->setupPosition(vertBuilder, gpArgs, cgp.inPosition()->fName);
// emit transforms
this->emitTransforms(vertBuilder,
varyingHandler,
uniformHandler,
gpArgs->fPositionVar,
cgp.inPosition()->fName,
cgp.localMatrix(),
args.fTransformsIn,
args.fTransformsOut);
fragBuilder->codeAppendf("float d = length(%s.xy);", v.fsIn());
fragBuilder->codeAppendf("float edgeAlpha = clamp(%s.z * (1.0 - d), 0.0, 1.0);",
v.fsIn());
if (cgp.fStroke) {
fragBuilder->codeAppendf("float innerAlpha = clamp(%s.z * (d - %s.w), 0.0, 1.0);",
v.fsIn(), v.fsIn());
fragBuilder->codeAppend("edgeAlpha *= innerAlpha;");
}
fragBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage);
}
static void GenKey(const GrGeometryProcessor& gp,
const GrGLSLCaps&,
GrProcessorKeyBuilder* b) {
const CircleGeometryProcessor& cgp = gp.cast<CircleGeometryProcessor>();
uint16_t key = cgp.fStroke ? 0x1 : 0x0;
key |= cgp.localMatrix().hasPerspective() ? 0x2 : 0x0;
b->add32(key);
}
void setData(const GrGLSLProgramDataManager& pdman,
const GrPrimitiveProcessor& gp) override {
}
void setTransformData(const GrPrimitiveProcessor& primProc,
const GrGLSLProgramDataManager& pdman,
int index,
const SkTArray<const GrCoordTransform*, true>& transforms) override {
this->setTransformDataHelper<CircleGeometryProcessor>(primProc, pdman, index,
transforms);
}
private:
typedef GrGLSLGeometryProcessor INHERITED;
};
void getGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override {
GLSLProcessor::GenKey(*this, caps, b);
}
GrGLSLPrimitiveProcessor* createGLSLInstance(const GrGLSLCaps&) const override {
return new GLSLProcessor();
}
private:
SkMatrix fLocalMatrix;
const Attribute* fInPosition;
const Attribute* fInColor;
const Attribute* fInCircleEdge;
bool fStroke;
GR_DECLARE_GEOMETRY_PROCESSOR_TEST;
typedef GrGeometryProcessor INHERITED;
};
GR_DEFINE_GEOMETRY_PROCESSOR_TEST(CircleGeometryProcessor);
const GrGeometryProcessor* CircleGeometryProcessor::TestCreate(GrProcessorTestData* d) {
return new CircleGeometryProcessor(d->fRandom->nextBool(), GrTest::TestMatrix(d->fRandom));
}
///////////////////////////////////////////////////////////////////////////////
/**
* The output of this effect is a modulation of the input color and coverage for an axis-aligned
* ellipse, specified as a 2D offset from center, and the reciprocals of the outer and inner radii,
* in both x and y directions.
*
* We are using an implicit function of x^2/a^2 + y^2/b^2 - 1 = 0.
*/
class EllipseGeometryProcessor : public GrGeometryProcessor {
public:
EllipseGeometryProcessor(bool stroke, const SkMatrix& localMatrix)
: fLocalMatrix(localMatrix) {
this->initClassID<EllipseGeometryProcessor>();
fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType));
fInColor = &this->addVertexAttrib(Attribute("inColor", kVec4ub_GrVertexAttribType));
fInEllipseOffset = &this->addVertexAttrib(Attribute("inEllipseOffset",
kVec2f_GrVertexAttribType));
fInEllipseRadii = &this->addVertexAttrib(Attribute("inEllipseRadii",
kVec4f_GrVertexAttribType));
fStroke = stroke;
}
virtual ~EllipseGeometryProcessor() {}
const char* name() const override { return "EllipseEdge"; }
const Attribute* inPosition() const { return fInPosition; }
const Attribute* inColor() const { return fInColor; }
const Attribute* inEllipseOffset() const { return fInEllipseOffset; }
const Attribute* inEllipseRadii() const { return fInEllipseRadii; }
const SkMatrix& localMatrix() const { return fLocalMatrix; }
class GLSLProcessor : public GrGLSLGeometryProcessor {
public:
GLSLProcessor() {}
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{
const EllipseGeometryProcessor& egp = args.fGP.cast<EllipseGeometryProcessor>();
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
// emit attributes
varyingHandler->emitAttributes(egp);
GrGLSLVertToFrag ellipseOffsets(kVec2f_GrSLType);
varyingHandler->addVarying("EllipseOffsets", &ellipseOffsets);
vertBuilder->codeAppendf("%s = %s;", ellipseOffsets.vsOut(),
egp.inEllipseOffset()->fName);
GrGLSLVertToFrag ellipseRadii(kVec4f_GrSLType);
varyingHandler->addVarying("EllipseRadii", &ellipseRadii);
vertBuilder->codeAppendf("%s = %s;", ellipseRadii.vsOut(),
egp.inEllipseRadii()->fName);
GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder;
// setup pass through color
varyingHandler->addPassThroughAttribute(egp.inColor(), args.fOutputColor);
// Setup position
this->setupPosition(vertBuilder, gpArgs, egp.inPosition()->fName);
// emit transforms
this->emitTransforms(vertBuilder,
varyingHandler,
uniformHandler,
gpArgs->fPositionVar,
egp.inPosition()->fName,
egp.localMatrix(),
args.fTransformsIn,
args.fTransformsOut);
// for outer curve
fragBuilder->codeAppendf("vec2 scaledOffset = %s*%s.xy;", ellipseOffsets.fsIn(),
ellipseRadii.fsIn());
fragBuilder->codeAppend("float test = dot(scaledOffset, scaledOffset) - 1.0;");
fragBuilder->codeAppendf("vec2 grad = 2.0*scaledOffset*%s.xy;", ellipseRadii.fsIn());
fragBuilder->codeAppend("float grad_dot = dot(grad, grad);");
// avoid calling inversesqrt on zero.
fragBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);");
fragBuilder->codeAppend("float invlen = inversesqrt(grad_dot);");
fragBuilder->codeAppend("float edgeAlpha = clamp(0.5-test*invlen, 0.0, 1.0);");
// for inner curve
if (egp.fStroke) {
fragBuilder->codeAppendf("scaledOffset = %s*%s.zw;",
ellipseOffsets.fsIn(), ellipseRadii.fsIn());
fragBuilder->codeAppend("test = dot(scaledOffset, scaledOffset) - 1.0;");
fragBuilder->codeAppendf("grad = 2.0*scaledOffset*%s.zw;",
ellipseRadii.fsIn());
fragBuilder->codeAppend("invlen = inversesqrt(dot(grad, grad));");
fragBuilder->codeAppend("edgeAlpha *= clamp(0.5+test*invlen, 0.0, 1.0);");
}
fragBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage);
}
static void GenKey(const GrGeometryProcessor& gp,
const GrGLSLCaps&,
GrProcessorKeyBuilder* b) {
const EllipseGeometryProcessor& egp = gp.cast<EllipseGeometryProcessor>();
uint16_t key = egp.fStroke ? 0x1 : 0x0;
key |= egp.localMatrix().hasPerspective() ? 0x2 : 0x0;
b->add32(key);
}
void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& gp) override {
}
void setTransformData(const GrPrimitiveProcessor& primProc,
const GrGLSLProgramDataManager& pdman,
int index,
const SkTArray<const GrCoordTransform*, true>& transforms) override {
this->setTransformDataHelper<EllipseGeometryProcessor>(primProc, pdman, index,
transforms);
}
private:
typedef GrGLSLGeometryProcessor INHERITED;
};
void getGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override {
GLSLProcessor::GenKey(*this, caps, b);
}
GrGLSLPrimitiveProcessor* createGLSLInstance(const GrGLSLCaps&) const override {
return new GLSLProcessor();
}
private:
const Attribute* fInPosition;
const Attribute* fInColor;
const Attribute* fInEllipseOffset;
const Attribute* fInEllipseRadii;
SkMatrix fLocalMatrix;
bool fStroke;
GR_DECLARE_GEOMETRY_PROCESSOR_TEST;
typedef GrGeometryProcessor INHERITED;
};
GR_DEFINE_GEOMETRY_PROCESSOR_TEST(EllipseGeometryProcessor);
const GrGeometryProcessor* EllipseGeometryProcessor::TestCreate(GrProcessorTestData* d) {
return new EllipseGeometryProcessor(d->fRandom->nextBool(), GrTest::TestMatrix(d->fRandom));
}
///////////////////////////////////////////////////////////////////////////////
/**
* The output of this effect is a modulation of the input color and coverage for an ellipse,
* specified as a 2D offset from center for both the outer and inner paths (if stroked). The
* implict equation used is for a unit circle (x^2 + y^2 - 1 = 0) and the edge corrected by
* using differentials.
*
* The result is device-independent and can be used with any affine matrix.
*/
enum class DIEllipseStyle { kStroke = 0, kHairline, kFill };
class DIEllipseGeometryProcessor : public GrGeometryProcessor {
public:
DIEllipseGeometryProcessor(const SkMatrix& viewMatrix, DIEllipseStyle style)
: fViewMatrix(viewMatrix) {
this->initClassID<DIEllipseGeometryProcessor>();
fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType,
kHigh_GrSLPrecision));
fInColor = &this->addVertexAttrib(Attribute("inColor", kVec4ub_GrVertexAttribType));
fInEllipseOffsets0 = &this->addVertexAttrib(Attribute("inEllipseOffsets0",
kVec2f_GrVertexAttribType));
fInEllipseOffsets1 = &this->addVertexAttrib(Attribute("inEllipseOffsets1",
kVec2f_GrVertexAttribType));
fStyle = style;
}
virtual ~DIEllipseGeometryProcessor() {}
const char* name() const override { return "DIEllipseEdge"; }
const Attribute* inPosition() const { return fInPosition; }
const Attribute* inColor() const { return fInColor; }
const Attribute* inEllipseOffsets0() const { return fInEllipseOffsets0; }
const Attribute* inEllipseOffsets1() const { return fInEllipseOffsets1; }
const SkMatrix& viewMatrix() const { return fViewMatrix; }
class GLSLProcessor : public GrGLSLGeometryProcessor {
public:
GLSLProcessor()
: fViewMatrix(SkMatrix::InvalidMatrix()) {}
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
const DIEllipseGeometryProcessor& diegp = args.fGP.cast<DIEllipseGeometryProcessor>();
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
// emit attributes
varyingHandler->emitAttributes(diegp);
GrGLSLVertToFrag offsets0(kVec2f_GrSLType);
varyingHandler->addVarying("EllipseOffsets0", &offsets0);
vertBuilder->codeAppendf("%s = %s;", offsets0.vsOut(),
diegp.inEllipseOffsets0()->fName);
GrGLSLVertToFrag offsets1(kVec2f_GrSLType);
varyingHandler->addVarying("EllipseOffsets1", &offsets1);
vertBuilder->codeAppendf("%s = %s;", offsets1.vsOut(),
diegp.inEllipseOffsets1()->fName);
GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder;
varyingHandler->addPassThroughAttribute(diegp.inColor(), args.fOutputColor);
// Setup position
this->setupPosition(vertBuilder,
uniformHandler,
gpArgs,
diegp.inPosition()->fName,
diegp.viewMatrix(),
&fViewMatrixUniform);
// emit transforms
this->emitTransforms(vertBuilder,
varyingHandler,
uniformHandler,
gpArgs->fPositionVar,
diegp.inPosition()->fName,
args.fTransformsIn,
args.fTransformsOut);
SkAssertResult(fragBuilder->enableFeature(
GrGLSLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
// for outer curve
fragBuilder->codeAppendf("vec2 scaledOffset = %s.xy;", offsets0.fsIn());
fragBuilder->codeAppend("float test = dot(scaledOffset, scaledOffset) - 1.0;");
fragBuilder->codeAppendf("vec2 duvdx = dFdx(%s);", offsets0.fsIn());
fragBuilder->codeAppendf("vec2 duvdy = dFdy(%s);", offsets0.fsIn());
fragBuilder->codeAppendf("vec2 grad = vec2(2.0*%s.x*duvdx.x + 2.0*%s.y*duvdx.y,"
" 2.0*%s.x*duvdy.x + 2.0*%s.y*duvdy.y);",
offsets0.fsIn(), offsets0.fsIn(), offsets0.fsIn(),
offsets0.fsIn());
fragBuilder->codeAppend("float grad_dot = dot(grad, grad);");
// avoid calling inversesqrt on zero.
fragBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);");
fragBuilder->codeAppend("float invlen = inversesqrt(grad_dot);");
if (DIEllipseStyle::kHairline == diegp.fStyle) {
// can probably do this with one step
fragBuilder->codeAppend("float edgeAlpha = clamp(1.0-test*invlen, 0.0, 1.0);");
fragBuilder->codeAppend("edgeAlpha *= clamp(1.0+test*invlen, 0.0, 1.0);");
} else {
fragBuilder->codeAppend("float edgeAlpha = clamp(0.5-test*invlen, 0.0, 1.0);");
}
// for inner curve
if (DIEllipseStyle::kStroke == diegp.fStyle) {
fragBuilder->codeAppendf("scaledOffset = %s.xy;", offsets1.fsIn());
fragBuilder->codeAppend("test = dot(scaledOffset, scaledOffset) - 1.0;");
fragBuilder->codeAppendf("duvdx = dFdx(%s);", offsets1.fsIn());
fragBuilder->codeAppendf("duvdy = dFdy(%s);", offsets1.fsIn());
fragBuilder->codeAppendf("grad = vec2(2.0*%s.x*duvdx.x + 2.0*%s.y*duvdx.y,"
" 2.0*%s.x*duvdy.x + 2.0*%s.y*duvdy.y);",
offsets1.fsIn(), offsets1.fsIn(), offsets1.fsIn(),
offsets1.fsIn());
fragBuilder->codeAppend("invlen = inversesqrt(dot(grad, grad));");
fragBuilder->codeAppend("edgeAlpha *= clamp(0.5+test*invlen, 0.0, 1.0);");
}
fragBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage);
}
static void GenKey(const GrGeometryProcessor& gp,
const GrGLSLCaps&,
GrProcessorKeyBuilder* b) {
const DIEllipseGeometryProcessor& diegp = gp.cast<DIEllipseGeometryProcessor>();
uint16_t key = static_cast<uint16_t>(diegp.fStyle);
key |= ComputePosKey(diegp.viewMatrix()) << 10;
b->add32(key);
}
void setData(const GrGLSLProgramDataManager& pdman,
const GrPrimitiveProcessor& gp) override {
const DIEllipseGeometryProcessor& diegp = gp.cast<DIEllipseGeometryProcessor>();
if (!diegp.viewMatrix().isIdentity() && !fViewMatrix.cheapEqualTo(diegp.viewMatrix())) {
fViewMatrix = diegp.viewMatrix();
float viewMatrix[3 * 3];
GrGLSLGetMatrix<3>(viewMatrix, fViewMatrix);
pdman.setMatrix3f(fViewMatrixUniform, viewMatrix);
}
}
private:
SkMatrix fViewMatrix;
UniformHandle fViewMatrixUniform;
typedef GrGLSLGeometryProcessor INHERITED;
};
void getGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override {
GLSLProcessor::GenKey(*this, caps, b);
}
GrGLSLPrimitiveProcessor* createGLSLInstance(const GrGLSLCaps&) const override {
return new GLSLProcessor();
}
private:
const Attribute* fInPosition;
const Attribute* fInColor;
const Attribute* fInEllipseOffsets0;
const Attribute* fInEllipseOffsets1;
SkMatrix fViewMatrix;
DIEllipseStyle fStyle;
GR_DECLARE_GEOMETRY_PROCESSOR_TEST;
typedef GrGeometryProcessor INHERITED;
};
GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DIEllipseGeometryProcessor);
const GrGeometryProcessor* DIEllipseGeometryProcessor::TestCreate(GrProcessorTestData* d) {
return new DIEllipseGeometryProcessor(GrTest::TestMatrix(d->fRandom),
(DIEllipseStyle)(d->fRandom->nextRangeU(0,2)));
}
///////////////////////////////////////////////////////////////////////////////
GrDrawBatch* GrOvalRenderer::CreateOvalBatch(GrColor color,
const SkMatrix& viewMatrix,
const SkRect& oval,
const SkStrokeRec& stroke,
GrShaderCaps* shaderCaps) {
// we can draw circles
if (SkScalarNearlyEqual(oval.width(), oval.height()) && circle_stays_circle(viewMatrix)) {
return CreateCircleBatch(color, viewMatrix, oval, stroke);
}
// if we have shader derivative support, render as device-independent
if (shaderCaps->shaderDerivativeSupport()) {
return CreateDIEllipseBatch(color, viewMatrix, oval, stroke);
}
// otherwise axis-aligned ellipses only
if (viewMatrix.rectStaysRect()) {
return CreateEllipseBatch(color, viewMatrix, oval, stroke);
}
return nullptr;
}
///////////////////////////////////////////////////////////////////////////////
class CircleBatch : public GrVertexBatch {
public:
DEFINE_BATCH_CLASS_ID
struct Geometry {
SkRect fDevBounds;
SkScalar fInnerRadius;
SkScalar fOuterRadius;
GrColor fColor;
};
CircleBatch(const Geometry& geometry, const SkMatrix& viewMatrix, bool stroked)
: INHERITED(ClassID())
, fStroked(stroked)
, fViewMatrixIfUsingLocalCoords(viewMatrix) {
fGeoData.push_back(geometry);
this->setBounds(geometry.fDevBounds);
}
const char* name() const override { return "CircleBatch"; }
SkString dumpInfo() const override {
SkString string;
for (int i = 0; i < fGeoData.count(); ++i) {
string.appendf("Color: 0x%08x Rect [L: %.2f, T: %.2f, R: %.2f, B: %.2f],"
"InnerRad: %.2f, OuterRad: %.2f\n",
fGeoData[i].fColor,
fGeoData[i].fDevBounds.fLeft, fGeoData[i].fDevBounds.fTop,
fGeoData[i].fDevBounds.fRight, fGeoData[i].fDevBounds.fBottom,
fGeoData[i].fInnerRadius,
fGeoData[i].fOuterRadius);
}
string.append(INHERITED::dumpInfo());
return string;
}
void computePipelineOptimizations(GrInitInvariantOutput* color,
GrInitInvariantOutput* coverage,
GrBatchToXPOverrides* overrides) const override {
// When this is called on a batch, there is only one geometry bundle
color->setKnownFourComponents(fGeoData[0].fColor);
coverage->setUnknownSingleComponent();
}
private:
void initBatchTracker(const GrXPOverridesForBatch& overrides) override {
// Handle any overrides that affect our GP.
overrides.getOverrideColorIfSet(&fGeoData[0].fColor);
if (!overrides.readsLocalCoords()) {
fViewMatrixIfUsingLocalCoords.reset();
}
}
void onPrepareDraws(Target* target) const override {
SkMatrix localMatrix;
if (!fViewMatrixIfUsingLocalCoords.invert(&localMatrix)) {
return;
}
// Setup geometry processor
SkAutoTUnref<GrGeometryProcessor> gp(new CircleGeometryProcessor(fStroked, localMatrix));
int instanceCount = fGeoData.count();
size_t vertexStride = gp->getVertexStride();
SkASSERT(vertexStride == sizeof(CircleVertex));
QuadHelper helper;
CircleVertex* verts = reinterpret_cast<CircleVertex*>(helper.init(target, vertexStride,
instanceCount));
if (!verts) {
return;
}
for (int i = 0; i < instanceCount; i++) {
const Geometry& geom = fGeoData[i];
GrColor color = geom.fColor;
SkScalar innerRadius = geom.fInnerRadius;
SkScalar outerRadius = geom.fOuterRadius;
const SkRect& bounds = geom.fDevBounds;
// The inner radius in the vertex data must be specified in normalized space.
innerRadius = innerRadius / outerRadius;
verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop);
verts[0].fColor = color;
verts[0].fOffset = SkPoint::Make(-1, -1);
verts[0].fOuterRadius = outerRadius;
verts[0].fInnerRadius = innerRadius;
verts[1].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom);
verts[1].fColor = color;
verts[1].fOffset = SkPoint::Make(-1, 1);
verts[1].fOuterRadius = outerRadius;
verts[1].fInnerRadius = innerRadius;
verts[2].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom);
verts[2].fColor = color;
verts[2].fOffset = SkPoint::Make(1, 1);
verts[2].fOuterRadius = outerRadius;
verts[2].fInnerRadius = innerRadius;
verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fTop);
verts[3].fColor = color;
verts[3].fOffset = SkPoint::Make(1, -1);
verts[3].fOuterRadius = outerRadius;
verts[3].fInnerRadius = innerRadius;
verts += kVerticesPerQuad;
}
helper.recordDraw(target, gp);
}
bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override {
CircleBatch* that = t->cast<CircleBatch>();
if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(),
that->bounds(), caps)) {
return false;
}
if (this->fStroked != that->fStroked) {
return false;
}
if (!fViewMatrixIfUsingLocalCoords.cheapEqualTo(that->fViewMatrixIfUsingLocalCoords)) {
return false;
}
fGeoData.push_back_n(that->fGeoData.count(), that->fGeoData.begin());
this->joinBounds(that->bounds());
return true;
}
bool fStroked;
SkMatrix fViewMatrixIfUsingLocalCoords;
SkSTArray<1, Geometry, true> fGeoData;
typedef GrVertexBatch INHERITED;
};
static GrDrawBatch* create_circle_batch(GrColor color,
const SkMatrix& viewMatrix,
const SkRect& circle,
const SkStrokeRec& stroke) {
SkPoint center = SkPoint::Make(circle.centerX(), circle.centerY());
viewMatrix.mapPoints(&center, 1);
SkScalar radius = viewMatrix.mapRadius(SkScalarHalf(circle.width()));
SkScalar strokeWidth = viewMatrix.mapRadius(stroke.getWidth());
SkStrokeRec::Style style = stroke.getStyle();
bool isStrokeOnly = SkStrokeRec::kStroke_Style == style ||
SkStrokeRec::kHairline_Style == style;
bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style;
SkScalar innerRadius = 0.0f;
SkScalar outerRadius = radius;
SkScalar halfWidth = 0;
if (hasStroke) {
if (SkScalarNearlyZero(strokeWidth)) {
halfWidth = SK_ScalarHalf;
} else {
halfWidth = SkScalarHalf(strokeWidth);
}
outerRadius += halfWidth;
if (isStrokeOnly) {
innerRadius = radius - halfWidth;
}
}
// The radii are outset for two reasons. First, it allows the shader to simply perform simpler
// computation because the computed alpha is zero, rather than 50%, at the radius.
// Second, the outer radius is used to compute the verts of the bounding box that is rendered
// and the outset ensures the box will cover all partially covered by the circle.
outerRadius += SK_ScalarHalf;
innerRadius -= SK_ScalarHalf;
CircleBatch::Geometry geometry;
geometry.fColor = color;
geometry.fInnerRadius = innerRadius;
geometry.fOuterRadius = outerRadius;
geometry.fDevBounds = SkRect::MakeLTRB(center.fX - outerRadius, center.fY - outerRadius,
center.fX + outerRadius, center.fY + outerRadius);
return new CircleBatch(geometry, viewMatrix, isStrokeOnly && innerRadius > 0);
}
GrDrawBatch* GrOvalRenderer::CreateCircleBatch(GrColor color,
const SkMatrix& viewMatrix,
const SkRect& circle,
const SkStrokeRec& stroke) {
return create_circle_batch(color, viewMatrix, circle, stroke);
}
///////////////////////////////////////////////////////////////////////////////
class EllipseBatch : public GrVertexBatch {
public:
DEFINE_BATCH_CLASS_ID
struct Geometry {
SkRect fDevBounds;
SkScalar fXRadius;
SkScalar fYRadius;
SkScalar fInnerXRadius;
SkScalar fInnerYRadius;
GrColor fColor;
};
EllipseBatch(const Geometry& geometry, const SkMatrix& viewMatrix, bool stroked)
: INHERITED(ClassID())
, fStroked(stroked)
, fViewMatrixIfUsingLocalCoords(viewMatrix) {
fGeoData.push_back(geometry);
this->setBounds(geometry.fDevBounds);
}
const char* name() const override { return "EllipseBatch"; }
void computePipelineOptimizations(GrInitInvariantOutput* color,
GrInitInvariantOutput* coverage,
GrBatchToXPOverrides* overrides) const override {
// When this is called on a batch, there is only one geometry bundle
color->setKnownFourComponents(fGeoData[0].fColor);
coverage->setUnknownSingleComponent();
}
private:
void initBatchTracker(const GrXPOverridesForBatch& overrides) override {
// Handle any overrides that affect our GP.
if (!overrides.readsCoverage()) {
fGeoData[0].fColor = GrColor_ILLEGAL;
}
if (!overrides.readsLocalCoords()) {
fViewMatrixIfUsingLocalCoords.reset();
}
}
void onPrepareDraws(Target* target) const override {
SkMatrix localMatrix;
if (!fViewMatrixIfUsingLocalCoords.invert(&localMatrix)) {
return;
}
// Setup geometry processor
SkAutoTUnref<GrGeometryProcessor> gp(new EllipseGeometryProcessor(fStroked, localMatrix));
int instanceCount = fGeoData.count();
QuadHelper helper;
size_t vertexStride = gp->getVertexStride();
SkASSERT(vertexStride == sizeof(EllipseVertex));
EllipseVertex* verts = reinterpret_cast<EllipseVertex*>(
helper.init(target, vertexStride, instanceCount));
if (!verts) {
return;
}
for (int i = 0; i < instanceCount; i++) {
const Geometry& geom = fGeoData[i];
GrColor color = geom.fColor;
SkScalar xRadius = geom.fXRadius;
SkScalar yRadius = geom.fYRadius;
// Compute the reciprocals of the radii here to save time in the shader
SkScalar xRadRecip = SkScalarInvert(xRadius);
SkScalar yRadRecip = SkScalarInvert(yRadius);
SkScalar xInnerRadRecip = SkScalarInvert(geom.fInnerXRadius);
SkScalar yInnerRadRecip = SkScalarInvert(geom.fInnerYRadius);
const SkRect& bounds = geom.fDevBounds;
// The inner radius in the vertex data must be specified in normalized space.
verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop);
verts[0].fColor = color;
verts[0].fOffset = SkPoint::Make(-xRadius, -yRadius);
verts[0].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip);
verts[0].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip);
verts[1].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom);
verts[1].fColor = color;
verts[1].fOffset = SkPoint::Make(-xRadius, yRadius);
verts[1].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip);
verts[1].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip);
verts[2].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom);
verts[2].fColor = color;
verts[2].fOffset = SkPoint::Make(xRadius, yRadius);
verts[2].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip);
verts[2].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip);
verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fTop);
verts[3].fColor = color;
verts[3].fOffset = SkPoint::Make(xRadius, -yRadius);
verts[3].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip);
verts[3].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip);
verts += kVerticesPerQuad;
}
helper.recordDraw(target, gp);
}
bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override {
EllipseBatch* that = t->cast<EllipseBatch>();
if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(),
that->bounds(), caps)) {
return false;
}
if (fStroked != that->fStroked) {
return false;
}
if (!fViewMatrixIfUsingLocalCoords.cheapEqualTo(that->fViewMatrixIfUsingLocalCoords)) {
return false;
}
fGeoData.push_back_n(that->fGeoData.count(), that->fGeoData.begin());
this->joinBounds(that->bounds());
return true;
}
bool fStroked;
SkMatrix fViewMatrixIfUsingLocalCoords;
SkSTArray<1, Geometry, true> fGeoData;
typedef GrVertexBatch INHERITED;
};
static GrDrawBatch* create_ellipse_batch(GrColor color,
const SkMatrix& viewMatrix,
const SkRect& ellipse,
const SkStrokeRec& stroke) {
SkASSERT(viewMatrix.rectStaysRect());
// do any matrix crunching before we reset the draw state for device coords
SkPoint center = SkPoint::Make(ellipse.centerX(), ellipse.centerY());
viewMatrix.mapPoints(&center, 1);
SkScalar ellipseXRadius = SkScalarHalf(ellipse.width());
SkScalar ellipseYRadius = SkScalarHalf(ellipse.height());
SkScalar xRadius = SkScalarAbs(viewMatrix[SkMatrix::kMScaleX]*ellipseXRadius +
viewMatrix[SkMatrix::kMSkewY]*ellipseYRadius);
SkScalar yRadius = SkScalarAbs(viewMatrix[SkMatrix::kMSkewX]*ellipseXRadius +
viewMatrix[SkMatrix::kMScaleY]*ellipseYRadius);
// do (potentially) anisotropic mapping of stroke
SkVector scaledStroke;
SkScalar strokeWidth = stroke.getWidth();
scaledStroke.fX = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMScaleX] +
viewMatrix[SkMatrix::kMSkewY]));
scaledStroke.fY = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMSkewX] +
viewMatrix[SkMatrix::kMScaleY]));
SkStrokeRec::Style style = stroke.getStyle();
bool isStrokeOnly = SkStrokeRec::kStroke_Style == style ||
SkStrokeRec::kHairline_Style == style;
bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style;
SkScalar innerXRadius = 0;
SkScalar innerYRadius = 0;
if (hasStroke) {
if (SkScalarNearlyZero(scaledStroke.length())) {
scaledStroke.set(SK_ScalarHalf, SK_ScalarHalf);
} else {
scaledStroke.scale(SK_ScalarHalf);
}
// we only handle thick strokes for near-circular ellipses
if (scaledStroke.length() > SK_ScalarHalf &&
(SK_ScalarHalf*xRadius > yRadius || SK_ScalarHalf*yRadius > xRadius)) {
return nullptr;
}
// we don't handle it if curvature of the stroke is less than curvature of the ellipse
if (scaledStroke.fX*(yRadius*yRadius) < (scaledStroke.fY*scaledStroke.fY)*xRadius ||
scaledStroke.fY*(xRadius*xRadius) < (scaledStroke.fX*scaledStroke.fX)*yRadius) {
return nullptr;
}
// this is legit only if scale & translation (which should be the case at the moment)
if (isStrokeOnly) {
innerXRadius = xRadius - scaledStroke.fX;
innerYRadius = yRadius - scaledStroke.fY;
}
xRadius += scaledStroke.fX;
yRadius += scaledStroke.fY;
}
// We've extended the outer x radius out half a pixel to antialias.
// This will also expand the rect so all the pixels will be captured.
// TODO: Consider if we should use sqrt(2)/2 instead
xRadius += SK_ScalarHalf;
yRadius += SK_ScalarHalf;
EllipseBatch::Geometry geometry;
geometry.fColor = color;
geometry.fXRadius = xRadius;
geometry.fYRadius = yRadius;
geometry.fInnerXRadius = innerXRadius;
geometry.fInnerYRadius = innerYRadius;
geometry.fDevBounds = SkRect::MakeLTRB(center.fX - xRadius, center.fY - yRadius,
center.fX + xRadius, center.fY + yRadius);
return new EllipseBatch(geometry, viewMatrix,
isStrokeOnly && innerXRadius > 0 && innerYRadius > 0);
}
GrDrawBatch* GrOvalRenderer::CreateEllipseBatch(GrColor color,
const SkMatrix& viewMatrix,
const SkRect& ellipse,
const SkStrokeRec& stroke) {
return create_ellipse_batch(color, viewMatrix, ellipse, stroke);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
class DIEllipseBatch : public GrVertexBatch {
public:
DEFINE_BATCH_CLASS_ID
struct Geometry {
SkMatrix fViewMatrix;
SkRect fBounds;
SkScalar fXRadius;
SkScalar fYRadius;
SkScalar fInnerXRadius;
SkScalar fInnerYRadius;
SkScalar fGeoDx;
SkScalar fGeoDy;
GrColor fColor;
DIEllipseStyle fStyle;
};
static GrDrawBatch* Create(const Geometry& geometry, const SkRect& bounds) {
return new DIEllipseBatch(geometry, bounds);
}
const char* name() const override { return "DIEllipseBatch"; }
void computePipelineOptimizations(GrInitInvariantOutput* color,
GrInitInvariantOutput* coverage,
GrBatchToXPOverrides* overrides) const override {
// When this is called on a batch, there is only one geometry bundle
color->setKnownFourComponents(fGeoData[0].fColor);
coverage->setUnknownSingleComponent();
}
private:
void initBatchTracker(const GrXPOverridesForBatch& overrides) override {
// Handle any overrides that affect our GP.
overrides.getOverrideColorIfSet(&fGeoData[0].fColor);
fUsesLocalCoords = overrides.readsLocalCoords();
}
void onPrepareDraws(Target* target) const override {
// Setup geometry processor
SkAutoTUnref<GrGeometryProcessor> gp(new DIEllipseGeometryProcessor(this->viewMatrix(),
this->style()));
int instanceCount = fGeoData.count();
size_t vertexStride = gp->getVertexStride();
SkASSERT(vertexStride == sizeof(DIEllipseVertex));
QuadHelper helper;
DIEllipseVertex* verts = reinterpret_cast<DIEllipseVertex*>(
helper.init(target, vertexStride, instanceCount));
if (!verts) {
return;
}
for (int i = 0; i < instanceCount; i++) {
const Geometry& geom = fGeoData[i];
GrColor color = geom.fColor;
SkScalar xRadius = geom.fXRadius;
SkScalar yRadius = geom.fYRadius;
const SkRect& bounds = geom.fBounds;
// This adjusts the "radius" to include the half-pixel border
SkScalar offsetDx = geom.fGeoDx / xRadius;
SkScalar offsetDy = geom.fGeoDy / yRadius;
SkScalar innerRatioX = xRadius / geom.fInnerXRadius;
SkScalar innerRatioY = yRadius / geom.fInnerYRadius;
verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop);
verts[0].fColor = color;
verts[0].fOuterOffset = SkPoint::Make(-1.0f - offsetDx, -1.0f - offsetDy);
verts[0].fInnerOffset = SkPoint::Make(-innerRatioX - offsetDx, -innerRatioY - offsetDy);
verts[1].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom);
verts[1].fColor = color;
verts[1].fOuterOffset = SkPoint::Make(-1.0f - offsetDx, 1.0f + offsetDy);
verts[1].fInnerOffset = SkPoint::Make(-innerRatioX - offsetDx, innerRatioY + offsetDy);
verts[2].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom);
verts[2].fColor = color;
verts[2].fOuterOffset = SkPoint::Make(1.0f + offsetDx, 1.0f + offsetDy);
verts[2].fInnerOffset = SkPoint::Make(innerRatioX + offsetDx, innerRatioY + offsetDy);
verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fTop);
verts[3].fColor = color;
verts[3].fOuterOffset = SkPoint::Make(1.0f + offsetDx, -1.0f - offsetDy);
verts[3].fInnerOffset = SkPoint::Make(innerRatioX + offsetDx, -innerRatioY - offsetDy);
verts += kVerticesPerQuad;
}
helper.recordDraw(target, gp);
}
DIEllipseBatch(const Geometry& geometry, const SkRect& bounds) : INHERITED(ClassID()) {
fGeoData.push_back(geometry);
this->setBounds(bounds);
}
bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override {
DIEllipseBatch* that = t->cast<DIEllipseBatch>();
if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(),
that->bounds(), caps)) {
return false;
}
if (this->style() != that->style()) {
return false;
}
// TODO rewrite to allow positioning on CPU
if (!this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
return false;
}
fGeoData.push_back_n(that->fGeoData.count(), that->fGeoData.begin());
this->joinBounds(that->bounds());
return true;
}
const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; }
DIEllipseStyle style() const { return fGeoData[0].fStyle; }
bool fUsesLocalCoords;
SkSTArray<1, Geometry, true> fGeoData;
typedef GrVertexBatch INHERITED;
};
static GrDrawBatch* create_diellipse_batch(GrColor color,
const SkMatrix& viewMatrix,
const SkRect& ellipse,
const SkStrokeRec& stroke) {
SkPoint center = SkPoint::Make(ellipse.centerX(), ellipse.centerY());
SkScalar xRadius = SkScalarHalf(ellipse.width());
SkScalar yRadius = SkScalarHalf(ellipse.height());
SkStrokeRec::Style style = stroke.getStyle();
DIEllipseStyle dieStyle = (SkStrokeRec::kStroke_Style == style) ?
DIEllipseStyle::kStroke :
(SkStrokeRec::kHairline_Style == style) ?
DIEllipseStyle::kHairline : DIEllipseStyle::kFill;
SkScalar innerXRadius = 0;
SkScalar innerYRadius = 0;
if (SkStrokeRec::kFill_Style != style && SkStrokeRec::kHairline_Style != style) {
SkScalar strokeWidth = stroke.getWidth();
if (SkScalarNearlyZero(strokeWidth)) {
strokeWidth = SK_ScalarHalf;
} else {
strokeWidth *= SK_ScalarHalf;
}
// we only handle thick strokes for near-circular ellipses
if (strokeWidth > SK_ScalarHalf &&
(SK_ScalarHalf*xRadius > yRadius || SK_ScalarHalf*yRadius > xRadius)) {
return nullptr;
}
// we don't handle it if curvature of the stroke is less than curvature of the ellipse
if (strokeWidth*(yRadius*yRadius) < (strokeWidth*strokeWidth)*xRadius ||
strokeWidth*(xRadius*xRadius) < (strokeWidth*strokeWidth)*yRadius) {
return nullptr;
}
// set inner radius (if needed)
if (SkStrokeRec::kStroke_Style == style) {
innerXRadius = xRadius - strokeWidth;
innerYRadius = yRadius - strokeWidth;
}
xRadius += strokeWidth;
yRadius += strokeWidth;
}
if (DIEllipseStyle::kStroke == dieStyle) {
dieStyle = (innerXRadius > 0 && innerYRadius > 0) ? DIEllipseStyle ::kStroke :
DIEllipseStyle ::kFill;
}
// This expands the outer rect so that after CTM we end up with a half-pixel border
SkScalar a = viewMatrix[SkMatrix::kMScaleX];
SkScalar b = viewMatrix[SkMatrix::kMSkewX];
SkScalar c = viewMatrix[SkMatrix::kMSkewY];
SkScalar d = viewMatrix[SkMatrix::kMScaleY];
SkScalar geoDx = SK_ScalarHalf / SkScalarSqrt(a*a + c*c);
SkScalar geoDy = SK_ScalarHalf / SkScalarSqrt(b*b + d*d);
DIEllipseBatch::Geometry geometry;
geometry.fViewMatrix = viewMatrix;
geometry.fColor = color;
geometry.fXRadius = xRadius;
geometry.fYRadius = yRadius;
geometry.fInnerXRadius = innerXRadius;
geometry.fInnerYRadius = innerYRadius;
geometry.fGeoDx = geoDx;
geometry.fGeoDy = geoDy;
geometry.fStyle = dieStyle;
geometry.fBounds = SkRect::MakeLTRB(center.fX - xRadius - geoDx, center.fY - yRadius - geoDy,
center.fX + xRadius + geoDx, center.fY + yRadius + geoDy);
SkRect devBounds = geometry.fBounds;
viewMatrix.mapRect(&devBounds);
return DIEllipseBatch::Create(geometry, devBounds);
}
GrDrawBatch* GrOvalRenderer::CreateDIEllipseBatch(GrColor color,
const SkMatrix& viewMatrix,
const SkRect& ellipse,
const SkStrokeRec& stroke) {
return create_diellipse_batch(color, viewMatrix, ellipse, stroke);
}
///////////////////////////////////////////////////////////////////////////////
static const uint16_t gRRectIndices[] = {
// corners
0, 1, 5, 0, 5, 4,
2, 3, 7, 2, 7, 6,
8, 9, 13, 8, 13, 12,
10, 11, 15, 10, 15, 14,
// edges
1, 2, 6, 1, 6, 5,
4, 5, 9, 4, 9, 8,
6, 7, 11, 6, 11, 10,
9, 10, 14, 9, 14, 13,
// center
// we place this at the end so that we can ignore these indices when rendering stroke-only
5, 6, 10, 5, 10, 9
};
static const int kIndicesPerStrokeRRect = SK_ARRAY_COUNT(gRRectIndices) - 6;
static const int kIndicesPerRRect = SK_ARRAY_COUNT(gRRectIndices);
static const int kVertsPerRRect = 16;
static const int kNumRRectsInIndexBuffer = 256;
GR_DECLARE_STATIC_UNIQUE_KEY(gStrokeRRectOnlyIndexBufferKey);
GR_DECLARE_STATIC_UNIQUE_KEY(gRRectOnlyIndexBufferKey);
static const GrBuffer* ref_rrect_index_buffer(bool strokeOnly,
GrResourceProvider* resourceProvider) {
GR_DEFINE_STATIC_UNIQUE_KEY(gStrokeRRectOnlyIndexBufferKey);
GR_DEFINE_STATIC_UNIQUE_KEY(gRRectOnlyIndexBufferKey);
if (strokeOnly) {
return resourceProvider->findOrCreateInstancedIndexBuffer(
gRRectIndices, kIndicesPerStrokeRRect, kNumRRectsInIndexBuffer, kVertsPerRRect,
gStrokeRRectOnlyIndexBufferKey);
} else {
return resourceProvider->findOrCreateInstancedIndexBuffer(
gRRectIndices, kIndicesPerRRect, kNumRRectsInIndexBuffer, kVertsPerRRect,
gRRectOnlyIndexBufferKey);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
class RRectCircleRendererBatch : public GrVertexBatch {
public:
DEFINE_BATCH_CLASS_ID
struct Geometry {
SkRect fDevBounds;
SkScalar fInnerRadius;
SkScalar fOuterRadius;
GrColor fColor;
};
RRectCircleRendererBatch(const Geometry& geometry, const SkMatrix& viewMatrix, bool stroked)
: INHERITED(ClassID())
, fStroked(stroked)
, fViewMatrixIfUsingLocalCoords(viewMatrix) {
fGeoData.push_back(geometry);
this->setBounds(geometry.fDevBounds);
}
const char* name() const override { return "RRectCircleBatch"; }
void computePipelineOptimizations(GrInitInvariantOutput* color,
GrInitInvariantOutput* coverage,
GrBatchToXPOverrides* overrides) const override {
// When this is called on a batch, there is only one geometry bundle
color->setKnownFourComponents(fGeoData[0].fColor);
coverage->setUnknownSingleComponent();
}
private:
void initBatchTracker(const GrXPOverridesForBatch& overrides) override {
// Handle any overrides that affect our GP.
overrides.getOverrideColorIfSet(&fGeoData[0].fColor);
if (!overrides.readsLocalCoords()) {
fViewMatrixIfUsingLocalCoords.reset();
}
}
void onPrepareDraws(Target* target) const override {
// Invert the view matrix as a local matrix (if any other processors require coords).
SkMatrix localMatrix;
if (!fViewMatrixIfUsingLocalCoords.invert(&localMatrix)) {
return;
}
// Setup geometry processor
SkAutoTUnref<GrGeometryProcessor> gp(new CircleGeometryProcessor(fStroked, localMatrix));
int instanceCount = fGeoData.count();
size_t vertexStride = gp->getVertexStride();
SkASSERT(vertexStride == sizeof(CircleVertex));
// drop out the middle quad if we're stroked
int indicesPerInstance = fStroked ? kIndicesPerStrokeRRect : kIndicesPerRRect;
SkAutoTUnref<const GrBuffer> indexBuffer(
ref_rrect_index_buffer(fStroked, target->resourceProvider()));
InstancedHelper helper;
CircleVertex* verts = reinterpret_cast<CircleVertex*>(helper.init(target,
kTriangles_GrPrimitiveType, vertexStride, indexBuffer, kVertsPerRRect,
indicesPerInstance, instanceCount));
if (!verts || !indexBuffer) {
SkDebugf("Could not allocate vertices\n");
return;
}
for (int i = 0; i < instanceCount; i++) {
const Geometry& args = fGeoData[i];
GrColor color = args.fColor;
SkScalar outerRadius = args.fOuterRadius;
const SkRect& bounds = args.fDevBounds;
SkScalar yCoords[4] = {
bounds.fTop,
bounds.fTop + outerRadius,
bounds.fBottom - outerRadius,
bounds.fBottom
};
SkScalar yOuterRadii[4] = {-1, 0, 0, 1 };
// The inner radius in the vertex data must be specified in normalized space.
SkScalar innerRadius = args.fInnerRadius / args.fOuterRadius;
for (int i = 0; i < 4; ++i) {
verts->fPos = SkPoint::Make(bounds.fLeft, yCoords[i]);
verts->fColor = color;
verts->fOffset = SkPoint::Make(-1, yOuterRadii[i]);
verts->fOuterRadius = outerRadius;
verts->fInnerRadius = innerRadius;
verts++;
verts->fPos = SkPoint::Make(bounds.fLeft + outerRadius, yCoords[i]);
verts->fColor = color;
verts->fOffset = SkPoint::Make(0, yOuterRadii[i]);
verts->fOuterRadius = outerRadius;
verts->fInnerRadius = innerRadius;
verts++;
verts->fPos = SkPoint::Make(bounds.fRight - outerRadius, yCoords[i]);
verts->fColor = color;
verts->fOffset = SkPoint::Make(0, yOuterRadii[i]);
verts->fOuterRadius = outerRadius;
verts->fInnerRadius = innerRadius;
verts++;
verts->fPos = SkPoint::Make(bounds.fRight, yCoords[i]);
verts->fColor = color;
verts->fOffset = SkPoint::Make(1, yOuterRadii[i]);
verts->fOuterRadius = outerRadius;
verts->fInnerRadius = innerRadius;
verts++;
}
}
helper.recordDraw(target, gp);
}
bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override {
RRectCircleRendererBatch* that = t->cast<RRectCircleRendererBatch>();
if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(),
that->bounds(), caps)) {
return false;
}
if (fStroked != that->fStroked) {
return false;
}
if (!fViewMatrixIfUsingLocalCoords.cheapEqualTo(that->fViewMatrixIfUsingLocalCoords)) {
return false;
}
fGeoData.push_back_n(that->fGeoData.count(), that->fGeoData.begin());
this->joinBounds(that->bounds());
return true;
}
bool fStroked;
SkMatrix fViewMatrixIfUsingLocalCoords;
SkSTArray<1, Geometry, true> fGeoData;
typedef GrVertexBatch INHERITED;
};
class RRectEllipseRendererBatch : public GrVertexBatch {
public:
DEFINE_BATCH_CLASS_ID
struct Geometry {
SkRect fDevBounds;
SkScalar fXRadius;
SkScalar fYRadius;
SkScalar fInnerXRadius;
SkScalar fInnerYRadius;
GrColor fColor;
};
RRectEllipseRendererBatch(const Geometry& geometry, const SkMatrix& viewMatrix, bool stroked)
: INHERITED(ClassID())
, fStroked(stroked)
, fViewMatrixIfUsingLocalCoords(viewMatrix) {
fGeoData.push_back(geometry);
this->setBounds(geometry.fDevBounds);
}
const char* name() const override { return "RRectEllipseRendererBatch"; }
void computePipelineOptimizations(GrInitInvariantOutput* color,
GrInitInvariantOutput* coverage,
GrBatchToXPOverrides* overrides) const override {
// When this is called on a batch, there is only one geometry bundle
color->setKnownFourComponents(fGeoData[0].fColor);
coverage->setUnknownSingleComponent();
}
private:
void initBatchTracker(const GrXPOverridesForBatch& overrides) override {
// Handle overrides that affect our GP.
overrides.getOverrideColorIfSet(&fGeoData[0].fColor);
if (!overrides.readsLocalCoords()) {
fViewMatrixIfUsingLocalCoords.reset();
}
}
void onPrepareDraws(Target* target) const override {
SkMatrix localMatrix;
if (!fViewMatrixIfUsingLocalCoords.invert(&localMatrix)) {
return;
}
// Setup geometry processor
SkAutoTUnref<GrGeometryProcessor> gp(new EllipseGeometryProcessor(fStroked, localMatrix));
int instanceCount = fGeoData.count();
size_t vertexStride = gp->getVertexStride();
SkASSERT(vertexStride == sizeof(EllipseVertex));
// drop out the middle quad if we're stroked
int indicesPerInstance = fStroked ? kIndicesPerStrokeRRect : kIndicesPerRRect;
SkAutoTUnref<const GrBuffer> indexBuffer(
ref_rrect_index_buffer(fStroked, target->resourceProvider()));
InstancedHelper helper;
EllipseVertex* verts = reinterpret_cast<EllipseVertex*>(
helper.init(target, kTriangles_GrPrimitiveType, vertexStride, indexBuffer,
kVertsPerRRect, indicesPerInstance, instanceCount));
if (!verts || !indexBuffer) {
SkDebugf("Could not allocate vertices\n");
return;
}
for (int i = 0; i < instanceCount; i++) {
const Geometry& args = fGeoData[i];
GrColor color = args.fColor;
// Compute the reciprocals of the radii here to save time in the shader
SkScalar xRadRecip = SkScalarInvert(args.fXRadius);
SkScalar yRadRecip = SkScalarInvert(args.fYRadius);
SkScalar xInnerRadRecip = SkScalarInvert(args.fInnerXRadius);
SkScalar yInnerRadRecip = SkScalarInvert(args.fInnerYRadius);
// Extend the radii out half a pixel to antialias.
SkScalar xOuterRadius = args.fXRadius + SK_ScalarHalf;
SkScalar yOuterRadius = args.fYRadius + SK_ScalarHalf;
const SkRect& bounds = args.fDevBounds;
SkScalar yCoords[4] = {
bounds.fTop,
bounds.fTop + yOuterRadius,
bounds.fBottom - yOuterRadius,
bounds.fBottom
};
SkScalar yOuterOffsets[4] = {
yOuterRadius,
SK_ScalarNearlyZero, // we're using inversesqrt() in shader, so can't be exactly 0
SK_ScalarNearlyZero,
yOuterRadius
};
for (int i = 0; i < 4; ++i) {
verts->fPos = SkPoint::Make(bounds.fLeft, yCoords[i]);
verts->fColor = color;
verts->fOffset = SkPoint::Make(xOuterRadius, yOuterOffsets[i]);
verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip);
verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip);
verts++;
verts->fPos = SkPoint::Make(bounds.fLeft + xOuterRadius, yCoords[i]);
verts->fColor = color;
verts->fOffset = SkPoint::Make(SK_ScalarNearlyZero, yOuterOffsets[i]);
verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip);
verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip);
verts++;
verts->fPos = SkPoint::Make(bounds.fRight - xOuterRadius, yCoords[i]);
verts->fColor = color;
verts->fOffset = SkPoint::Make(SK_ScalarNearlyZero, yOuterOffsets[i]);
verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip);
verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip);
verts++;
verts->fPos = SkPoint::Make(bounds.fRight, yCoords[i]);
verts->fColor = color;
verts->fOffset = SkPoint::Make(xOuterRadius, yOuterOffsets[i]);
verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip);
verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip);
verts++;
}
}
helper.recordDraw(target, gp);
}
bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override {
RRectEllipseRendererBatch* that = t->cast<RRectEllipseRendererBatch>();
if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(),
that->bounds(), caps)) {
return false;
}
if (fStroked != that->fStroked) {
return false;
}
if (!fViewMatrixIfUsingLocalCoords.cheapEqualTo(that->fViewMatrixIfUsingLocalCoords)) {
return false;
}
fGeoData.push_back_n(that->fGeoData.count(), that->fGeoData.begin());
this->joinBounds(that->bounds());
return true;
}
bool fStroked;
SkMatrix fViewMatrixIfUsingLocalCoords;
SkSTArray<1, Geometry, true> fGeoData;
typedef GrVertexBatch INHERITED;
};
static GrDrawBatch* create_rrect_batch(GrColor color,
const SkMatrix& viewMatrix,
const SkRRect& rrect,
const SkStrokeRec& stroke) {
SkASSERT(viewMatrix.rectStaysRect());
SkASSERT(rrect.isSimple());
SkASSERT(!rrect.isOval());
// RRect batchs only handle simple, but not too simple, rrects
// do any matrix crunching before we reset the draw state for device coords
const SkRect& rrectBounds = rrect.getBounds();
SkRect bounds;
viewMatrix.mapRect(&bounds, rrectBounds);
SkVector radii = rrect.getSimpleRadii();
SkScalar xRadius = SkScalarAbs(viewMatrix[SkMatrix::kMScaleX]*radii.fX +
viewMatrix[SkMatrix::kMSkewY]*radii.fY);
SkScalar yRadius = SkScalarAbs(viewMatrix[SkMatrix::kMSkewX]*radii.fX +
viewMatrix[SkMatrix::kMScaleY]*radii.fY);
SkStrokeRec::Style style = stroke.getStyle();
// do (potentially) anisotropic mapping of stroke
SkVector scaledStroke;
SkScalar strokeWidth = stroke.getWidth();
bool isStrokeOnly = SkStrokeRec::kStroke_Style == style ||
SkStrokeRec::kHairline_Style == style;
bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style;
if (hasStroke) {
if (SkStrokeRec::kHairline_Style == style) {
scaledStroke.set(1, 1);
} else {
scaledStroke.fX = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMScaleX] +
viewMatrix[SkMatrix::kMSkewY]));
scaledStroke.fY = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMSkewX] +
viewMatrix[SkMatrix::kMScaleY]));
}
// if half of strokewidth is greater than radius, we don't handle that right now
if (SK_ScalarHalf*scaledStroke.fX > xRadius || SK_ScalarHalf*scaledStroke.fY > yRadius) {
return nullptr;
}
}
// The way the effect interpolates the offset-to-ellipse/circle-center attribute only works on
// the interior of the rrect if the radii are >= 0.5. Otherwise, the inner rect of the nine-
// patch will have fractional coverage. This only matters when the interior is actually filled.
// We could consider falling back to rect rendering here, since a tiny radius is
// indistinguishable from a square corner.
if (!isStrokeOnly && (SK_ScalarHalf > xRadius || SK_ScalarHalf > yRadius)) {
return nullptr;
}
// if the corners are circles, use the circle renderer
if ((!hasStroke || scaledStroke.fX == scaledStroke.fY) && xRadius == yRadius) {
SkScalar innerRadius = 0.0f;
SkScalar outerRadius = xRadius;
SkScalar halfWidth = 0;
if (hasStroke) {
if (SkScalarNearlyZero(scaledStroke.fX)) {
halfWidth = SK_ScalarHalf;
} else {
halfWidth = SkScalarHalf(scaledStroke.fX);
}
if (isStrokeOnly) {
innerRadius = xRadius - halfWidth;
}
outerRadius += halfWidth;
bounds.outset(halfWidth, halfWidth);
}
isStrokeOnly = (isStrokeOnly && innerRadius >= 0);
// The radii are outset for two reasons. First, it allows the shader to simply perform
// simpler computation because the computed alpha is zero, rather than 50%, at the radius.
// Second, the outer radius is used to compute the verts of the bounding box that is
// rendered and the outset ensures the box will cover all partially covered by the rrect
// corners.
outerRadius += SK_ScalarHalf;
innerRadius -= SK_ScalarHalf;
// Expand the rect so all the pixels will be captured.
bounds.outset(SK_ScalarHalf, SK_ScalarHalf);
RRectCircleRendererBatch::Geometry geometry;
geometry.fColor = color;
geometry.fInnerRadius = innerRadius;
geometry.fOuterRadius = outerRadius;
geometry.fDevBounds = bounds;
return new RRectCircleRendererBatch(geometry, viewMatrix, isStrokeOnly);
// otherwise we use the ellipse renderer
} else {
SkScalar innerXRadius = 0.0f;
SkScalar innerYRadius = 0.0f;
if (hasStroke) {
if (SkScalarNearlyZero(scaledStroke.length())) {
scaledStroke.set(SK_ScalarHalf, SK_ScalarHalf);
} else {
scaledStroke.scale(SK_ScalarHalf);
}
// we only handle thick strokes for near-circular ellipses
if (scaledStroke.length() > SK_ScalarHalf &&
(SK_ScalarHalf*xRadius > yRadius || SK_ScalarHalf*yRadius > xRadius)) {
return nullptr;
}
// we don't handle it if curvature of the stroke is less than curvature of the ellipse
if (scaledStroke.fX*(yRadius*yRadius) < (scaledStroke.fY*scaledStroke.fY)*xRadius ||
scaledStroke.fY*(xRadius*xRadius) < (scaledStroke.fX*scaledStroke.fX)*yRadius) {
return nullptr;
}
// this is legit only if scale & translation (which should be the case at the moment)
if (isStrokeOnly) {
innerXRadius = xRadius - scaledStroke.fX;
innerYRadius = yRadius - scaledStroke.fY;
}
xRadius += scaledStroke.fX;
yRadius += scaledStroke.fY;
bounds.outset(scaledStroke.fX, scaledStroke.fY);
}
isStrokeOnly = (isStrokeOnly && innerXRadius >= 0 && innerYRadius >= 0);
// Expand the rect so all the pixels will be captured.
bounds.outset(SK_ScalarHalf, SK_ScalarHalf);
RRectEllipseRendererBatch::Geometry geometry;
geometry.fColor = color;
geometry.fXRadius = xRadius;
geometry.fYRadius = yRadius;
geometry.fInnerXRadius = innerXRadius;
geometry.fInnerYRadius = innerYRadius;
geometry.fDevBounds = bounds;
return new RRectEllipseRendererBatch(geometry, viewMatrix, isStrokeOnly);
}
}
GrDrawBatch* GrOvalRenderer::CreateRRectBatch(GrColor color,
const SkMatrix& viewMatrix,
const SkRRect& rrect,
const SkStrokeRec& stroke,
GrShaderCaps* shaderCaps) {
if (rrect.isOval()) {
return CreateOvalBatch(color, viewMatrix, rrect.getBounds(), stroke, shaderCaps);
}
if (!viewMatrix.rectStaysRect() || !rrect.isSimple()) {
return nullptr;
}
return create_rrect_batch(color, viewMatrix, rrect, stroke);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef GR_TEST_UTILS
DRAW_BATCH_TEST_DEFINE(CircleBatch) {
SkMatrix viewMatrix = GrTest::TestMatrix(random);
GrColor color = GrRandomColor(random);
SkRect circle = GrTest::TestSquare(random);
return create_circle_batch(color, viewMatrix, circle, GrTest::TestStrokeRec(random));
}
DRAW_BATCH_TEST_DEFINE(EllipseBatch) {
SkMatrix viewMatrix = GrTest::TestMatrixRectStaysRect(random);
GrColor color = GrRandomColor(random);
SkRect ellipse = GrTest::TestSquare(random);
return create_ellipse_batch(color, viewMatrix, ellipse, GrTest::TestStrokeRec(random));
}
DRAW_BATCH_TEST_DEFINE(DIEllipseBatch) {
SkMatrix viewMatrix = GrTest::TestMatrix(random);
GrColor color = GrRandomColor(random);
SkRect ellipse = GrTest::TestSquare(random);
return create_diellipse_batch(color, viewMatrix, ellipse, GrTest::TestStrokeRec(random));
}
DRAW_BATCH_TEST_DEFINE(RRectBatch) {
SkMatrix viewMatrix = GrTest::TestMatrixRectStaysRect(random);
GrColor color = GrRandomColor(random);
const SkRRect& rrect = GrTest::TestRRectSimple(random);
return create_rrect_batch(color, viewMatrix, rrect, GrTest::TestStrokeRec(random));
}
#endif