| /* |
| * Copyright 2013 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "GrOvalRenderer.h" |
| |
| #include "GrBatchFlushState.h" |
| #include "GrBatchTest.h" |
| #include "GrGeometryProcessor.h" |
| #include "GrInvariantOutput.h" |
| #include "GrProcessor.h" |
| #include "GrResourceProvider.h" |
| #include "SkRRect.h" |
| #include "SkStrokeRec.h" |
| #include "batches/GrVertexBatch.h" |
| #include "glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "glsl/GrGLSLGeometryProcessor.h" |
| #include "glsl/GrGLSLProgramDataManager.h" |
| #include "glsl/GrGLSLVarying.h" |
| #include "glsl/GrGLSLVertexShaderBuilder.h" |
| #include "glsl/GrGLSLUniformHandler.h" |
| #include "glsl/GrGLSLUtil.h" |
| |
| // TODO(joshualitt) - Break this file up during GrBatch post implementation cleanup |
| |
| namespace { |
| |
| struct CircleVertex { |
| SkPoint fPos; |
| GrColor fColor; |
| SkPoint fOffset; |
| SkScalar fOuterRadius; |
| SkScalar fInnerRadius; |
| }; |
| |
| struct EllipseVertex { |
| SkPoint fPos; |
| GrColor fColor; |
| SkPoint fOffset; |
| SkPoint fOuterRadii; |
| SkPoint fInnerRadii; |
| }; |
| |
| struct DIEllipseVertex { |
| SkPoint fPos; |
| GrColor fColor; |
| SkPoint fOuterOffset; |
| SkPoint fInnerOffset; |
| }; |
| |
| inline bool circle_stays_circle(const SkMatrix& m) { |
| return m.isSimilarity(); |
| } |
| |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * The output of this effect is a modulation of the input color and coverage for a circle. It |
| * operates in a space normalized by the circle radius (outer radius in the case of a stroke) |
| * with origin at the circle center. Three vertex attributes are used: |
| * vec2f : position in device space of the bounding geometry vertices |
| * vec4ub: color |
| * vec4f : (p.xy, outerRad, innerRad) |
| * p is the position in the normalized space. |
| * outerRad is the outerRadius in device space. |
| * innerRad is the innerRadius in normalized space (ignored if not stroking). |
| */ |
| |
| class CircleGeometryProcessor : public GrGeometryProcessor { |
| public: |
| CircleGeometryProcessor(bool stroke, const SkMatrix& localMatrix) : fLocalMatrix(localMatrix){ |
| this->initClassID<CircleGeometryProcessor>(); |
| fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType, |
| kHigh_GrSLPrecision)); |
| fInColor = &this->addVertexAttrib(Attribute("inColor", kVec4ub_GrVertexAttribType)); |
| fInCircleEdge = &this->addVertexAttrib(Attribute("inCircleEdge", |
| kVec4f_GrVertexAttribType)); |
| fStroke = stroke; |
| } |
| |
| const Attribute* inPosition() const { return fInPosition; } |
| const Attribute* inColor() const { return fInColor; } |
| const Attribute* inCircleEdge() const { return fInCircleEdge; } |
| const SkMatrix& localMatrix() const { return fLocalMatrix; } |
| virtual ~CircleGeometryProcessor() {} |
| |
| const char* name() const override { return "CircleEdge"; } |
| |
| class GLSLProcessor : public GrGLSLGeometryProcessor { |
| public: |
| GLSLProcessor() {} |
| |
| void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{ |
| const CircleGeometryProcessor& cgp = args.fGP.cast<CircleGeometryProcessor>(); |
| GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; |
| GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
| GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| |
| // emit attributes |
| varyingHandler->emitAttributes(cgp); |
| |
| GrGLSLVertToFrag v(kVec4f_GrSLType); |
| varyingHandler->addVarying("CircleEdge", &v); |
| vertBuilder->codeAppendf("%s = %s;", v.vsOut(), cgp.inCircleEdge()->fName); |
| |
| GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| // setup pass through color |
| varyingHandler->addPassThroughAttribute(cgp.inColor(), args.fOutputColor); |
| |
| // Setup position |
| this->setupPosition(vertBuilder, gpArgs, cgp.inPosition()->fName); |
| |
| // emit transforms |
| this->emitTransforms(vertBuilder, |
| varyingHandler, |
| uniformHandler, |
| gpArgs->fPositionVar, |
| cgp.inPosition()->fName, |
| cgp.localMatrix(), |
| args.fTransformsIn, |
| args.fTransformsOut); |
| |
| fragBuilder->codeAppendf("float d = length(%s.xy);", v.fsIn()); |
| fragBuilder->codeAppendf("float edgeAlpha = clamp(%s.z * (1.0 - d), 0.0, 1.0);", |
| v.fsIn()); |
| if (cgp.fStroke) { |
| fragBuilder->codeAppendf("float innerAlpha = clamp(%s.z * (d - %s.w), 0.0, 1.0);", |
| v.fsIn(), v.fsIn()); |
| fragBuilder->codeAppend("edgeAlpha *= innerAlpha;"); |
| } |
| |
| fragBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage); |
| } |
| |
| static void GenKey(const GrGeometryProcessor& gp, |
| const GrGLSLCaps&, |
| GrProcessorKeyBuilder* b) { |
| const CircleGeometryProcessor& cgp = gp.cast<CircleGeometryProcessor>(); |
| uint16_t key = cgp.fStroke ? 0x1 : 0x0; |
| key |= cgp.localMatrix().hasPerspective() ? 0x2 : 0x0; |
| b->add32(key); |
| } |
| |
| void setData(const GrGLSLProgramDataManager& pdman, |
| const GrPrimitiveProcessor& gp) override { |
| } |
| |
| void setTransformData(const GrPrimitiveProcessor& primProc, |
| const GrGLSLProgramDataManager& pdman, |
| int index, |
| const SkTArray<const GrCoordTransform*, true>& transforms) override { |
| this->setTransformDataHelper<CircleGeometryProcessor>(primProc, pdman, index, |
| transforms); |
| } |
| |
| private: |
| typedef GrGLSLGeometryProcessor INHERITED; |
| }; |
| |
| void getGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override { |
| GLSLProcessor::GenKey(*this, caps, b); |
| } |
| |
| GrGLSLPrimitiveProcessor* createGLSLInstance(const GrGLSLCaps&) const override { |
| return new GLSLProcessor(); |
| } |
| |
| private: |
| SkMatrix fLocalMatrix; |
| const Attribute* fInPosition; |
| const Attribute* fInColor; |
| const Attribute* fInCircleEdge; |
| bool fStroke; |
| |
| GR_DECLARE_GEOMETRY_PROCESSOR_TEST; |
| |
| typedef GrGeometryProcessor INHERITED; |
| }; |
| |
| GR_DEFINE_GEOMETRY_PROCESSOR_TEST(CircleGeometryProcessor); |
| |
| const GrGeometryProcessor* CircleGeometryProcessor::TestCreate(GrProcessorTestData* d) { |
| return new CircleGeometryProcessor(d->fRandom->nextBool(), GrTest::TestMatrix(d->fRandom)); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * The output of this effect is a modulation of the input color and coverage for an axis-aligned |
| * ellipse, specified as a 2D offset from center, and the reciprocals of the outer and inner radii, |
| * in both x and y directions. |
| * |
| * We are using an implicit function of x^2/a^2 + y^2/b^2 - 1 = 0. |
| */ |
| |
| class EllipseGeometryProcessor : public GrGeometryProcessor { |
| public: |
| EllipseGeometryProcessor(bool stroke, const SkMatrix& localMatrix) |
| : fLocalMatrix(localMatrix) { |
| this->initClassID<EllipseGeometryProcessor>(); |
| fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType)); |
| fInColor = &this->addVertexAttrib(Attribute("inColor", kVec4ub_GrVertexAttribType)); |
| fInEllipseOffset = &this->addVertexAttrib(Attribute("inEllipseOffset", |
| kVec2f_GrVertexAttribType)); |
| fInEllipseRadii = &this->addVertexAttrib(Attribute("inEllipseRadii", |
| kVec4f_GrVertexAttribType)); |
| fStroke = stroke; |
| } |
| |
| virtual ~EllipseGeometryProcessor() {} |
| |
| const char* name() const override { return "EllipseEdge"; } |
| |
| const Attribute* inPosition() const { return fInPosition; } |
| const Attribute* inColor() const { return fInColor; } |
| const Attribute* inEllipseOffset() const { return fInEllipseOffset; } |
| const Attribute* inEllipseRadii() const { return fInEllipseRadii; } |
| const SkMatrix& localMatrix() const { return fLocalMatrix; } |
| |
| class GLSLProcessor : public GrGLSLGeometryProcessor { |
| public: |
| GLSLProcessor() {} |
| |
| void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{ |
| const EllipseGeometryProcessor& egp = args.fGP.cast<EllipseGeometryProcessor>(); |
| GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; |
| GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
| GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| |
| // emit attributes |
| varyingHandler->emitAttributes(egp); |
| |
| GrGLSLVertToFrag ellipseOffsets(kVec2f_GrSLType); |
| varyingHandler->addVarying("EllipseOffsets", &ellipseOffsets); |
| vertBuilder->codeAppendf("%s = %s;", ellipseOffsets.vsOut(), |
| egp.inEllipseOffset()->fName); |
| |
| GrGLSLVertToFrag ellipseRadii(kVec4f_GrSLType); |
| varyingHandler->addVarying("EllipseRadii", &ellipseRadii); |
| vertBuilder->codeAppendf("%s = %s;", ellipseRadii.vsOut(), |
| egp.inEllipseRadii()->fName); |
| |
| GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| // setup pass through color |
| varyingHandler->addPassThroughAttribute(egp.inColor(), args.fOutputColor); |
| |
| // Setup position |
| this->setupPosition(vertBuilder, gpArgs, egp.inPosition()->fName); |
| |
| // emit transforms |
| this->emitTransforms(vertBuilder, |
| varyingHandler, |
| uniformHandler, |
| gpArgs->fPositionVar, |
| egp.inPosition()->fName, |
| egp.localMatrix(), |
| args.fTransformsIn, |
| args.fTransformsOut); |
| |
| // for outer curve |
| fragBuilder->codeAppendf("vec2 scaledOffset = %s*%s.xy;", ellipseOffsets.fsIn(), |
| ellipseRadii.fsIn()); |
| fragBuilder->codeAppend("float test = dot(scaledOffset, scaledOffset) - 1.0;"); |
| fragBuilder->codeAppendf("vec2 grad = 2.0*scaledOffset*%s.xy;", ellipseRadii.fsIn()); |
| fragBuilder->codeAppend("float grad_dot = dot(grad, grad);"); |
| |
| // avoid calling inversesqrt on zero. |
| fragBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);"); |
| fragBuilder->codeAppend("float invlen = inversesqrt(grad_dot);"); |
| fragBuilder->codeAppend("float edgeAlpha = clamp(0.5-test*invlen, 0.0, 1.0);"); |
| |
| // for inner curve |
| if (egp.fStroke) { |
| fragBuilder->codeAppendf("scaledOffset = %s*%s.zw;", |
| ellipseOffsets.fsIn(), ellipseRadii.fsIn()); |
| fragBuilder->codeAppend("test = dot(scaledOffset, scaledOffset) - 1.0;"); |
| fragBuilder->codeAppendf("grad = 2.0*scaledOffset*%s.zw;", |
| ellipseRadii.fsIn()); |
| fragBuilder->codeAppend("invlen = inversesqrt(dot(grad, grad));"); |
| fragBuilder->codeAppend("edgeAlpha *= clamp(0.5+test*invlen, 0.0, 1.0);"); |
| } |
| |
| fragBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage); |
| } |
| |
| static void GenKey(const GrGeometryProcessor& gp, |
| const GrGLSLCaps&, |
| GrProcessorKeyBuilder* b) { |
| const EllipseGeometryProcessor& egp = gp.cast<EllipseGeometryProcessor>(); |
| uint16_t key = egp.fStroke ? 0x1 : 0x0; |
| key |= egp.localMatrix().hasPerspective() ? 0x2 : 0x0; |
| b->add32(key); |
| } |
| |
| void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& gp) override { |
| } |
| |
| void setTransformData(const GrPrimitiveProcessor& primProc, |
| const GrGLSLProgramDataManager& pdman, |
| int index, |
| const SkTArray<const GrCoordTransform*, true>& transforms) override { |
| this->setTransformDataHelper<EllipseGeometryProcessor>(primProc, pdman, index, |
| transforms); |
| } |
| |
| private: |
| typedef GrGLSLGeometryProcessor INHERITED; |
| }; |
| |
| void getGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override { |
| GLSLProcessor::GenKey(*this, caps, b); |
| } |
| |
| GrGLSLPrimitiveProcessor* createGLSLInstance(const GrGLSLCaps&) const override { |
| return new GLSLProcessor(); |
| } |
| |
| private: |
| const Attribute* fInPosition; |
| const Attribute* fInColor; |
| const Attribute* fInEllipseOffset; |
| const Attribute* fInEllipseRadii; |
| SkMatrix fLocalMatrix; |
| bool fStroke; |
| |
| GR_DECLARE_GEOMETRY_PROCESSOR_TEST; |
| |
| typedef GrGeometryProcessor INHERITED; |
| }; |
| |
| GR_DEFINE_GEOMETRY_PROCESSOR_TEST(EllipseGeometryProcessor); |
| |
| const GrGeometryProcessor* EllipseGeometryProcessor::TestCreate(GrProcessorTestData* d) { |
| return new EllipseGeometryProcessor(d->fRandom->nextBool(), GrTest::TestMatrix(d->fRandom)); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * The output of this effect is a modulation of the input color and coverage for an ellipse, |
| * specified as a 2D offset from center for both the outer and inner paths (if stroked). The |
| * implict equation used is for a unit circle (x^2 + y^2 - 1 = 0) and the edge corrected by |
| * using differentials. |
| * |
| * The result is device-independent and can be used with any affine matrix. |
| */ |
| |
| enum class DIEllipseStyle { kStroke = 0, kHairline, kFill }; |
| |
| class DIEllipseGeometryProcessor : public GrGeometryProcessor { |
| public: |
| DIEllipseGeometryProcessor(const SkMatrix& viewMatrix, DIEllipseStyle style) |
| : fViewMatrix(viewMatrix) { |
| this->initClassID<DIEllipseGeometryProcessor>(); |
| fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType, |
| kHigh_GrSLPrecision)); |
| fInColor = &this->addVertexAttrib(Attribute("inColor", kVec4ub_GrVertexAttribType)); |
| fInEllipseOffsets0 = &this->addVertexAttrib(Attribute("inEllipseOffsets0", |
| kVec2f_GrVertexAttribType)); |
| fInEllipseOffsets1 = &this->addVertexAttrib(Attribute("inEllipseOffsets1", |
| kVec2f_GrVertexAttribType)); |
| fStyle = style; |
| } |
| |
| |
| virtual ~DIEllipseGeometryProcessor() {} |
| |
| const char* name() const override { return "DIEllipseEdge"; } |
| |
| const Attribute* inPosition() const { return fInPosition; } |
| const Attribute* inColor() const { return fInColor; } |
| const Attribute* inEllipseOffsets0() const { return fInEllipseOffsets0; } |
| const Attribute* inEllipseOffsets1() const { return fInEllipseOffsets1; } |
| const SkMatrix& viewMatrix() const { return fViewMatrix; } |
| |
| class GLSLProcessor : public GrGLSLGeometryProcessor { |
| public: |
| GLSLProcessor() |
| : fViewMatrix(SkMatrix::InvalidMatrix()) {} |
| |
| void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { |
| const DIEllipseGeometryProcessor& diegp = args.fGP.cast<DIEllipseGeometryProcessor>(); |
| GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; |
| GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
| GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| |
| // emit attributes |
| varyingHandler->emitAttributes(diegp); |
| |
| GrGLSLVertToFrag offsets0(kVec2f_GrSLType); |
| varyingHandler->addVarying("EllipseOffsets0", &offsets0); |
| vertBuilder->codeAppendf("%s = %s;", offsets0.vsOut(), |
| diegp.inEllipseOffsets0()->fName); |
| |
| GrGLSLVertToFrag offsets1(kVec2f_GrSLType); |
| varyingHandler->addVarying("EllipseOffsets1", &offsets1); |
| vertBuilder->codeAppendf("%s = %s;", offsets1.vsOut(), |
| diegp.inEllipseOffsets1()->fName); |
| |
| GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| varyingHandler->addPassThroughAttribute(diegp.inColor(), args.fOutputColor); |
| |
| // Setup position |
| this->setupPosition(vertBuilder, |
| uniformHandler, |
| gpArgs, |
| diegp.inPosition()->fName, |
| diegp.viewMatrix(), |
| &fViewMatrixUniform); |
| |
| // emit transforms |
| this->emitTransforms(vertBuilder, |
| varyingHandler, |
| uniformHandler, |
| gpArgs->fPositionVar, |
| diegp.inPosition()->fName, |
| args.fTransformsIn, |
| args.fTransformsOut); |
| |
| SkAssertResult(fragBuilder->enableFeature( |
| GrGLSLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature)); |
| // for outer curve |
| fragBuilder->codeAppendf("vec2 scaledOffset = %s.xy;", offsets0.fsIn()); |
| fragBuilder->codeAppend("float test = dot(scaledOffset, scaledOffset) - 1.0;"); |
| fragBuilder->codeAppendf("vec2 duvdx = dFdx(%s);", offsets0.fsIn()); |
| fragBuilder->codeAppendf("vec2 duvdy = dFdy(%s);", offsets0.fsIn()); |
| fragBuilder->codeAppendf("vec2 grad = vec2(2.0*%s.x*duvdx.x + 2.0*%s.y*duvdx.y," |
| " 2.0*%s.x*duvdy.x + 2.0*%s.y*duvdy.y);", |
| offsets0.fsIn(), offsets0.fsIn(), offsets0.fsIn(), |
| offsets0.fsIn()); |
| |
| fragBuilder->codeAppend("float grad_dot = dot(grad, grad);"); |
| // avoid calling inversesqrt on zero. |
| fragBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);"); |
| fragBuilder->codeAppend("float invlen = inversesqrt(grad_dot);"); |
| if (DIEllipseStyle::kHairline == diegp.fStyle) { |
| // can probably do this with one step |
| fragBuilder->codeAppend("float edgeAlpha = clamp(1.0-test*invlen, 0.0, 1.0);"); |
| fragBuilder->codeAppend("edgeAlpha *= clamp(1.0+test*invlen, 0.0, 1.0);"); |
| } else { |
| fragBuilder->codeAppend("float edgeAlpha = clamp(0.5-test*invlen, 0.0, 1.0);"); |
| } |
| |
| // for inner curve |
| if (DIEllipseStyle::kStroke == diegp.fStyle) { |
| fragBuilder->codeAppendf("scaledOffset = %s.xy;", offsets1.fsIn()); |
| fragBuilder->codeAppend("test = dot(scaledOffset, scaledOffset) - 1.0;"); |
| fragBuilder->codeAppendf("duvdx = dFdx(%s);", offsets1.fsIn()); |
| fragBuilder->codeAppendf("duvdy = dFdy(%s);", offsets1.fsIn()); |
| fragBuilder->codeAppendf("grad = vec2(2.0*%s.x*duvdx.x + 2.0*%s.y*duvdx.y," |
| " 2.0*%s.x*duvdy.x + 2.0*%s.y*duvdy.y);", |
| offsets1.fsIn(), offsets1.fsIn(), offsets1.fsIn(), |
| offsets1.fsIn()); |
| fragBuilder->codeAppend("invlen = inversesqrt(dot(grad, grad));"); |
| fragBuilder->codeAppend("edgeAlpha *= clamp(0.5+test*invlen, 0.0, 1.0);"); |
| } |
| |
| fragBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage); |
| } |
| |
| static void GenKey(const GrGeometryProcessor& gp, |
| const GrGLSLCaps&, |
| GrProcessorKeyBuilder* b) { |
| const DIEllipseGeometryProcessor& diegp = gp.cast<DIEllipseGeometryProcessor>(); |
| uint16_t key = static_cast<uint16_t>(diegp.fStyle); |
| key |= ComputePosKey(diegp.viewMatrix()) << 10; |
| b->add32(key); |
| } |
| |
| void setData(const GrGLSLProgramDataManager& pdman, |
| const GrPrimitiveProcessor& gp) override { |
| const DIEllipseGeometryProcessor& diegp = gp.cast<DIEllipseGeometryProcessor>(); |
| |
| if (!diegp.viewMatrix().isIdentity() && !fViewMatrix.cheapEqualTo(diegp.viewMatrix())) { |
| fViewMatrix = diegp.viewMatrix(); |
| float viewMatrix[3 * 3]; |
| GrGLSLGetMatrix<3>(viewMatrix, fViewMatrix); |
| pdman.setMatrix3f(fViewMatrixUniform, viewMatrix); |
| } |
| } |
| |
| private: |
| SkMatrix fViewMatrix; |
| UniformHandle fViewMatrixUniform; |
| |
| typedef GrGLSLGeometryProcessor INHERITED; |
| }; |
| |
| void getGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override { |
| GLSLProcessor::GenKey(*this, caps, b); |
| } |
| |
| GrGLSLPrimitiveProcessor* createGLSLInstance(const GrGLSLCaps&) const override { |
| return new GLSLProcessor(); |
| } |
| |
| private: |
| const Attribute* fInPosition; |
| const Attribute* fInColor; |
| const Attribute* fInEllipseOffsets0; |
| const Attribute* fInEllipseOffsets1; |
| SkMatrix fViewMatrix; |
| DIEllipseStyle fStyle; |
| |
| GR_DECLARE_GEOMETRY_PROCESSOR_TEST; |
| |
| typedef GrGeometryProcessor INHERITED; |
| }; |
| |
| GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DIEllipseGeometryProcessor); |
| |
| const GrGeometryProcessor* DIEllipseGeometryProcessor::TestCreate(GrProcessorTestData* d) { |
| return new DIEllipseGeometryProcessor(GrTest::TestMatrix(d->fRandom), |
| (DIEllipseStyle)(d->fRandom->nextRangeU(0,2))); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| GrDrawBatch* GrOvalRenderer::CreateOvalBatch(GrColor color, |
| const SkMatrix& viewMatrix, |
| const SkRect& oval, |
| const SkStrokeRec& stroke, |
| GrShaderCaps* shaderCaps) { |
| // we can draw circles |
| if (SkScalarNearlyEqual(oval.width(), oval.height()) && circle_stays_circle(viewMatrix)) { |
| return CreateCircleBatch(color, viewMatrix, oval, stroke); |
| } |
| |
| // if we have shader derivative support, render as device-independent |
| if (shaderCaps->shaderDerivativeSupport()) { |
| return CreateDIEllipseBatch(color, viewMatrix, oval, stroke); |
| } |
| |
| // otherwise axis-aligned ellipses only |
| if (viewMatrix.rectStaysRect()) { |
| return CreateEllipseBatch(color, viewMatrix, oval, stroke); |
| } |
| |
| return nullptr; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| class CircleBatch : public GrVertexBatch { |
| public: |
| DEFINE_BATCH_CLASS_ID |
| |
| struct Geometry { |
| SkRect fDevBounds; |
| SkScalar fInnerRadius; |
| SkScalar fOuterRadius; |
| GrColor fColor; |
| }; |
| |
| CircleBatch(const Geometry& geometry, const SkMatrix& viewMatrix, bool stroked) |
| : INHERITED(ClassID()) |
| , fStroked(stroked) |
| , fViewMatrixIfUsingLocalCoords(viewMatrix) { |
| fGeoData.push_back(geometry); |
| this->setBounds(geometry.fDevBounds); |
| } |
| const char* name() const override { return "CircleBatch"; } |
| |
| SkString dumpInfo() const override { |
| SkString string; |
| for (int i = 0; i < fGeoData.count(); ++i) { |
| string.appendf("Color: 0x%08x Rect [L: %.2f, T: %.2f, R: %.2f, B: %.2f]," |
| "InnerRad: %.2f, OuterRad: %.2f\n", |
| fGeoData[i].fColor, |
| fGeoData[i].fDevBounds.fLeft, fGeoData[i].fDevBounds.fTop, |
| fGeoData[i].fDevBounds.fRight, fGeoData[i].fDevBounds.fBottom, |
| fGeoData[i].fInnerRadius, |
| fGeoData[i].fOuterRadius); |
| } |
| string.append(INHERITED::dumpInfo()); |
| return string; |
| } |
| |
| void computePipelineOptimizations(GrInitInvariantOutput* color, |
| GrInitInvariantOutput* coverage, |
| GrBatchToXPOverrides* overrides) const override { |
| // When this is called on a batch, there is only one geometry bundle |
| color->setKnownFourComponents(fGeoData[0].fColor); |
| coverage->setUnknownSingleComponent(); |
| } |
| |
| private: |
| void initBatchTracker(const GrXPOverridesForBatch& overrides) override { |
| // Handle any overrides that affect our GP. |
| overrides.getOverrideColorIfSet(&fGeoData[0].fColor); |
| if (!overrides.readsLocalCoords()) { |
| fViewMatrixIfUsingLocalCoords.reset(); |
| } |
| } |
| |
| void onPrepareDraws(Target* target) const override { |
| SkMatrix localMatrix; |
| if (!fViewMatrixIfUsingLocalCoords.invert(&localMatrix)) { |
| return; |
| } |
| |
| // Setup geometry processor |
| SkAutoTUnref<GrGeometryProcessor> gp(new CircleGeometryProcessor(fStroked, localMatrix)); |
| |
| int instanceCount = fGeoData.count(); |
| size_t vertexStride = gp->getVertexStride(); |
| SkASSERT(vertexStride == sizeof(CircleVertex)); |
| QuadHelper helper; |
| CircleVertex* verts = reinterpret_cast<CircleVertex*>(helper.init(target, vertexStride, |
| instanceCount)); |
| if (!verts) { |
| return; |
| } |
| |
| for (int i = 0; i < instanceCount; i++) { |
| const Geometry& geom = fGeoData[i]; |
| |
| GrColor color = geom.fColor; |
| SkScalar innerRadius = geom.fInnerRadius; |
| SkScalar outerRadius = geom.fOuterRadius; |
| |
| const SkRect& bounds = geom.fDevBounds; |
| |
| // The inner radius in the vertex data must be specified in normalized space. |
| innerRadius = innerRadius / outerRadius; |
| verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop); |
| verts[0].fColor = color; |
| verts[0].fOffset = SkPoint::Make(-1, -1); |
| verts[0].fOuterRadius = outerRadius; |
| verts[0].fInnerRadius = innerRadius; |
| |
| verts[1].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom); |
| verts[1].fColor = color; |
| verts[1].fOffset = SkPoint::Make(-1, 1); |
| verts[1].fOuterRadius = outerRadius; |
| verts[1].fInnerRadius = innerRadius; |
| |
| verts[2].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom); |
| verts[2].fColor = color; |
| verts[2].fOffset = SkPoint::Make(1, 1); |
| verts[2].fOuterRadius = outerRadius; |
| verts[2].fInnerRadius = innerRadius; |
| |
| verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fTop); |
| verts[3].fColor = color; |
| verts[3].fOffset = SkPoint::Make(1, -1); |
| verts[3].fOuterRadius = outerRadius; |
| verts[3].fInnerRadius = innerRadius; |
| |
| verts += kVerticesPerQuad; |
| } |
| helper.recordDraw(target, gp); |
| } |
| |
| bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override { |
| CircleBatch* that = t->cast<CircleBatch>(); |
| if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(), |
| that->bounds(), caps)) { |
| return false; |
| } |
| |
| if (this->fStroked != that->fStroked) { |
| return false; |
| } |
| |
| if (!fViewMatrixIfUsingLocalCoords.cheapEqualTo(that->fViewMatrixIfUsingLocalCoords)) { |
| return false; |
| } |
| |
| fGeoData.push_back_n(that->fGeoData.count(), that->fGeoData.begin()); |
| this->joinBounds(that->bounds()); |
| return true; |
| } |
| |
| bool fStroked; |
| SkMatrix fViewMatrixIfUsingLocalCoords; |
| SkSTArray<1, Geometry, true> fGeoData; |
| |
| typedef GrVertexBatch INHERITED; |
| }; |
| |
| static GrDrawBatch* create_circle_batch(GrColor color, |
| const SkMatrix& viewMatrix, |
| const SkRect& circle, |
| const SkStrokeRec& stroke) { |
| SkPoint center = SkPoint::Make(circle.centerX(), circle.centerY()); |
| viewMatrix.mapPoints(¢er, 1); |
| SkScalar radius = viewMatrix.mapRadius(SkScalarHalf(circle.width())); |
| SkScalar strokeWidth = viewMatrix.mapRadius(stroke.getWidth()); |
| |
| SkStrokeRec::Style style = stroke.getStyle(); |
| bool isStrokeOnly = SkStrokeRec::kStroke_Style == style || |
| SkStrokeRec::kHairline_Style == style; |
| bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style; |
| |
| SkScalar innerRadius = 0.0f; |
| SkScalar outerRadius = radius; |
| SkScalar halfWidth = 0; |
| if (hasStroke) { |
| if (SkScalarNearlyZero(strokeWidth)) { |
| halfWidth = SK_ScalarHalf; |
| } else { |
| halfWidth = SkScalarHalf(strokeWidth); |
| } |
| |
| outerRadius += halfWidth; |
| if (isStrokeOnly) { |
| innerRadius = radius - halfWidth; |
| } |
| } |
| |
| // The radii are outset for two reasons. First, it allows the shader to simply perform simpler |
| // computation because the computed alpha is zero, rather than 50%, at the radius. |
| // Second, the outer radius is used to compute the verts of the bounding box that is rendered |
| // and the outset ensures the box will cover all partially covered by the circle. |
| outerRadius += SK_ScalarHalf; |
| innerRadius -= SK_ScalarHalf; |
| |
| CircleBatch::Geometry geometry; |
| geometry.fColor = color; |
| geometry.fInnerRadius = innerRadius; |
| geometry.fOuterRadius = outerRadius; |
| geometry.fDevBounds = SkRect::MakeLTRB(center.fX - outerRadius, center.fY - outerRadius, |
| center.fX + outerRadius, center.fY + outerRadius); |
| |
| return new CircleBatch(geometry, viewMatrix, isStrokeOnly && innerRadius > 0); |
| } |
| |
| GrDrawBatch* GrOvalRenderer::CreateCircleBatch(GrColor color, |
| const SkMatrix& viewMatrix, |
| const SkRect& circle, |
| const SkStrokeRec& stroke) { |
| return create_circle_batch(color, viewMatrix, circle, stroke); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| class EllipseBatch : public GrVertexBatch { |
| public: |
| DEFINE_BATCH_CLASS_ID |
| |
| struct Geometry { |
| SkRect fDevBounds; |
| SkScalar fXRadius; |
| SkScalar fYRadius; |
| SkScalar fInnerXRadius; |
| SkScalar fInnerYRadius; |
| GrColor fColor; |
| }; |
| |
| EllipseBatch(const Geometry& geometry, const SkMatrix& viewMatrix, bool stroked) |
| : INHERITED(ClassID()) |
| , fStroked(stroked) |
| , fViewMatrixIfUsingLocalCoords(viewMatrix) { |
| fGeoData.push_back(geometry); |
| this->setBounds(geometry.fDevBounds); |
| } |
| |
| const char* name() const override { return "EllipseBatch"; } |
| |
| void computePipelineOptimizations(GrInitInvariantOutput* color, |
| GrInitInvariantOutput* coverage, |
| GrBatchToXPOverrides* overrides) const override { |
| // When this is called on a batch, there is only one geometry bundle |
| color->setKnownFourComponents(fGeoData[0].fColor); |
| coverage->setUnknownSingleComponent(); |
| } |
| |
| private: |
| void initBatchTracker(const GrXPOverridesForBatch& overrides) override { |
| // Handle any overrides that affect our GP. |
| if (!overrides.readsCoverage()) { |
| fGeoData[0].fColor = GrColor_ILLEGAL; |
| } |
| if (!overrides.readsLocalCoords()) { |
| fViewMatrixIfUsingLocalCoords.reset(); |
| } |
| } |
| |
| void onPrepareDraws(Target* target) const override { |
| SkMatrix localMatrix; |
| if (!fViewMatrixIfUsingLocalCoords.invert(&localMatrix)) { |
| return; |
| } |
| |
| // Setup geometry processor |
| SkAutoTUnref<GrGeometryProcessor> gp(new EllipseGeometryProcessor(fStroked, localMatrix)); |
| |
| int instanceCount = fGeoData.count(); |
| QuadHelper helper; |
| size_t vertexStride = gp->getVertexStride(); |
| SkASSERT(vertexStride == sizeof(EllipseVertex)); |
| EllipseVertex* verts = reinterpret_cast<EllipseVertex*>( |
| helper.init(target, vertexStride, instanceCount)); |
| if (!verts) { |
| return; |
| } |
| |
| for (int i = 0; i < instanceCount; i++) { |
| const Geometry& geom = fGeoData[i]; |
| |
| GrColor color = geom.fColor; |
| SkScalar xRadius = geom.fXRadius; |
| SkScalar yRadius = geom.fYRadius; |
| |
| // Compute the reciprocals of the radii here to save time in the shader |
| SkScalar xRadRecip = SkScalarInvert(xRadius); |
| SkScalar yRadRecip = SkScalarInvert(yRadius); |
| SkScalar xInnerRadRecip = SkScalarInvert(geom.fInnerXRadius); |
| SkScalar yInnerRadRecip = SkScalarInvert(geom.fInnerYRadius); |
| |
| const SkRect& bounds = geom.fDevBounds; |
| |
| // The inner radius in the vertex data must be specified in normalized space. |
| verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop); |
| verts[0].fColor = color; |
| verts[0].fOffset = SkPoint::Make(-xRadius, -yRadius); |
| verts[0].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts[0].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| |
| verts[1].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom); |
| verts[1].fColor = color; |
| verts[1].fOffset = SkPoint::Make(-xRadius, yRadius); |
| verts[1].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts[1].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| |
| verts[2].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom); |
| verts[2].fColor = color; |
| verts[2].fOffset = SkPoint::Make(xRadius, yRadius); |
| verts[2].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts[2].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| |
| verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fTop); |
| verts[3].fColor = color; |
| verts[3].fOffset = SkPoint::Make(xRadius, -yRadius); |
| verts[3].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts[3].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| |
| verts += kVerticesPerQuad; |
| } |
| helper.recordDraw(target, gp); |
| } |
| |
| bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override { |
| EllipseBatch* that = t->cast<EllipseBatch>(); |
| |
| if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(), |
| that->bounds(), caps)) { |
| return false; |
| } |
| |
| if (fStroked != that->fStroked) { |
| return false; |
| } |
| |
| if (!fViewMatrixIfUsingLocalCoords.cheapEqualTo(that->fViewMatrixIfUsingLocalCoords)) { |
| return false; |
| } |
| |
| fGeoData.push_back_n(that->fGeoData.count(), that->fGeoData.begin()); |
| this->joinBounds(that->bounds()); |
| return true; |
| } |
| |
| |
| bool fStroked; |
| SkMatrix fViewMatrixIfUsingLocalCoords; |
| SkSTArray<1, Geometry, true> fGeoData; |
| |
| typedef GrVertexBatch INHERITED; |
| }; |
| |
| static GrDrawBatch* create_ellipse_batch(GrColor color, |
| const SkMatrix& viewMatrix, |
| const SkRect& ellipse, |
| const SkStrokeRec& stroke) { |
| SkASSERT(viewMatrix.rectStaysRect()); |
| |
| // do any matrix crunching before we reset the draw state for device coords |
| SkPoint center = SkPoint::Make(ellipse.centerX(), ellipse.centerY()); |
| viewMatrix.mapPoints(¢er, 1); |
| SkScalar ellipseXRadius = SkScalarHalf(ellipse.width()); |
| SkScalar ellipseYRadius = SkScalarHalf(ellipse.height()); |
| SkScalar xRadius = SkScalarAbs(viewMatrix[SkMatrix::kMScaleX]*ellipseXRadius + |
| viewMatrix[SkMatrix::kMSkewY]*ellipseYRadius); |
| SkScalar yRadius = SkScalarAbs(viewMatrix[SkMatrix::kMSkewX]*ellipseXRadius + |
| viewMatrix[SkMatrix::kMScaleY]*ellipseYRadius); |
| |
| // do (potentially) anisotropic mapping of stroke |
| SkVector scaledStroke; |
| SkScalar strokeWidth = stroke.getWidth(); |
| scaledStroke.fX = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMScaleX] + |
| viewMatrix[SkMatrix::kMSkewY])); |
| scaledStroke.fY = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMSkewX] + |
| viewMatrix[SkMatrix::kMScaleY])); |
| |
| SkStrokeRec::Style style = stroke.getStyle(); |
| bool isStrokeOnly = SkStrokeRec::kStroke_Style == style || |
| SkStrokeRec::kHairline_Style == style; |
| bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style; |
| |
| SkScalar innerXRadius = 0; |
| SkScalar innerYRadius = 0; |
| if (hasStroke) { |
| if (SkScalarNearlyZero(scaledStroke.length())) { |
| scaledStroke.set(SK_ScalarHalf, SK_ScalarHalf); |
| } else { |
| scaledStroke.scale(SK_ScalarHalf); |
| } |
| |
| // we only handle thick strokes for near-circular ellipses |
| if (scaledStroke.length() > SK_ScalarHalf && |
| (SK_ScalarHalf*xRadius > yRadius || SK_ScalarHalf*yRadius > xRadius)) { |
| return nullptr; |
| } |
| |
| // we don't handle it if curvature of the stroke is less than curvature of the ellipse |
| if (scaledStroke.fX*(yRadius*yRadius) < (scaledStroke.fY*scaledStroke.fY)*xRadius || |
| scaledStroke.fY*(xRadius*xRadius) < (scaledStroke.fX*scaledStroke.fX)*yRadius) { |
| return nullptr; |
| } |
| |
| // this is legit only if scale & translation (which should be the case at the moment) |
| if (isStrokeOnly) { |
| innerXRadius = xRadius - scaledStroke.fX; |
| innerYRadius = yRadius - scaledStroke.fY; |
| } |
| |
| xRadius += scaledStroke.fX; |
| yRadius += scaledStroke.fY; |
| } |
| |
| // We've extended the outer x radius out half a pixel to antialias. |
| // This will also expand the rect so all the pixels will be captured. |
| // TODO: Consider if we should use sqrt(2)/2 instead |
| xRadius += SK_ScalarHalf; |
| yRadius += SK_ScalarHalf; |
| |
| EllipseBatch::Geometry geometry; |
| geometry.fColor = color; |
| geometry.fXRadius = xRadius; |
| geometry.fYRadius = yRadius; |
| geometry.fInnerXRadius = innerXRadius; |
| geometry.fInnerYRadius = innerYRadius; |
| geometry.fDevBounds = SkRect::MakeLTRB(center.fX - xRadius, center.fY - yRadius, |
| center.fX + xRadius, center.fY + yRadius); |
| |
| return new EllipseBatch(geometry, viewMatrix, |
| isStrokeOnly && innerXRadius > 0 && innerYRadius > 0); |
| } |
| |
| GrDrawBatch* GrOvalRenderer::CreateEllipseBatch(GrColor color, |
| const SkMatrix& viewMatrix, |
| const SkRect& ellipse, |
| const SkStrokeRec& stroke) { |
| return create_ellipse_batch(color, viewMatrix, ellipse, stroke); |
| } |
| |
| ///////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| class DIEllipseBatch : public GrVertexBatch { |
| public: |
| DEFINE_BATCH_CLASS_ID |
| |
| struct Geometry { |
| SkMatrix fViewMatrix; |
| SkRect fBounds; |
| SkScalar fXRadius; |
| SkScalar fYRadius; |
| SkScalar fInnerXRadius; |
| SkScalar fInnerYRadius; |
| SkScalar fGeoDx; |
| SkScalar fGeoDy; |
| GrColor fColor; |
| DIEllipseStyle fStyle; |
| }; |
| |
| static GrDrawBatch* Create(const Geometry& geometry, const SkRect& bounds) { |
| return new DIEllipseBatch(geometry, bounds); |
| } |
| |
| const char* name() const override { return "DIEllipseBatch"; } |
| |
| void computePipelineOptimizations(GrInitInvariantOutput* color, |
| GrInitInvariantOutput* coverage, |
| GrBatchToXPOverrides* overrides) const override { |
| // When this is called on a batch, there is only one geometry bundle |
| color->setKnownFourComponents(fGeoData[0].fColor); |
| coverage->setUnknownSingleComponent(); |
| } |
| |
| private: |
| |
| void initBatchTracker(const GrXPOverridesForBatch& overrides) override { |
| // Handle any overrides that affect our GP. |
| overrides.getOverrideColorIfSet(&fGeoData[0].fColor); |
| fUsesLocalCoords = overrides.readsLocalCoords(); |
| } |
| |
| void onPrepareDraws(Target* target) const override { |
| // Setup geometry processor |
| SkAutoTUnref<GrGeometryProcessor> gp(new DIEllipseGeometryProcessor(this->viewMatrix(), |
| this->style())); |
| |
| int instanceCount = fGeoData.count(); |
| size_t vertexStride = gp->getVertexStride(); |
| SkASSERT(vertexStride == sizeof(DIEllipseVertex)); |
| QuadHelper helper; |
| DIEllipseVertex* verts = reinterpret_cast<DIEllipseVertex*>( |
| helper.init(target, vertexStride, instanceCount)); |
| if (!verts) { |
| return; |
| } |
| |
| for (int i = 0; i < instanceCount; i++) { |
| const Geometry& geom = fGeoData[i]; |
| |
| GrColor color = geom.fColor; |
| SkScalar xRadius = geom.fXRadius; |
| SkScalar yRadius = geom.fYRadius; |
| |
| const SkRect& bounds = geom.fBounds; |
| |
| // This adjusts the "radius" to include the half-pixel border |
| SkScalar offsetDx = geom.fGeoDx / xRadius; |
| SkScalar offsetDy = geom.fGeoDy / yRadius; |
| |
| SkScalar innerRatioX = xRadius / geom.fInnerXRadius; |
| SkScalar innerRatioY = yRadius / geom.fInnerYRadius; |
| |
| verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop); |
| verts[0].fColor = color; |
| verts[0].fOuterOffset = SkPoint::Make(-1.0f - offsetDx, -1.0f - offsetDy); |
| verts[0].fInnerOffset = SkPoint::Make(-innerRatioX - offsetDx, -innerRatioY - offsetDy); |
| |
| verts[1].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom); |
| verts[1].fColor = color; |
| verts[1].fOuterOffset = SkPoint::Make(-1.0f - offsetDx, 1.0f + offsetDy); |
| verts[1].fInnerOffset = SkPoint::Make(-innerRatioX - offsetDx, innerRatioY + offsetDy); |
| |
| verts[2].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom); |
| verts[2].fColor = color; |
| verts[2].fOuterOffset = SkPoint::Make(1.0f + offsetDx, 1.0f + offsetDy); |
| verts[2].fInnerOffset = SkPoint::Make(innerRatioX + offsetDx, innerRatioY + offsetDy); |
| |
| verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fTop); |
| verts[3].fColor = color; |
| verts[3].fOuterOffset = SkPoint::Make(1.0f + offsetDx, -1.0f - offsetDy); |
| verts[3].fInnerOffset = SkPoint::Make(innerRatioX + offsetDx, -innerRatioY - offsetDy); |
| |
| verts += kVerticesPerQuad; |
| } |
| helper.recordDraw(target, gp); |
| } |
| |
| DIEllipseBatch(const Geometry& geometry, const SkRect& bounds) : INHERITED(ClassID()) { |
| fGeoData.push_back(geometry); |
| |
| this->setBounds(bounds); |
| } |
| |
| bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override { |
| DIEllipseBatch* that = t->cast<DIEllipseBatch>(); |
| if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(), |
| that->bounds(), caps)) { |
| return false; |
| } |
| |
| if (this->style() != that->style()) { |
| return false; |
| } |
| |
| // TODO rewrite to allow positioning on CPU |
| if (!this->viewMatrix().cheapEqualTo(that->viewMatrix())) { |
| return false; |
| } |
| |
| fGeoData.push_back_n(that->fGeoData.count(), that->fGeoData.begin()); |
| this->joinBounds(that->bounds()); |
| return true; |
| } |
| |
| const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; } |
| DIEllipseStyle style() const { return fGeoData[0].fStyle; } |
| |
| bool fUsesLocalCoords; |
| SkSTArray<1, Geometry, true> fGeoData; |
| |
| typedef GrVertexBatch INHERITED; |
| }; |
| |
| static GrDrawBatch* create_diellipse_batch(GrColor color, |
| const SkMatrix& viewMatrix, |
| const SkRect& ellipse, |
| const SkStrokeRec& stroke) { |
| SkPoint center = SkPoint::Make(ellipse.centerX(), ellipse.centerY()); |
| SkScalar xRadius = SkScalarHalf(ellipse.width()); |
| SkScalar yRadius = SkScalarHalf(ellipse.height()); |
| |
| SkStrokeRec::Style style = stroke.getStyle(); |
| DIEllipseStyle dieStyle = (SkStrokeRec::kStroke_Style == style) ? |
| DIEllipseStyle::kStroke : |
| (SkStrokeRec::kHairline_Style == style) ? |
| DIEllipseStyle::kHairline : DIEllipseStyle::kFill; |
| |
| SkScalar innerXRadius = 0; |
| SkScalar innerYRadius = 0; |
| if (SkStrokeRec::kFill_Style != style && SkStrokeRec::kHairline_Style != style) { |
| SkScalar strokeWidth = stroke.getWidth(); |
| |
| if (SkScalarNearlyZero(strokeWidth)) { |
| strokeWidth = SK_ScalarHalf; |
| } else { |
| strokeWidth *= SK_ScalarHalf; |
| } |
| |
| // we only handle thick strokes for near-circular ellipses |
| if (strokeWidth > SK_ScalarHalf && |
| (SK_ScalarHalf*xRadius > yRadius || SK_ScalarHalf*yRadius > xRadius)) { |
| return nullptr; |
| } |
| |
| // we don't handle it if curvature of the stroke is less than curvature of the ellipse |
| if (strokeWidth*(yRadius*yRadius) < (strokeWidth*strokeWidth)*xRadius || |
| strokeWidth*(xRadius*xRadius) < (strokeWidth*strokeWidth)*yRadius) { |
| return nullptr; |
| } |
| |
| // set inner radius (if needed) |
| if (SkStrokeRec::kStroke_Style == style) { |
| innerXRadius = xRadius - strokeWidth; |
| innerYRadius = yRadius - strokeWidth; |
| } |
| |
| xRadius += strokeWidth; |
| yRadius += strokeWidth; |
| } |
| if (DIEllipseStyle::kStroke == dieStyle) { |
| dieStyle = (innerXRadius > 0 && innerYRadius > 0) ? DIEllipseStyle ::kStroke : |
| DIEllipseStyle ::kFill; |
| } |
| |
| // This expands the outer rect so that after CTM we end up with a half-pixel border |
| SkScalar a = viewMatrix[SkMatrix::kMScaleX]; |
| SkScalar b = viewMatrix[SkMatrix::kMSkewX]; |
| SkScalar c = viewMatrix[SkMatrix::kMSkewY]; |
| SkScalar d = viewMatrix[SkMatrix::kMScaleY]; |
| SkScalar geoDx = SK_ScalarHalf / SkScalarSqrt(a*a + c*c); |
| SkScalar geoDy = SK_ScalarHalf / SkScalarSqrt(b*b + d*d); |
| |
| DIEllipseBatch::Geometry geometry; |
| geometry.fViewMatrix = viewMatrix; |
| geometry.fColor = color; |
| geometry.fXRadius = xRadius; |
| geometry.fYRadius = yRadius; |
| geometry.fInnerXRadius = innerXRadius; |
| geometry.fInnerYRadius = innerYRadius; |
| geometry.fGeoDx = geoDx; |
| geometry.fGeoDy = geoDy; |
| geometry.fStyle = dieStyle; |
| geometry.fBounds = SkRect::MakeLTRB(center.fX - xRadius - geoDx, center.fY - yRadius - geoDy, |
| center.fX + xRadius + geoDx, center.fY + yRadius + geoDy); |
| |
| SkRect devBounds = geometry.fBounds; |
| viewMatrix.mapRect(&devBounds); |
| return DIEllipseBatch::Create(geometry, devBounds); |
| } |
| |
| GrDrawBatch* GrOvalRenderer::CreateDIEllipseBatch(GrColor color, |
| const SkMatrix& viewMatrix, |
| const SkRect& ellipse, |
| const SkStrokeRec& stroke) { |
| return create_diellipse_batch(color, viewMatrix, ellipse, stroke); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static const uint16_t gRRectIndices[] = { |
| // corners |
| 0, 1, 5, 0, 5, 4, |
| 2, 3, 7, 2, 7, 6, |
| 8, 9, 13, 8, 13, 12, |
| 10, 11, 15, 10, 15, 14, |
| |
| // edges |
| 1, 2, 6, 1, 6, 5, |
| 4, 5, 9, 4, 9, 8, |
| 6, 7, 11, 6, 11, 10, |
| 9, 10, 14, 9, 14, 13, |
| |
| // center |
| // we place this at the end so that we can ignore these indices when rendering stroke-only |
| 5, 6, 10, 5, 10, 9 |
| }; |
| |
| static const int kIndicesPerStrokeRRect = SK_ARRAY_COUNT(gRRectIndices) - 6; |
| static const int kIndicesPerRRect = SK_ARRAY_COUNT(gRRectIndices); |
| static const int kVertsPerRRect = 16; |
| static const int kNumRRectsInIndexBuffer = 256; |
| |
| GR_DECLARE_STATIC_UNIQUE_KEY(gStrokeRRectOnlyIndexBufferKey); |
| GR_DECLARE_STATIC_UNIQUE_KEY(gRRectOnlyIndexBufferKey); |
| static const GrBuffer* ref_rrect_index_buffer(bool strokeOnly, |
| GrResourceProvider* resourceProvider) { |
| GR_DEFINE_STATIC_UNIQUE_KEY(gStrokeRRectOnlyIndexBufferKey); |
| GR_DEFINE_STATIC_UNIQUE_KEY(gRRectOnlyIndexBufferKey); |
| if (strokeOnly) { |
| return resourceProvider->findOrCreateInstancedIndexBuffer( |
| gRRectIndices, kIndicesPerStrokeRRect, kNumRRectsInIndexBuffer, kVertsPerRRect, |
| gStrokeRRectOnlyIndexBufferKey); |
| } else { |
| return resourceProvider->findOrCreateInstancedIndexBuffer( |
| gRRectIndices, kIndicesPerRRect, kNumRRectsInIndexBuffer, kVertsPerRRect, |
| gRRectOnlyIndexBufferKey); |
| |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| class RRectCircleRendererBatch : public GrVertexBatch { |
| public: |
| DEFINE_BATCH_CLASS_ID |
| |
| struct Geometry { |
| SkRect fDevBounds; |
| SkScalar fInnerRadius; |
| SkScalar fOuterRadius; |
| GrColor fColor; |
| }; |
| |
| RRectCircleRendererBatch(const Geometry& geometry, const SkMatrix& viewMatrix, bool stroked) |
| : INHERITED(ClassID()) |
| , fStroked(stroked) |
| , fViewMatrixIfUsingLocalCoords(viewMatrix) { |
| fGeoData.push_back(geometry); |
| |
| this->setBounds(geometry.fDevBounds); |
| } |
| |
| const char* name() const override { return "RRectCircleBatch"; } |
| |
| void computePipelineOptimizations(GrInitInvariantOutput* color, |
| GrInitInvariantOutput* coverage, |
| GrBatchToXPOverrides* overrides) const override { |
| // When this is called on a batch, there is only one geometry bundle |
| color->setKnownFourComponents(fGeoData[0].fColor); |
| coverage->setUnknownSingleComponent(); |
| } |
| |
| private: |
| void initBatchTracker(const GrXPOverridesForBatch& overrides) override { |
| // Handle any overrides that affect our GP. |
| overrides.getOverrideColorIfSet(&fGeoData[0].fColor); |
| if (!overrides.readsLocalCoords()) { |
| fViewMatrixIfUsingLocalCoords.reset(); |
| } |
| } |
| |
| void onPrepareDraws(Target* target) const override { |
| // Invert the view matrix as a local matrix (if any other processors require coords). |
| SkMatrix localMatrix; |
| if (!fViewMatrixIfUsingLocalCoords.invert(&localMatrix)) { |
| return; |
| } |
| |
| // Setup geometry processor |
| SkAutoTUnref<GrGeometryProcessor> gp(new CircleGeometryProcessor(fStroked, localMatrix)); |
| |
| int instanceCount = fGeoData.count(); |
| size_t vertexStride = gp->getVertexStride(); |
| SkASSERT(vertexStride == sizeof(CircleVertex)); |
| |
| // drop out the middle quad if we're stroked |
| int indicesPerInstance = fStroked ? kIndicesPerStrokeRRect : kIndicesPerRRect; |
| SkAutoTUnref<const GrBuffer> indexBuffer( |
| ref_rrect_index_buffer(fStroked, target->resourceProvider())); |
| |
| InstancedHelper helper; |
| CircleVertex* verts = reinterpret_cast<CircleVertex*>(helper.init(target, |
| kTriangles_GrPrimitiveType, vertexStride, indexBuffer, kVertsPerRRect, |
| indicesPerInstance, instanceCount)); |
| if (!verts || !indexBuffer) { |
| SkDebugf("Could not allocate vertices\n"); |
| return; |
| } |
| |
| for (int i = 0; i < instanceCount; i++) { |
| const Geometry& args = fGeoData[i]; |
| |
| GrColor color = args.fColor; |
| SkScalar outerRadius = args.fOuterRadius; |
| |
| const SkRect& bounds = args.fDevBounds; |
| |
| SkScalar yCoords[4] = { |
| bounds.fTop, |
| bounds.fTop + outerRadius, |
| bounds.fBottom - outerRadius, |
| bounds.fBottom |
| }; |
| |
| SkScalar yOuterRadii[4] = {-1, 0, 0, 1 }; |
| // The inner radius in the vertex data must be specified in normalized space. |
| SkScalar innerRadius = args.fInnerRadius / args.fOuterRadius; |
| for (int i = 0; i < 4; ++i) { |
| verts->fPos = SkPoint::Make(bounds.fLeft, yCoords[i]); |
| verts->fColor = color; |
| verts->fOffset = SkPoint::Make(-1, yOuterRadii[i]); |
| verts->fOuterRadius = outerRadius; |
| verts->fInnerRadius = innerRadius; |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fLeft + outerRadius, yCoords[i]); |
| verts->fColor = color; |
| verts->fOffset = SkPoint::Make(0, yOuterRadii[i]); |
| verts->fOuterRadius = outerRadius; |
| verts->fInnerRadius = innerRadius; |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fRight - outerRadius, yCoords[i]); |
| verts->fColor = color; |
| verts->fOffset = SkPoint::Make(0, yOuterRadii[i]); |
| verts->fOuterRadius = outerRadius; |
| verts->fInnerRadius = innerRadius; |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fRight, yCoords[i]); |
| verts->fColor = color; |
| verts->fOffset = SkPoint::Make(1, yOuterRadii[i]); |
| verts->fOuterRadius = outerRadius; |
| verts->fInnerRadius = innerRadius; |
| verts++; |
| } |
| } |
| |
| helper.recordDraw(target, gp); |
| } |
| |
| bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override { |
| RRectCircleRendererBatch* that = t->cast<RRectCircleRendererBatch>(); |
| if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(), |
| that->bounds(), caps)) { |
| return false; |
| } |
| |
| if (fStroked != that->fStroked) { |
| return false; |
| } |
| |
| if (!fViewMatrixIfUsingLocalCoords.cheapEqualTo(that->fViewMatrixIfUsingLocalCoords)) { |
| return false; |
| } |
| |
| fGeoData.push_back_n(that->fGeoData.count(), that->fGeoData.begin()); |
| this->joinBounds(that->bounds()); |
| return true; |
| } |
| |
| bool fStroked; |
| SkMatrix fViewMatrixIfUsingLocalCoords; |
| SkSTArray<1, Geometry, true> fGeoData; |
| |
| typedef GrVertexBatch INHERITED; |
| }; |
| |
| class RRectEllipseRendererBatch : public GrVertexBatch { |
| public: |
| DEFINE_BATCH_CLASS_ID |
| |
| struct Geometry { |
| SkRect fDevBounds; |
| SkScalar fXRadius; |
| SkScalar fYRadius; |
| SkScalar fInnerXRadius; |
| SkScalar fInnerYRadius; |
| GrColor fColor; |
| }; |
| |
| RRectEllipseRendererBatch(const Geometry& geometry, const SkMatrix& viewMatrix, bool stroked) |
| : INHERITED(ClassID()) |
| , fStroked(stroked) |
| , fViewMatrixIfUsingLocalCoords(viewMatrix) { |
| fGeoData.push_back(geometry); |
| this->setBounds(geometry.fDevBounds); |
| } |
| |
| const char* name() const override { return "RRectEllipseRendererBatch"; } |
| |
| void computePipelineOptimizations(GrInitInvariantOutput* color, |
| GrInitInvariantOutput* coverage, |
| GrBatchToXPOverrides* overrides) const override { |
| // When this is called on a batch, there is only one geometry bundle |
| color->setKnownFourComponents(fGeoData[0].fColor); |
| coverage->setUnknownSingleComponent(); |
| } |
| |
| private: |
| void initBatchTracker(const GrXPOverridesForBatch& overrides) override { |
| // Handle overrides that affect our GP. |
| overrides.getOverrideColorIfSet(&fGeoData[0].fColor); |
| if (!overrides.readsLocalCoords()) { |
| fViewMatrixIfUsingLocalCoords.reset(); |
| } |
| } |
| |
| void onPrepareDraws(Target* target) const override { |
| SkMatrix localMatrix; |
| if (!fViewMatrixIfUsingLocalCoords.invert(&localMatrix)) { |
| return; |
| } |
| |
| // Setup geometry processor |
| SkAutoTUnref<GrGeometryProcessor> gp(new EllipseGeometryProcessor(fStroked, localMatrix)); |
| |
| int instanceCount = fGeoData.count(); |
| size_t vertexStride = gp->getVertexStride(); |
| SkASSERT(vertexStride == sizeof(EllipseVertex)); |
| |
| // drop out the middle quad if we're stroked |
| int indicesPerInstance = fStroked ? kIndicesPerStrokeRRect : kIndicesPerRRect; |
| SkAutoTUnref<const GrBuffer> indexBuffer( |
| ref_rrect_index_buffer(fStroked, target->resourceProvider())); |
| |
| InstancedHelper helper; |
| EllipseVertex* verts = reinterpret_cast<EllipseVertex*>( |
| helper.init(target, kTriangles_GrPrimitiveType, vertexStride, indexBuffer, |
| kVertsPerRRect, indicesPerInstance, instanceCount)); |
| if (!verts || !indexBuffer) { |
| SkDebugf("Could not allocate vertices\n"); |
| return; |
| } |
| |
| for (int i = 0; i < instanceCount; i++) { |
| const Geometry& args = fGeoData[i]; |
| |
| GrColor color = args.fColor; |
| |
| // Compute the reciprocals of the radii here to save time in the shader |
| SkScalar xRadRecip = SkScalarInvert(args.fXRadius); |
| SkScalar yRadRecip = SkScalarInvert(args.fYRadius); |
| SkScalar xInnerRadRecip = SkScalarInvert(args.fInnerXRadius); |
| SkScalar yInnerRadRecip = SkScalarInvert(args.fInnerYRadius); |
| |
| // Extend the radii out half a pixel to antialias. |
| SkScalar xOuterRadius = args.fXRadius + SK_ScalarHalf; |
| SkScalar yOuterRadius = args.fYRadius + SK_ScalarHalf; |
| |
| const SkRect& bounds = args.fDevBounds; |
| |
| SkScalar yCoords[4] = { |
| bounds.fTop, |
| bounds.fTop + yOuterRadius, |
| bounds.fBottom - yOuterRadius, |
| bounds.fBottom |
| }; |
| SkScalar yOuterOffsets[4] = { |
| yOuterRadius, |
| SK_ScalarNearlyZero, // we're using inversesqrt() in shader, so can't be exactly 0 |
| SK_ScalarNearlyZero, |
| yOuterRadius |
| }; |
| |
| for (int i = 0; i < 4; ++i) { |
| verts->fPos = SkPoint::Make(bounds.fLeft, yCoords[i]); |
| verts->fColor = color; |
| verts->fOffset = SkPoint::Make(xOuterRadius, yOuterOffsets[i]); |
| verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fLeft + xOuterRadius, yCoords[i]); |
| verts->fColor = color; |
| verts->fOffset = SkPoint::Make(SK_ScalarNearlyZero, yOuterOffsets[i]); |
| verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fRight - xOuterRadius, yCoords[i]); |
| verts->fColor = color; |
| verts->fOffset = SkPoint::Make(SK_ScalarNearlyZero, yOuterOffsets[i]); |
| verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fRight, yCoords[i]); |
| verts->fColor = color; |
| verts->fOffset = SkPoint::Make(xOuterRadius, yOuterOffsets[i]); |
| verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| verts++; |
| } |
| } |
| helper.recordDraw(target, gp); |
| } |
| |
| bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override { |
| RRectEllipseRendererBatch* that = t->cast<RRectEllipseRendererBatch>(); |
| |
| if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(), |
| that->bounds(), caps)) { |
| return false; |
| } |
| |
| if (fStroked != that->fStroked) { |
| return false; |
| } |
| |
| if (!fViewMatrixIfUsingLocalCoords.cheapEqualTo(that->fViewMatrixIfUsingLocalCoords)) { |
| return false; |
| } |
| |
| fGeoData.push_back_n(that->fGeoData.count(), that->fGeoData.begin()); |
| this->joinBounds(that->bounds()); |
| return true; |
| } |
| |
| bool fStroked; |
| SkMatrix fViewMatrixIfUsingLocalCoords; |
| SkSTArray<1, Geometry, true> fGeoData; |
| |
| typedef GrVertexBatch INHERITED; |
| }; |
| |
| static GrDrawBatch* create_rrect_batch(GrColor color, |
| const SkMatrix& viewMatrix, |
| const SkRRect& rrect, |
| const SkStrokeRec& stroke) { |
| SkASSERT(viewMatrix.rectStaysRect()); |
| SkASSERT(rrect.isSimple()); |
| SkASSERT(!rrect.isOval()); |
| |
| // RRect batchs only handle simple, but not too simple, rrects |
| // do any matrix crunching before we reset the draw state for device coords |
| const SkRect& rrectBounds = rrect.getBounds(); |
| SkRect bounds; |
| viewMatrix.mapRect(&bounds, rrectBounds); |
| |
| SkVector radii = rrect.getSimpleRadii(); |
| SkScalar xRadius = SkScalarAbs(viewMatrix[SkMatrix::kMScaleX]*radii.fX + |
| viewMatrix[SkMatrix::kMSkewY]*radii.fY); |
| SkScalar yRadius = SkScalarAbs(viewMatrix[SkMatrix::kMSkewX]*radii.fX + |
| viewMatrix[SkMatrix::kMScaleY]*radii.fY); |
| |
| SkStrokeRec::Style style = stroke.getStyle(); |
| |
| // do (potentially) anisotropic mapping of stroke |
| SkVector scaledStroke; |
| SkScalar strokeWidth = stroke.getWidth(); |
| |
| bool isStrokeOnly = SkStrokeRec::kStroke_Style == style || |
| SkStrokeRec::kHairline_Style == style; |
| bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style; |
| |
| if (hasStroke) { |
| if (SkStrokeRec::kHairline_Style == style) { |
| scaledStroke.set(1, 1); |
| } else { |
| scaledStroke.fX = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMScaleX] + |
| viewMatrix[SkMatrix::kMSkewY])); |
| scaledStroke.fY = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMSkewX] + |
| viewMatrix[SkMatrix::kMScaleY])); |
| } |
| |
| // if half of strokewidth is greater than radius, we don't handle that right now |
| if (SK_ScalarHalf*scaledStroke.fX > xRadius || SK_ScalarHalf*scaledStroke.fY > yRadius) { |
| return nullptr; |
| } |
| } |
| |
| // The way the effect interpolates the offset-to-ellipse/circle-center attribute only works on |
| // the interior of the rrect if the radii are >= 0.5. Otherwise, the inner rect of the nine- |
| // patch will have fractional coverage. This only matters when the interior is actually filled. |
| // We could consider falling back to rect rendering here, since a tiny radius is |
| // indistinguishable from a square corner. |
| if (!isStrokeOnly && (SK_ScalarHalf > xRadius || SK_ScalarHalf > yRadius)) { |
| return nullptr; |
| } |
| |
| // if the corners are circles, use the circle renderer |
| if ((!hasStroke || scaledStroke.fX == scaledStroke.fY) && xRadius == yRadius) { |
| SkScalar innerRadius = 0.0f; |
| SkScalar outerRadius = xRadius; |
| SkScalar halfWidth = 0; |
| if (hasStroke) { |
| if (SkScalarNearlyZero(scaledStroke.fX)) { |
| halfWidth = SK_ScalarHalf; |
| } else { |
| halfWidth = SkScalarHalf(scaledStroke.fX); |
| } |
| |
| if (isStrokeOnly) { |
| innerRadius = xRadius - halfWidth; |
| } |
| outerRadius += halfWidth; |
| bounds.outset(halfWidth, halfWidth); |
| } |
| |
| isStrokeOnly = (isStrokeOnly && innerRadius >= 0); |
| |
| // The radii are outset for two reasons. First, it allows the shader to simply perform |
| // simpler computation because the computed alpha is zero, rather than 50%, at the radius. |
| // Second, the outer radius is used to compute the verts of the bounding box that is |
| // rendered and the outset ensures the box will cover all partially covered by the rrect |
| // corners. |
| outerRadius += SK_ScalarHalf; |
| innerRadius -= SK_ScalarHalf; |
| |
| // Expand the rect so all the pixels will be captured. |
| bounds.outset(SK_ScalarHalf, SK_ScalarHalf); |
| |
| RRectCircleRendererBatch::Geometry geometry; |
| geometry.fColor = color; |
| geometry.fInnerRadius = innerRadius; |
| geometry.fOuterRadius = outerRadius; |
| geometry.fDevBounds = bounds; |
| |
| return new RRectCircleRendererBatch(geometry, viewMatrix, isStrokeOnly); |
| // otherwise we use the ellipse renderer |
| } else { |
| SkScalar innerXRadius = 0.0f; |
| SkScalar innerYRadius = 0.0f; |
| if (hasStroke) { |
| if (SkScalarNearlyZero(scaledStroke.length())) { |
| scaledStroke.set(SK_ScalarHalf, SK_ScalarHalf); |
| } else { |
| scaledStroke.scale(SK_ScalarHalf); |
| } |
| |
| // we only handle thick strokes for near-circular ellipses |
| if (scaledStroke.length() > SK_ScalarHalf && |
| (SK_ScalarHalf*xRadius > yRadius || SK_ScalarHalf*yRadius > xRadius)) { |
| return nullptr; |
| } |
| |
| // we don't handle it if curvature of the stroke is less than curvature of the ellipse |
| if (scaledStroke.fX*(yRadius*yRadius) < (scaledStroke.fY*scaledStroke.fY)*xRadius || |
| scaledStroke.fY*(xRadius*xRadius) < (scaledStroke.fX*scaledStroke.fX)*yRadius) { |
| return nullptr; |
| } |
| |
| // this is legit only if scale & translation (which should be the case at the moment) |
| if (isStrokeOnly) { |
| innerXRadius = xRadius - scaledStroke.fX; |
| innerYRadius = yRadius - scaledStroke.fY; |
| } |
| |
| xRadius += scaledStroke.fX; |
| yRadius += scaledStroke.fY; |
| bounds.outset(scaledStroke.fX, scaledStroke.fY); |
| } |
| |
| isStrokeOnly = (isStrokeOnly && innerXRadius >= 0 && innerYRadius >= 0); |
| |
| // Expand the rect so all the pixels will be captured. |
| bounds.outset(SK_ScalarHalf, SK_ScalarHalf); |
| |
| RRectEllipseRendererBatch::Geometry geometry; |
| geometry.fColor = color; |
| geometry.fXRadius = xRadius; |
| geometry.fYRadius = yRadius; |
| geometry.fInnerXRadius = innerXRadius; |
| geometry.fInnerYRadius = innerYRadius; |
| geometry.fDevBounds = bounds; |
| |
| return new RRectEllipseRendererBatch(geometry, viewMatrix, isStrokeOnly); |
| } |
| } |
| |
| GrDrawBatch* GrOvalRenderer::CreateRRectBatch(GrColor color, |
| const SkMatrix& viewMatrix, |
| const SkRRect& rrect, |
| const SkStrokeRec& stroke, |
| GrShaderCaps* shaderCaps) { |
| if (rrect.isOval()) { |
| return CreateOvalBatch(color, viewMatrix, rrect.getBounds(), stroke, shaderCaps); |
| } |
| |
| if (!viewMatrix.rectStaysRect() || !rrect.isSimple()) { |
| return nullptr; |
| } |
| |
| return create_rrect_batch(color, viewMatrix, rrect, stroke); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| #ifdef GR_TEST_UTILS |
| |
| DRAW_BATCH_TEST_DEFINE(CircleBatch) { |
| SkMatrix viewMatrix = GrTest::TestMatrix(random); |
| GrColor color = GrRandomColor(random); |
| SkRect circle = GrTest::TestSquare(random); |
| return create_circle_batch(color, viewMatrix, circle, GrTest::TestStrokeRec(random)); |
| } |
| |
| DRAW_BATCH_TEST_DEFINE(EllipseBatch) { |
| SkMatrix viewMatrix = GrTest::TestMatrixRectStaysRect(random); |
| GrColor color = GrRandomColor(random); |
| SkRect ellipse = GrTest::TestSquare(random); |
| return create_ellipse_batch(color, viewMatrix, ellipse, GrTest::TestStrokeRec(random)); |
| } |
| |
| DRAW_BATCH_TEST_DEFINE(DIEllipseBatch) { |
| SkMatrix viewMatrix = GrTest::TestMatrix(random); |
| GrColor color = GrRandomColor(random); |
| SkRect ellipse = GrTest::TestSquare(random); |
| return create_diellipse_batch(color, viewMatrix, ellipse, GrTest::TestStrokeRec(random)); |
| } |
| |
| DRAW_BATCH_TEST_DEFINE(RRectBatch) { |
| SkMatrix viewMatrix = GrTest::TestMatrixRectStaysRect(random); |
| GrColor color = GrRandomColor(random); |
| const SkRRect& rrect = GrTest::TestRRectSimple(random); |
| return create_rrect_batch(color, viewMatrix, rrect, GrTest::TestStrokeRec(random)); |
| } |
| |
| #endif |